MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations
Saved in:
Published in | Inventiones mathematicae Vol. 198; no. 3; pp. 505 - 590 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.12.2014
|
Online Access | Get full text |
Cover
Loading…
Author | Bayer, Arend Macrì, Emanuele |
---|---|
Author_xml | – sequence: 1 givenname: Arend surname: Bayer fullname: Bayer, Arend – sequence: 2 givenname: Emanuele surname: Macrì fullname: Macrì, Emanuele |
BookMark | eNp9kM1OwzAQhC1UJNrCA3DzA2DwTxLH3FDFn2gFBzibTWIHo9RGdiji7XFbThzQHvYw-61mZoYmPniD0Cmj54xSeZEo5ZwTygpCS8pIfYCmrBCcMK7kBE2zTIlSjB6hWUrvNB8KyafodbV6wjZEvA7d5-BwsDi9GdiYhIPHDyLhjQP8BcNA2hhScr6_xN5YDL7LzAaaweA2e0lneAl9BN878Ni6JsLogk_H6NDCkMzJ756jl5vr58UdWT7e3i-ulqTlqhpJoxQoq3hXGGnrjoKseQemEKaSpRCFrIUqOYAqytJKYLLKuuFtV1eK5xFzJPd_dzajsbp1487CGMENmlG9LUrvi9I5v94WpetMsj_kR3RriN__MD-Ch2w4 |
CitedBy_id | crossref_primary_10_1515_advgeom_2023_0010 crossref_primary_10_1007_s10485_023_09731_2 crossref_primary_10_1007_s00029_021_00664_z crossref_primary_10_1215_21562261_2022_0033 crossref_primary_10_2140_ant_2020_14_751 crossref_primary_10_1112_plms_12577 crossref_primary_10_1307_mmj_1538705132 crossref_primary_10_1112_plms_pdw033 crossref_primary_10_1007_s13163_018_0282_5 crossref_primary_10_1112_S0010437X19007735 crossref_primary_10_5802_jep_125 crossref_primary_10_1007_s00222_020_00972_9 crossref_primary_10_1090_jag_830 crossref_primary_10_5802_aif_3680 crossref_primary_10_1002_mana_201700082 crossref_primary_10_1007_s00029_016_0298_y crossref_primary_10_1112_jlms_12205 crossref_primary_10_1016_j_aim_2019_02_026 crossref_primary_10_1112_S0010437X16008307 crossref_primary_10_2969_jmsj_82688268 crossref_primary_10_1093_imrn_rnac155 crossref_primary_10_1017_nmj_2019_43 crossref_primary_10_1016_j_matpur_2017_09_004 crossref_primary_10_1017_nmj_2017_24 crossref_primary_10_1007_s00209_015_1597_2 crossref_primary_10_1090_jag_685 crossref_primary_10_1112_jlms_jdv045 crossref_primary_10_1007_s00209_023_03353_z crossref_primary_10_1093_imrn_rnac161 crossref_primary_10_1007_s00209_018_2090_5 crossref_primary_10_1007_s00209_021_02909_1 crossref_primary_10_1515_crelle_2023_0099 crossref_primary_10_2140_ant_2020_14_731 crossref_primary_10_2140_gt_2023_27_1479 crossref_primary_10_1016_j_matpur_2021_10_004 crossref_primary_10_1007_s00209_024_03476_x crossref_primary_10_1016_j_jpaa_2024_107805 crossref_primary_10_1016_j_aim_2018_06_004 crossref_primary_10_1016_j_matpur_2017_07_014 crossref_primary_10_1112_jlms_jdv012 crossref_primary_10_1090_tran_7340 crossref_primary_10_1016_j_jalgebra_2024_06_004 crossref_primary_10_1007_s00029_021_00729_z crossref_primary_10_1093_imrn_rnae112 crossref_primary_10_1017_S1474748015000328 crossref_primary_10_1007_s00208_019_01900_w crossref_primary_10_1016_j_aim_2023_109102 crossref_primary_10_1090_jams_1016 crossref_primary_10_1016_j_geomphys_2023_104994 crossref_primary_10_1007_s00209_015_1557_x crossref_primary_10_1016_j_geomphys_2024_105349 crossref_primary_10_1007_s00208_020_02036_y crossref_primary_10_1007_s00029_024_00985_9 crossref_primary_10_1093_imrn_rny065 crossref_primary_10_1215_21562261_2017_0031 crossref_primary_10_1112_S0010437X19007206 crossref_primary_10_5802_afst_1741 crossref_primary_10_1007_s00209_020_02519_3 crossref_primary_10_1093_imrn_rnv119 