C-Band Lithium Niobate on Silicon Carbide SAW Resonator With Figure-of-Merit of 124 at 6.5 GHz
In this work, we demonstrate a C-band shear-horizontal surface acoustic wave (SH-SAW) resonator with high electromechanical coupling (<inline-formula> <tex-math notation="LaTeX">{k}_{\mathbf {t}}^{\mathbf {2}} </tex-math></inline-formula>) of 22% and a quality facto...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 33; no. 5; pp. 604 - 609 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we demonstrate a C-band shear-horizontal surface acoustic wave (SH-SAW) resonator with high electromechanical coupling (<inline-formula> <tex-math notation="LaTeX">{k}_{\mathbf {t}}^{\mathbf {2}} </tex-math></inline-formula>) of 22% and a quality factor (Q) of 565 based on a thin-film lithium niobate (LN) on silicon carbide (SiC) platform, featuring an excellent figure-of-merit (FoM <inline-formula> <tex-math notation="LaTeX">= {k}_{\mathbf {t}}^{\mathbf {2}}\cdot Q_{max} </tex-math></inline-formula>) of 124 at 6.5 GHz, the highest FoM reported in this frequency range. The resonator frequency upscaling is achieved through wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>) reduction and the use of thin aluminum (Al) electrodes. The LN/SiC waveguide and synchronous resonator design collectively enable effective acoustic energy confinement for a high FoM, even when the normalized thickness of LN approaches a scale of <inline-formula> <tex-math notation="LaTeX">0.5\lambda </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1\lambda </tex-math></inline-formula>. To perform a comprehensive study, we also designed and fabricated five additional resonators, expanding the <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula> studied ranging from 480 to 800 nm, in the same 500 nm-thick transferred Y-cut thin-film LN on SiC. The fabricated SH-SAW resonators, operating from 5 to 8 GHz, experimentally demonstrate a <inline-formula> <tex-math notation="LaTeX">{k}_{\mathbf {t}}^{\mathbf {2}} </tex-math></inline-formula> from 20.3% to 22.9% and a Q from 350 to 575, thereby covering the entire C-band with excellent performance. [2024-0070] |
---|---|
AbstractList | In this work, we demonstrate a C-band shear-horizontal surface acoustic wave (SH-SAW) resonator with high electromechanical coupling (<inline-formula> <tex-math notation="LaTeX">{k}_{\mathbf {t}}^{\mathbf {2}} </tex-math></inline-formula>) of 22% and a quality factor (Q) of 565 based on a thin-film lithium niobate (LN) on silicon carbide (SiC) platform, featuring an excellent figure-of-merit (FoM <inline-formula> <tex-math notation="LaTeX">= {k}_{\mathbf {t}}^{\mathbf {2}}\cdot Q_{max} </tex-math></inline-formula>) of 124 at 6.5 GHz, the highest FoM reported in this frequency range. The resonator frequency upscaling is achieved through wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>) reduction and the use of thin aluminum (Al) electrodes. The LN/SiC waveguide and synchronous resonator design collectively enable effective acoustic energy confinement for a high FoM, even when the normalized thickness of LN approaches a scale of <inline-formula> <tex-math notation="LaTeX">0.5\lambda </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1\lambda </tex-math></inline-formula>. To perform a comprehensive study, we also designed and fabricated five additional resonators, expanding the <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula> studied ranging from 480 to 800 nm, in the same 500 nm-thick