crossref_primary_10_1090_proc_14762 crossref_primary_10_1007_s00209_023_03410_7 crossref_primary_10_1515_crelle_2020_0010 crossref_primary_10_1112_S0010437X22007849 crossref_primary_10_1016_j_geomphys_2016_02_017 crossref_primary_10_1007_s40574_016_0091_z crossref_primary_10_1017_prm_2020_2 crossref_primary_10_1007_s00209_019_02281_1 crossref_primary_10_1007_s00209_021_02960_y crossref_primary_10_5802_jep_166 crossref_primary_10_1112_blms_13158 crossref_primary_10_1515_crelle_2016_0004 crossref_primary_10_1515_crelle_2016_0006 crossref_primary_10_1093_imrn_rnad165 crossref_primary_10_2140_gt_2019_23_347 crossref_primary_10_1016_j_aim_2020_107283 crossref_primary_10_1093_imrn_rnac236 crossref_primary_10_1080_00927872_2020_1767119 crossref_primary_10_2140_ant_2016_10_907 crossref_primary_10_1007_s00029_021_00740_4 crossref_primary_10_1007_s00209_016_1620_2 crossref_primary_10_1016_j_aim_2022_108814 crossref_primary_10_1112_jlms_12538 crossref_primary_10_1112_blms_12594 crossref_primary_10_1007_s00032_022_00366_x crossref_primary_10_1215_21562261_2023_0020 crossref_primary_10_1007_s10240_021_00124_6 crossref_primary_10_1016_j_aim_2016_02_036 crossref_primary_10_1007_s42543_024_00084_w crossref_primary_10_5802_crmath_629 crossref_primary_10_1007_s00209_022_03074_9 crossref_primary_10_1016_j_aim_2020_107316 crossref_primary_10_1112_S0010437X22007266 crossref_primary_10_1142_S0219199724500263 crossref_primary_10_1515_crelle_2015_0010 crossref_primary_10_1215_00127094_3674332 crossref_primary_10_1007_s11856_018_1687_z crossref_primary_10_1016_j_jpaa_2023_107450 crossref_primary_10_1093_imrn_rnad085 crossref_primary_10_1093_imrn_rnx109 crossref_primary_10_1016_j_matpur_2023_09_006 crossref_primary_10_1002_mana_201800557 crossref_primary_10_3836_tjm_1502179369 crossref_primary_10_1007_s00209_024_03659_6 crossref_primary_10_1016_j_aim_2018_07_002 crossref_primary_10_1017_fms_2022_96 crossref_primary_10_1142_S0219199717500444 crossref_primary_10_1007_s00029_020_0540_5 crossref_primary_10_1007_s10711_023_00823_w crossref_primary_10_1017_S1474748021000116 crossref_primary_10_1090_proc_16980 crossref_primary_10_1093_imrn_rnx333 crossref_primary_10_1017_fms_2024_31 crossref_primary_10_1093_imrn_rnv154 crossref_primary_10_1112_blms_12132 crossref_primary_10_1142_S0129167X19500447 crossref_primary_10_1112_jlms_12634 crossref_primary_10_1093_imrn_rnv315 crossref_primary_10_4153_S0008414X23000470 crossref_primary_10_1215_21562261_2023_0002 crossref_primary_10_1142_S0219199720500340 |
Cites_doi | 10.1215/00127094-2009-043 10.1016/j.aim.2012.11.018 10.1142/S0129167X10005957 10.1215/21562261-2081243 10.1016/S0040-9383(98)00003-2 10.1007/BF02399195 10.1007/s00208-011-0719-3 10.1016/S0040-9383(99)00048-8 10.4310/jdg/1214453683 10.1007/s00222-008-0143-9 10.1007/s00039-009-0037-z 10.1016/j.ansens.2003.04.002 10.1017/CBO9780511711985 10.1007/PL00004451 10.1007/s00208-009-0356-2 10.1215/00127094-1444249 10.1112/S0010437X07003065 10.4310/AJM.2010.v14.n3.a2 10.1093/imrn/rns107 10.1515/crll.1999.056 10.1007/BF01403093 10.1090/S1056-3911-07-00481-X 10.1215/S0012-7094-07-13812-2 10.1007/s00208-003-0433-x 10.1155/S1073792802109093 10.1215/S0012-7094-01-10812-0 10.1002/cpa.20384 10.1007/s00208-005-0662-2 10.1215/S0012-7094-08-14122-5 10.1007/s00039-001-8229-1 10.1007/s00229-006-0631-4 10.1090/S1056-3911-03-00318-7 10.1016/j.aim.2007.11.010 10.1007/BF01388524 10.1007/978-3-642-19004-9 10.1007/s002080100255 10.1007/s00222-012-0407-2 10.1007/BF01389137 10.1007/978-1-4614-6482-2_2 10.1007/s00222-005-0484-6 10.2140/gt.2009.13.2389 10.4007/annals.2007.166.317 10.1007/BF02247112 10.1215/S0012-7094-99-09704-1 10.1007/BF01450509 10.17323/1609-4514-2012-12-4-701-704 10.4310/CAG.1995.v3.n1.a2 10.1090/S1056-3911-04-00364-9 10.1007/s002220050280 10.2969/aspm/01010515 10.1090/S0894-0347-96-00204-4 10.1090/S1056-3911-06-00453-X 10.1007/s00039-009-0022-6 10.1017/S002776300001922X |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1007/s00222-014-0501-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Mathematics |
EISSN | 1432-1297 |
EndPage | 590 |
ExternalDocumentID | 10_1007_s00222_014_0501_8 |
GroupedDBID | --Z -DZ -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMFV ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADXHL ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETEA AETLH AEVLU AEXYK AEZWR AFBBN AFDYV AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM LO0 M4Y M7S MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P62 P9R PF- PHGZM PHGZT PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 Y6R YLTOR Z45 ZKB ZMTXR ZWQNP ZY4 ~8M ~EX |
ID | FETCH-LOGICAL-c296t-b99a9f92d4e7f8d0a782dae43e675334783952aa9455f7a17682de2cd86929293 |
ISSN | 0020-9910 |
IngestDate | Tue Jul 01 05:01:17 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-b99a9f92d4e7f8d0a782dae43e675334783952aa9455f7a17682de2cd86929293 |
PageCount | 86 |
ParticipantIDs | crossref_citationtrail_10_1007_s00222_014_0501_8 crossref_primary_10_1007_s00222_014_0501_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-00 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-00 |
PublicationDecade | 2010 |
PublicationTitle | Inventiones mathematicae |
PublicationYear | 2014 |
References | SJ Kovács (501_CR51) 1994; 300 R Friedman (501_CR25) 1995; 3 M Thaddeus (501_CR89) 1996; 9 S Mukai (501_CR75) 1984; 77 501_CR42 501_CR46 J Wierzba (501_CR94) 2003; 12 D Markushevich (501_CR60) 2006; 120 Y Kawamata (501_CR49) 1985; 79 Y Namikawa (501_CR81) 2001; 319 501_CR52 501_CR56 501_CR55 S Boucksom (501_CR17) 2004; 37 501_CR58 501_CR57 J-M Hwang (501_CR47) 2013; 192 A Beauville (501_CR10) 1999; 97 D Huybrechts (501_CR36) 2009; 149 D Harvey (501_CR32) 2012; 65 501_CR20 J Sawon (501_CR87) 2007; 16 501_CR23 D Kaledin (501_CR50) 2006; 164 501_CR22 S Hosono (501_CR34) 2004; 13 501_CR27 501_CR26 501_CR29 501_CR28 D Huybrechts (501_CR44) 2003; 326 D Huybrechts (501_CR37) 2005; 332 S Mukai (501_CR74) 1981; 81 501_CR30 DR Morrison (501_CR73) 1984; 75 P Seidel (501_CR88) 2001; 108 501_CR33 501_CR38 J Li (501_CR53) 1993; 37 H Hartmann (501_CR31) 2012; 354 A Căldăraru (501_CR21) 2002; 20 A Bayer (501_CR5) 2009; 13 501_CR9 501_CR8 501_CR80 501_CR83 501_CR85 E Markman (501_CR64) 2013; 53 501_CR84 B Hassett (501_CR41) 2010; 14 G Ellingsrud (501_CR24) 1995; 467 D Huybrechts (501_CR43) 1999; 135 501_CR1 D Huybrechts (501_CR45) 2008; 17 501_CR7 501_CR6 501_CR92 501_CR95 501_CR97 501_CR12 501_CR11 501_CR99 501_CR14 D Abramovich (501_CR4) 2006; 590 501_CR16 501_CR15 D Arcara (501_CR2) 2013; 235 A Bayer (501_CR13) 2011; 160 B Hassett (501_CR40) 2009; 19 E Markman (501_CR59) 2001; 10 K Yoshioka (501_CR98) 2009; 345 D Matsushita (501_CR65) 1999; 38 K Yoshioka (501_CR96) 2001; 321 B Hassett (501_CR39) 2001; 11 J Sawon (501_CR86) 2003; 27 E Amerik (501_CR3) 2012; 12 M Lieblich (501_CR54) 2007; 138 501_CR63 501_CR62 501_CR67 501_CR66 501_CR69 M Verbitsky (501_CR93) 2010; 19 501_CR68 M Verbitsky (501_CR91) 1996; 6 T Bridgeland (501_CR19) 2008; 141 E Markman (501_CR61) 2010; 21 D Huybrechts (501_CR35) 2008; 144 501_CR72 501_CR71 501_CR76 KG O’Grady (501_CR82) 1999; 512 501_CR78 J-M Hwang (501_CR48) 2008; 174 A Maciocia (501_CR70) 2013; 9 501_CR77 Y Toda (501_CR90) 2008; 217 T Bridgeland (501_CR18) 2007; 166 501_CR79 501_CR100 |
References_xml | – volume: 149 start-page: 461 issue: 3 year: 2009 ident: 501_CR36 publication-title: Duke Math. J. doi: 10.1215/00127094-2009-043 – ident: 501_CR68 – volume: 235 start-page: 580 year: 2013 ident: 501_CR2 publication-title: Adv. Math. doi: 10.1016/j.aim.2012.11.018 – ident: 501_CR97 – volume: 21 start-page: 169 issue: 2 year: 2010 ident: 501_CR61 publication-title: Int. J. Math. doi: 10.1142/S0129167X10005957 – volume: 53 start-page: 345 issue: 2 year: 2013 ident: 501_CR64 publication-title: Kyoto J. Math. doi: 10.1215/21562261-2081243 – volume: 38 start-page: 79 issue: 1 year: 1999 ident: 501_CR65 publication-title: Topology doi: 10.1016/S0040-9383(98)00003-2 – ident: 501_CR22 – ident: 501_CR83 doi: 10.1007/BF02399195 – volume: 354 start-page: 1 issue: 1 year: 2012 ident: 501_CR31 publication-title: Math. Ann. doi: 10.1007/s00208-011-0719-3 – ident: 501_CR66 doi: 10.1016/S0040-9383(99)00048-8 – ident: 501_CR16 – volume: 37 start-page: 417 issue: 2 year: 1993 ident: 501_CR53 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214453683 – volume: 174 start-page: 625 issue: 3 year: 2008 ident: 501_CR48 publication-title: Invent. Math. doi: 10.1007/s00222-008-0143-9 – ident: 501_CR42 – volume: 19 start-page: 1481 issue: 5 year: 2010 ident: 501_CR93 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-009-0037-z – ident: 501_CR63 – volume: 37 start-page: 45 issue: 1 year: 2004 ident: 501_CR17 publication-title: Ann. Sci. École Norm. Sup. (4) doi: 10.1016/j.ansens.2003.04.002 – ident: 501_CR33 doi: 10.1017/CBO9780511711985 – volume: 319 start-page: 597 issue: 3 year: 2001 ident: 501_CR81 publication-title: Math. Ann. doi: 10.1007/PL00004451 – volume: 27 start-page: 197 issue: 1 year: 2003 ident: 501_CR86 publication-title: Turkish J. Math. – volume: 345 start-page: 493 issue: 3 year: 2009 ident: 501_CR98 publication-title: Math. Ann. doi: 10.1007/s00208-009-0356-2 – volume: 160 start-page: 263 issue: 2 year: 2011 ident: 501_CR13 publication-title: Duke Math. J. doi: 10.1215/00127094-1444249 – ident: 501_CR80 – ident: 501_CR57 – ident: 501_CR11 – ident: 501_CR20 – volume: 144 start-page: 134 issue: 1 year: 2008 ident: 501_CR35 publication-title: Compos. Math. doi: 10.1112/S0010437X07003065 – ident: 501_CR62 – ident: 501_CR99 – volume: 14 start-page: 303 issue: 3 year: 2010 ident: 501_CR41 publication-title: Asian J. Math. doi: 10.4310/AJM.2010.v14.n3.a2 – ident: 501_CR56 – ident: 501_CR79 – volume: 9 start-page: 2054 year: 2013 ident: 501_CR70 publication-title: Int. Math. Res. Not. IMRN doi: 10.1093/imrn/rns107 – volume: 512 start-page: 49 year: 1999 ident: 501_CR82 publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1999.056 – ident: 501_CR85 – ident: 501_CR14 – volume: 75 start-page: 105 issue: 1 year: 1984 ident: 501_CR73 publication-title: Invent. Math. doi: 10.1007/BF01403093 – ident: 501_CR7 – volume: 17 start-page: 375 issue: 2 year: 2008 ident: 501_CR45 publication-title: J. Algebraic Geom. doi: 10.1090/S1056-3911-07-00481-X – ident: 501_CR71 – ident: 501_CR23 – volume: 138 start-page: 23 issue: 1 year: 2007 ident: 501_CR54 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-07-13812-2 – volume: 326 start-page: 499 issue: 3 year: 2003 ident: 501_CR44 publication-title: Math. Ann. doi: 10.1007/s00208-003-0433-x – volume: 20 start-page: 1027 issue: 20 year: 2002 ident: 501_CR21 publication-title: Int. Math. Res. Not. doi: 10.1155/S1073792802109093 – ident: 501_CR76 – volume: 108 start-page: 37 issue: 1 year: 2001 ident: 501_CR88 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-01-10812-0 – volume: 65 start-page: 264 issue: 2 year: 2012 ident: 501_CR32 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20384 – volume: 332 start-page: 901 issue: 4 year: 2005 ident: 501_CR37 publication-title: Math. Ann. doi: 10.1007/s00208-005-0662-2 – volume: 141 start-page: 241 issue: 2 year: 2008 ident: 501_CR19 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-08-14122-5 – volume: 10 start-page: 623 issue: 4 year: 2001 ident: 501_CR59 publication-title: J. Algebraic Geom. – volume: 11 start-page: 1201 issue: 6 year: 2001 ident: 501_CR39 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-001-8229-1 – ident: 501_CR26 – volume: 120 start-page: 131 issue: 2 year: 2006 ident: 501_CR60 publication-title: Manuscr. Math. doi: 10.1007/s00229-006-0631-4 – volume: 12 start-page: 507 issue: 3 year: 2003 ident: 501_CR94 publication-title: J. Algebraic Geom. doi: 10.1090/S1056-3911-03-00318-7 – volume: 217 start-page: 2736 issue: 6 year: 2008 ident: 501_CR90 publication-title: Adv. Math. doi: 10.1016/j.aim.2007.11.010 – ident: 501_CR58 – ident: 501_CR1 – ident: 501_CR100 – volume: 79 start-page: 567 issue: 3 year: 1985 ident: 501_CR49 publication-title: Invent. Math. doi: 10.1007/BF01388524 – ident: 501_CR9 – ident: 501_CR12 – ident: 501_CR46 – ident: 501_CR28 doi: 10.1007/978-3-642-19004-9 – ident: 501_CR67 – volume: 321 start-page: 817 issue: 4 year: 2001 ident: 501_CR96 publication-title: Math. Ann. doi: 10.1007/s002080100255 – volume: 192 start-page: 83 issue: 1 year: 2013 ident: 501_CR47 publication-title: Invent. Math. doi: 10.1007/s00222-012-0407-2 – volume: 77 start-page: 101 issue: 1 year: 1984 ident: 501_CR75 publication-title: Invent. Math. doi: 10.1007/BF01389137 – ident: 501_CR6 doi: 10.1007/978-1-4614-6482-2_2 – ident: 501_CR84 – ident: 501_CR29 – ident: 501_CR78 – volume: 164 start-page: 591 issue: 3 year: 2006 ident: 501_CR50 publication-title: Invent. Math. doi: 10.1007/s00222-005-0484-6 – volume: 13 start-page: 2389 issue: 4 year: 2009 ident: 501_CR5 publication-title: Geom. Topol. doi: 10.2140/gt.2009.13.2389 – ident: 501_CR15 – volume: 166 start-page: 317 issue: 2 year: 2007 ident: 501_CR18 publication-title: Ann. Math. (2) doi: 10.4007/annals.2007.166.317 – volume: 6 start-page: 601 issue: 4 year: 1996 ident: 501_CR91 publication-title: Geom. Funct. Anal. doi: 10.1007/BF02247112 – volume: 590 start-page: 89 year: 2006 ident: 501_CR4 publication-title: J. Reine Angew. Math. – ident: 501_CR72 – ident: 501_CR95 – volume: 97 start-page: 99 issue: 1 year: 1999 ident: 501_CR10 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-99-09704-1 – volume: 300 start-page: 681 issue: 4 year: 1994 ident: 501_CR51 publication-title: Math. Ann. doi: 10.1007/BF01450509 – volume: 12 start-page: 701 issue: 4 year: 2012 ident: 501_CR3 publication-title: Mosc. Math. J. doi: 10.17323/1609-4514-2012-12-4-701-704 – ident: 501_CR52 – volume: 3 start-page: 11 issue: 1—-2 year: 1995 ident: 501_CR25 publication-title: Commun. Anal. Geom. doi: 10.4310/CAG.1995.v3.n1.a2 – volume: 13 start-page: 513 issue: 3 year: 2004 ident: 501_CR34 publication-title: J. Algebraic Geom. doi: 10.1090/S1056-3911-04-00364-9 – volume: 135 start-page: 63 issue: 1 year: 1999 ident: 501_CR43 publication-title: Invent. Math. doi: 10.1007/s002220050280 – ident: 501_CR69 – ident: 501_CR77 doi: 10.2969/aspm/01010515 – ident: 501_CR92 – volume: 9 start-page: 691 issue: 3 year: 1996 ident: 501_CR89 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-96-00204-4 – ident: 501_CR27 – volume: 16 start-page: 477 issue: 3 year: 2007 ident: 501_CR87 publication-title: J. Algebraic Geom. doi: 10.1090/S1056-3911-06-00453-X – volume: 467 start-page: 1 year: 1995 ident: 501_CR24 publication-title: J. Reine Angew. Math. – volume: 19 start-page: 1065 issue: 4 year: 2009 ident: 501_CR40 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-009-0022-6 – ident: 501_CR55 – ident: 501_CR38 – ident: 501_CR30 – volume: 81 start-page: 153 year: 1981 ident: 501_CR74 publication-title: Nagoya Math. J. doi: 10.1017/S002776300001922X – ident: 501_CR8 |
SSID | ssj0014372 |
Score | 2.5474253 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 505 |
Title | MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOBQQQui0KI5IA4sRtnY3sS9VRWlAhZxaKXeguM4VatNgrrZovbXM37kUaAS5RKtoqzzmE_z8HwzQ8hrdOvzVCYl5TpmlMsyoTnjttjdKCUMWhRti5PnX2eHx_zTiTgZaEWuuqTN3-vrv9aV_I9U8RzK1VbJ3kGy_aJ4An-jfPGIEsbjP8l4Pv_maIJVU6wWZ9bvW6JudX1k68lntpxcnqnJT7VYUGcMQ21zbUqXMqiaS1c3pbt2_V_UKVquU7fvYaPoYS_vvOO7B3Yk3qHq-72qITGvrsJwbMu0HW12-3z8vlO8lapXJrxH2G6Y8hF1o6P_RxSdSp9MMV5rcmYnpHiiba9WZTrCDxspSRGJkb0VflzoH6rcszeWrlqX2geJRDSl6WC3ulz9b-asJxn2DZndEhkukdklsvQ-eRBjUGG1Ynrwsc852QymJwT5F-xy4JFrOXvzKUZezMgdOXpM1kMcAXseFE_IPVNvkM29WrVNdQVvwDF7Xcpkgzya97JabpLviBpA1IBHDTQlBNRAUwOiBhA1cAM1u4CYAcQMBMyAw8w7GBADA2KekuODD0f7hzTM2aA6lrOW5lIqWcq44CYp0yJS6DUWynBmMJpkjCfoRItYKcmFKBM1xQg1Lkysi3SGzjX6i8_IWo23fU6gEHlpv6MdmsC1mEmdGpaj2UhkXOpEbJGo-26ZDk3o7SyURXartLbI2_4vP3wHltsvfnGXi1-ShwPCt8lae7EyO-hitvkrh4xfZ65zLA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMP+for+moduli+of+sheaves+on+K3s+via+wall-crossing%3A+nef+and+movable+cones%2C+Lagrangian+fibrations&rft.jtitle=Inventiones+mathematicae&rft.au=Bayer%2C+Arend&rft.au=Macr%C3%AC%2C+Emanuele&rft.date=2014-12-01&rft.issn=0020-9910&rft.eissn=1432-1297&rft.volume=198&rft.issue=3&rft.spage=505&rft.epage=590&rft_id=info:doi/10.1007%2Fs00222-014-0501-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00222_014_0501_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-9910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-9910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-9910&client=summon |