transferred Y-cut thin-film LN on SiC. The fabricated SH-SAW resonators, operating from 5 to 8 GHz, experimentally demonstrate a <inline-formula> <tex-math notation="LaTeX">{k}_{\mathbf {t}}^{\mathbf {2}} </tex-math></inline-formula> from 20.3% to 22.9% and a Q from 350 to 575, thereby covering the entire C-band with excellent performance. [2024-0070] In this work, we demonstrate a C-band shear-horizontal surface acoustic wave (SH-SAW) resonator with high electromechanical coupling ([Formula Omitted]) of 22% and a quality factor (Q) of 565 based on a thin-film lithium niobate (LN) on silicon carbide (SiC) platform, featuring an excellent figure-of-merit (FoM [Formula Omitted]) of 124 at 6.5 GHz, the highest FoM reported in this frequency range. The resonator frequency upscaling is achieved through wavelength ([Formula Omitted]) reduction and the use of thin aluminum (Al) electrodes. The LN/SiC waveguide and synchronous resonator design collectively enable effective acoustic energy confinement for a high FoM, even when the normalized thickness of LN approaches a scale of [Formula Omitted] to [Formula Omitted]. To perform a comprehensive study, we also designed and fabricated five additional resonators, expanding the [Formula Omitted] studied ranging from 480 to 800 nm, in the same 500 nm-thick transferred Y-cut thin-film LN on SiC. The fabricated SH-SAW resonators, operating from 5 to 8 GHz, experimentally demonstrate a [Formula Omitted] from 20.3% to 22.9% and a Q from 350 to 575, thereby covering the entire C-band with excellent performance. [2024-0070] |
Author | Cho, Sinwoo Kramer, Jack Li, Ming-Huang Campbell, Joshua Lu, Ruochen Hsu, Tzu-Hsuan |
Author_xml | – sequence: 1 givenname: Tzu-Hsuan orcidid: 0000-0003-4606-1039 surname: Hsu fullname: Hsu, Tzu-Hsuan organization: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan – sequence: 2 givenname: Joshua surname: Campbell fullname: Campbell, Joshua organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA – sequence: 3 givenname: Jack orcidid: 0000-0002-8078-8138 surname: Kramer fullname: Kramer, Jack organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA – sequence: 4 givenname: Sinwoo orcidid: 0009-0000-3401-7722 surname: Cho fullname: Cho, Sinwoo organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA – sequence: 5 givenname: Ming-Huang orcidid: 0000-0003-4059-3966 surname: Li fullname: Li, Ming-Huang email: mhli@pme.nthu.edu.tw organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA – sequence: 6 givenname: Ruochen orcidid: 0000-0003-0025-3924 surname: Lu fullname: Lu, Ruochen organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA |
BookMark | eNp90D1PwzAQBmALFQkK_AHEYIk5wefETjKWqOVDLUgUxEbkOGcwauPiOAP8egJlQAxM7w333EnvmIxa1yIhx8BiAFacXS-mi2XMGU_jJOVJJvMdsg9FChEDkY-GmYksykBke2Tcda-MQZrmcp88ldG5ahs6t-HF9mt6Y12tAlLX0qVdWT1kqXxtG6TLySO9w861KjhPHwdAZ_a59xg5Ey3Q20CdocBTqgKVsaAXlx-HZNeoVYdHP3lAHmbT-_Iymt9eXJWTeaR5IUOkIW_qVGiF9eCxqQtINEdhOBQNIEtMI6XKkZkiYwo1q5lQsh4MM1IbnRyQ0-3djXdvPXahenW9b4eXVQLAOeQSxLCVb7e0d13n0VTaBhWsa4NXdlUBq77arL7brL7arH7aHCj_QzferpV__x-dbJFFxF9AFJlMZfIJToeA6A |
CODEN | JMIYET |
CitedBy_id | crossref_primary_10_1038_s41928_025_01345_x crossref_primary_10_1109_TMTT_2024_3447004 crossref_primary_10_1109_TUFFC_2024_3522042 crossref_primary_10_1109_JMEMS_2024_3472615 crossref_primary_10_1109_TUFFC_2024_3504285 |
Cites_doi | 10.1038/s41467-023-44038-9 10.1109/JMW.2021.3064825 10.1109/LMWT.2024.3368354 10.1109/jmems.2023.3314666 10.1109/IEDM19573.2019.8993455 10.1109/mwsym.2019.8700876 10.1109/tuffc.2010.1722 10.1109/ius52206.2021.9593620 10.1109/led.2009.2023538 10.1063/5.0087735 10.1109/IMS19712.2021.9574981 10.1109/TED.2022.3183963 10.1109/tuffc.2023.3312913 10.1109/ULTSYM.2018.8580045 10.1109/EFTF/IFCS57587.2023.10272149 10.1109/tmtt.2023.3305078 10.1109/eftf/ifcs52194.2021.9604327 10.1109/tuffc.2019.2923579 10.1109/MEMS58180.2024.10439591 10.1109/IUS51837.2023.10306434 10.1063/5.0139926 10.1109/jmems.2019.2922935 10.1109/IUS51837.2023.10306831 10.1109/IMS37964.2023.10188141 10.1088/1361-6439/abf1b5 10.1109/ultsym.2003.1293380 10.1109/led.2020.3030797 10.1109/lmwt.2023.3301229 10.1109/tmtt.2018.2890661 10.1109/tmtt.2023.3267556 10.1109/JMEMS.2019.2892708 10.1109/led.2024.3368426 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 7U5 8FD FR3 L7M |
DOI | 10.1109/JMEMS.2024.3423768 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0158 |
EndPage | 609 |
ExternalDocumentID | 10_1109_JMEMS_2024_3423768 10597646 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council (NSTC) of Taiwan grantid: NSTC 112-2221-E-007-103-MY3 – fundername: Sandia’s Laboratory Directed Research and Development (LDRD) Program – fundername: Defense Advanced Research Projects Agency (DARPA) COmpact Front-end Filters at the ElEment-level (COFFEE) Program |
GroupedDBID | -~X .DC 0R~ 29L 4.4 5GY 5VS 6IK 97E 9M8 AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 TWZ VH1 XWC AAYXX CITATION RIG 7SP 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c296t-c18db45caeb124edb913c2e5f219d1e03fd66a8e0f970aec0b05a6bdb40f6cfc3 |
IEDL.DBID | RIE |
ISSN | 1057-7157 |
IngestDate | Mon Jun 30 10:23:53 EDT 2025 Tue Jul 01 01:45:13 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Wed Aug 27 02:31:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-c18db45caeb124edb913c2e5f219d1e03fd66a8e0f970aec0b05a6bdb40f6cfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8078-8138 0000-0003-4606-1039 0000-0003-4059-3966 0009-0000-3401-7722 0000-0003-0025-3924 |
PQID | 3112218615 |
PQPubID | 106006 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_JMEMS_2024_3423768 crossref_primary_10_1109_JMEMS_2024_3423768 ieee_primary_10597646 proquest_journals_3112218615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of microelectromechanical systems |
PublicationTitleAbbrev | JMEMS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref16 ref19 ref18 Jacot (ref28) 2006 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 (ref1) 2023 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1038/s41467-023-44038-9 – ident: ref2 doi: 10.1109/JMW.2021.3064825 – volume-title: 5G Technology and Networks (speed, Use Cases, Rollout) year: 2023 ident: ref1 – ident: ref7 doi: 10.1109/LMWT.2024.3368354 – ident: ref6 doi: 10.1109/jmems.2023.3314666 – ident: ref32 doi: 10.1109/IEDM19573.2019.8993455 – ident: ref31 doi: 10.1109/mwsym.2019.8700876 – ident: ref30 doi: 10.1109/tuffc.2010.1722 – ident: ref27 doi: 10.1109/ius52206.2021.9593620 – ident: ref34 doi: 10.1109/led.2009.2023538 – ident: ref18 doi: 10.1063/5.0087735 – ident: ref4 doi: 10.1109/IMS19712.2021.9574981 – ident: ref26 doi: 10.1109/TED.2022.3183963 – ident: ref25 doi: 10.1109/tuffc.2023.3312913 – ident: ref3 doi: 10.1109/ULTSYM.2018.8580045 – ident: ref12 doi: 10.1109/EFTF/IFCS57587.2023.10272149 – ident: ref21 doi: 10.1109/tmtt.2023.3305078 – ident: ref29 doi: 10.1109/eftf/ifcs52194.2021.9604327 – ident: ref8 doi: 10.1109/tuffc.2019.2923579 – ident: ref14 doi: 10.1109/MEMS58180.2024.10439591 – ident: ref20 doi: 10.1109/IUS51837.2023.10306434 – ident: ref17 doi: 10.1063/5.0139926 – ident: ref5 doi: 10.1109/jmems.2019.2922935 – ident: ref13 doi: 10.1109/IUS51837.2023.10306831 – ident: ref10 doi: 10.1109/IMS37964.2023.10188141 – ident: ref22 doi: 10.1088/1361-6439/abf1b5 – ident: ref33 doi: 10.1109/ultsym.2003.1293380 – ident: ref23 doi: 10.1109/led.2020.3030797 – volume-title: Surface acoustic wave device having improved performance and method of making the device year: 2006 ident: ref28 – ident: ref16 doi: 10.1109/lmwt.2023.3301229 – ident: ref11 doi: 10.1109/tmtt.2018.2890661 – ident: ref15 doi: 10.1109/tmtt.2023.3267556 – ident: ref24 doi: 10.1109/JMEMS.2019.2892708 – ident: ref19 doi: 10.1109/led.2024.3368426 |
SSID | ssj0014486 |
Score | 2.506135 |
Snippet | In this work, we demonstrate a C-band shear-horizontal surface acoustic wave (SH-SAW) resonator with high electromechanical coupling (<inline-formula>... In this work, we demonstrate a C-band shear-horizontal surface acoustic wave (SH-SAW) resonator with high electromechanical coupling ([Formula Omitted]) of 22%... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 604 |
SubjectTerms | Admittance C band Figure of merit Frequency ranges Lithium niobate Lithium niobates piezoelectric Piezoelectric devices Resonant frequency Resonators Silicon carbide Surface acoustic wave Surface acoustic wave devices Surface acoustic waves thin film Thin films Waveguides |
Title | C-Band Lithium Niobate on Silicon Carbide SAW Resonator With Figure-of-Merit of 124 at 6.5 GHz |
URI | https://ieeexplore.ieee.org/document/10597646 https://www.proquest.com/docview/3112218615 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQ48ChFLBTkAzfk1M7DiY9l1WVVsXtZqvZE5McYIkqCtsmlv56xk60KCMQtkTyWpW88D8-LkLca8sKm3jMFDlhe8ZxVyggGQgaDxIsyRkxXa7k8z88ui8upWD3WwgBATD6DJHzGWL7r7BCeyo6DLVDKXO6RPfTcxmKt25AB-hmxlAgNEFaKotxVyHB1fLY6XW3QF0zzJItpINUvWiiOVflDFkcFs3hM1rujjXkl35KhN4m9-a1r43-f_Ql5NJma9GTkjafkHrQH5OGdBoQH5H5MALXXz8jnOXuvW0c_Nv3XZvhO1w1e9B5o19JNc4Xs0tK53prGAd2cXNDw6t8Gf51eIAFdNF-GLbDOsxXu3NPOU9ToVPdUJgX9sLw5JOeL00_zJZtmLzCbKtkzKypnEEaNsjzNwRklMptC4VHCOQE8805KXQH3quQaLDe80NIgDffSeps9J_tt18ILQnnQgEYYUMrkKDK0w19XWmvQMzfSz4jYYVHbqTF5mI9xVUcHhas64lcH_OoJvxl5d0vzY2zL8c_VhwGQOytHLGbkaId5PV3d6zpDCzQM6hLFy7-QvSIPwu5jSt8R2e-3A7xG06Q3byJL_gQOn9xp |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagCAEHltKKgQI-cENO7SxOfCyjDkOZzGVatSciL88QtSRomlz667GdTNVSgbglkl9i6Xt-i9-G0AcJaaZja4kAAyQtaEoKoRgBxr1BYlkeIqblks9P0qOz7GwsVg-1MAAQks8g8o8hlm9a3fursn1vC-Q85ffRA6f4s3go17oOGjhPIxQTOROE5CzLNzUyVOwflYflynmDcRolIRGkuKWHwmCVO9I4qJjZM7TcbG7ILDmP-k5F-uqPvo3_vfvn6OlobOKDgTteoHvQbKMnN1oQbqOHIQVUX75E36bkk2wMXtTdj7r_iZe1O-od4LbBq_rCMUyDp3KtagN4dXCK_b1_4z12fOoI8Kz-3q-BtJaU7ssdbi12Oh3LDvMow5_nVzvoZHZ4PJ2TcfoC0bHgHdGsMMoBKZ00j1MwSrBEx5BZJ-MMA5pYw7ksgFqRUwmaKppJrhwNtVxbneyiraZt4BXC1OtAxRQIoVInNKRxrybXWjnfXHE7QWyDRaXH1uR-QsZFFVwUKqqAX-Xxq0b8JujjNc2voTHHP1fveEBurBywmKC9DebVeHgvq8TZoH5UF8te_4XsPXo0Py4X1eLL8usb9Nj_aUjw20Nb3bqHt85Q6dS7wJ6_Ab0l37M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C-Band+Lithium+Niobate+on+Silicon+Carbide+SAW+Resonator+With+Figure-of-Merit+of+124+at+6.5+GHz&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Hsu%2C+Tzu-Hsuan&rft.au=Campbell%2C+Joshua&rft.au=Kramer%2C+Jack&rft.au=Cho%2C+Sinwoo&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=1057-7157&rft.volume=33&rft.issue=5&rft.spage=604&rft.epage=609&rft_id=info:doi/10.1109%2FJMEMS.2024.3423768&rft.externalDocID=10597646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon |