Cross-Modal Transformers for Infrared and Visible Image Fusion

Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite significant fusion performance improvements of recent learning-based approaches, most fusion algorithms have been developed based on convolutiona...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 34; no. 2; pp. 770 - 785
Main Authors Park, Seonghyun, Vien, An Gia, Lee, Chul
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite significant fusion performance improvements of recent learning-based approaches, most fusion algorithms have been developed based on convolutional neural networks (CNNs), which stack deep layers to obtain a large receptive field for feature extraction. However, important details and contexts of the source images may be lost through a series of convolution layers. In this work, we propose a cross-modal transformer-based fusion (CMTFusion) algorithm for infrared and visible image fusion that captures global interactions by faithfully extracting complementary information from source images. Specifically, we first extract the multiscale feature maps of infrared and visible images. Then, we develop cross-modal transformers (CMTs) to retain complementary information in the source images by removing redundancies in both the spatial and channel domains. To this end, we design a gated bottleneck that integrates cross-domain interaction to consider the characteristics of the source images. Finally, a fusion result is obtained by exploiting spatial-channel information in refined feature maps using a fusion block. Experimental results on multiple datasets demonstrate that the proposed algorithm provides better fusion performance than state-of-the-art infrared and visible image fusion algorithms, both quantitatively and qualitatively. Furthermore, we show that the proposed algorithm can be used to improve the performance of computer vision tasks, e.g., object detection and monocular depth estimation.
AbstractList Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite significant fusion performance improvements of recent learning-based approaches, most fusion algorithms have been developed based on convolutional neural networks (CNNs), which stack deep layers to obtain a large receptive field for feature extraction. However, important details and contexts of the source images may be lost through a series of convolution layers. In this work, we propose a cross-modal transformer-based fusion (CMTFusion) algorithm for infrared and visible image fusion that captures global interactions by faithfully extracting complementary information from source images. Specifically, we first extract the multiscale feature maps of infrared and visible images. Then, we develop cross-modal transformers (CMTs) to retain complementary information in the source images by removing redundancies in both the spatial and channel domains. To this end, we design a gated bottleneck that integrates cross-domain interaction to consider the characteristics of the source images. Finally, a fusion result is obtained by exploiting spatial-channel information in refined feature maps using a fusion block. Experimental results on multiple datasets demonstrate that the proposed algorithm provides better fusion performance than state-of-the-art infrared and visible image fusion algorithms, both quantitatively and qualitatively. Furthermore, we show that the proposed algorithm can be used to improve the performance of computer vision tasks, e.g., object detection and monocular depth estimation.
Author Vien, An Gia
Lee, Chul
Park, Seonghyun
Author_xml – sequence: 1
  givenname: Seonghyun
  orcidid: 0000-0002-5690-7125
  surname: Park
  fullname: Park, Seonghyun
  email: seonghyun@mme.dongguk.edu
  organization: Department of Multimedia Engineering, Dongguk University, Seoul, South Korea
– sequence: 2
  givenname: An Gia
  orcidid: 0000-0003-0067-0285
  surname: Vien
  fullname: Vien, An Gia
  email: viengiaan@mme.dongguk.edu
  organization: Department of Multimedia Engineering, Dongguk University, Seoul, South Korea
– sequence: 3
  givenname: Chul
  orcidid: 0000-0001-9329-7365
  surname: Lee
  fullname: Lee, Chul
  email: chullee@dongguk.edu
  organization: Department of Multimedia Engineering, Dongguk University, Seoul, South Korea
BookMark eNp9kD9PwzAQxS1UJNrCF0AMkZhTfOc4dhYkFFGoVMRA6Go5zRmlSpNipwPfnpR2QAxM7056v_vzJmzUdi0xdg18BsCzuyJ_WxUz5ChmAnUGip-xMUipY0QuR0PNJcQaQV6wSQgbziHRiRqz-9x3IcQvXWWbqPC2Da7zW_IhGjRatM5bT1Vk2ypa1aEuG4oWW_tB0Xwf6q69ZOfONoGuTjpl7_PHIn-Ol69Pi_xhGa8xS_u4TCGxKkkJSAqliTurh46UtTpV6FKSIG3GHVUoSwXWAWoBlYKKl2VWiim7Pc7d-e5zT6E3m27v22GlwQwFIErBB5c-utaHpzw5s6572w939t7WjQFuDmmZn7TMIS1zSmtA8Q-68_XW-q__oZsjVBPRLwBSgYkS38tGdzc
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103025
crossref_primary_10_1109_TIM_2024_3460942
crossref_primary_10_1016_j_patcog_2024_110996
crossref_primary_10_1109_TCSVT_2024_3412743
crossref_primary_10_1109_TITS_2024_3426539
crossref_primary_10_1109_TPAMI_2024_3521416
crossref_primary_10_1109_JSTARS_2024_3509684
crossref_primary_10_1007_s00371_024_03736_1
crossref_primary_10_1109_TGRS_2024_3389976
crossref_primary_10_3390_s25020531
crossref_primary_10_1016_j_compag_2025_110024
crossref_primary_10_1109_TCSVT_2024_3449638
crossref_primary_10_1117_1_JEI_33_5_053016
crossref_primary_10_3390_s24175860
crossref_primary_10_1109_JSEN_2024_3426274
crossref_primary_10_1109_TCSVT_2024_3493254
crossref_primary_10_3934_era_2025009
crossref_primary_10_1007_s11760_024_03672_6
crossref_primary_10_1016_j_patcog_2025_111457
crossref_primary_10_1007_s00371_025_03801_3
crossref_primary_10_1016_j_inffus_2025_103111
crossref_primary_10_1109_TCSVT_2024_3433555
crossref_primary_10_1007_s11042_024_18141_y
crossref_primary_10_1109_JSEN_2024_3432143
crossref_primary_10_5909_JBE_2024_29_3_252
crossref_primary_10_3390_rs16050803
crossref_primary_10_1016_j_infrared_2025_105780
crossref_primary_10_1016_j_patcog_2024_110822
crossref_primary_10_3390_s25030791
crossref_primary_10_1109_TCSVT_2024_3491865
crossref_primary_10_1016_j_eswa_2025_126572
crossref_primary_10_1016_j_inffus_2023_102039
crossref_primary_10_1109_TIP_2024_3512365
crossref_primary_10_1109_TETCI_2024_3395529
crossref_primary_10_3390_rs16040673
crossref_primary_10_1016_j_knosys_2024_112132
crossref_primary_10_1109_TGRS_2024_3412683
Cites_doi 10.1016/j.inffus.2018.09.004
10.1109/TIP.2023.3263113
10.1109/ICIP46576.2022.9897993
10.1109/TIM.2022.3175055
10.1109/TCSVT.2021.3109895
10.1109/tmm.2022.3192661
10.1109/tcsvt.2023.3241196
10.1016/j.inffus.2021.02.023
10.1109/TIP.2020.2977573
10.1016/j.inffus.2017.10.007
10.1109/TCSVT.2021.3054584
10.1109/LSP.2012.2227726
10.1016/j.inffus.2021.02.008
10.1049/el:20000267
10.1016/j.infrared.2015.07.003
10.1109/ICAICT.2014.7036000
10.1109/TIP.2012.2214050
10.1007/978-3-319-10602-1_48
10.1109/ICCV48922.2021.01196
10.1109/TCI.2022.3151472
10.1109/TIP.2015.2442920
10.1109/TPAMI.2020.3012548
10.1109/LSP.2021.3109818
10.1109/TPAMI.2021.3063604
10.1016/j.patrec.2021.08.022
10.1016/j.sigpro.2021.108036
10.1016/j.inffus.2021.06.008
10.1007/978-3-031-19797-0_31
10.1109/CVPR.2017.19
10.1109/tcsvt.2023.3234340
10.1109/CVPR.2015.7298706
10.1109/CVPR.2018.00813
10.1023/A:1014573219977
10.1016/j.inffus.2015.11.003
10.1109/TCSVT.2021.3075745
10.1016/j.inffus.2018.02.004
10.1016/j.ins.2019.08.066
10.1109/TIP.2018.2887342
10.1007/978-3-319-71607-7_59
10.1109/TIM.2022.3191664
10.1109/TCSVT.2022.3202563
10.1016/j.inffus.2014.09.004
10.1109/TIP.2020.3043125
10.1109/cvpr52688.2022.00571
10.1007/978-3-030-67070-2_2
10.1016/j.inffus.2010.03.002
10.1016/j.infrared.2014.09.019
10.1109/JAS.2022.105686
10.1109/TIM.2020.3022438
10.24963/ijcai.2022/487
10.1109/CVPRW50498.2020.00060
10.1109/TCI.2021.3119954
10.1109/CVPR52688.2022.01107
10.1109/TBME.2012.2217493
10.1109/CVPR.2018.00262
10.1109/TCSVT.2021.3056725
10.1109/ICIP46576.2022.9897280
10.1016/j.aeue.2015.09.004
10.1016/j.ins.2017.09.010
10.1109/ICCV.2019.00769
10.1109/TCI.2021.3100986
10.1109/TCI.2019.2956873
10.1109/TIP.2020.2975984
10.1109/LSP.2014.2354534
10.1109/TCSVT.2022.3206807
10.1109/TCI.2020.2965304
10.1109/TIM.2021.3056645
10.1109/TIM.2021.3075747
10.1109/ACCESS.2022.3226564
10.1109/TMM.2020.2997127
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3289170
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 785
ExternalDocumentID 10_1109_TCSVT_2023_3289170
10163247
Genre orig-research
GrantInformation_xml – fundername: Korean Government [Ministry of Science and ICT (MSIT)]
  grantid: 2022R1F1A1074402
– fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-b614a746e1e5378e0fa846ee7aa8672f6e515a90fed25b71af12831d71d0bb9b3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 08:29:29 EDT 2025
Tue Jul 01 00:41:22 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Wed Aug 27 01:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-b614a746e1e5378e0fa846ee7aa8672f6e515a90fed25b71af12831d71d0bb9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0067-0285
0000-0001-9329-7365
0000-0002-5690-7125
PQID 2923122530
PQPubID 85433
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2023_3289170
ieee_primary_10163247
crossref_primary_10_1109_TCSVT_2023_3289170
proquest_journals_2923122530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
Zhang (ref55) 2022
Tancik (ref68); 33
Dosovitskiy (ref45)
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Toet (ref64) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref81
ref40
Xu (ref54); 34
ref80
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
Scharstein (ref76) 2002; 47
ref2
ref1
ref39
ref38
Kingma (ref69)
Tan (ref78)
ref71
ref70
ref73
ref72
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Bochkovskiy (ref79) 2020
Nagrani (ref61); 34
ref60
ref62
Simonyan (ref67)
Vaswani (ref59); 30
References_xml – ident: ref35
  doi: 10.1016/j.inffus.2018.09.004
– ident: ref44
  doi: 10.1109/TIP.2023.3263113
– ident: ref50
  doi: 10.1109/ICIP46576.2022.9897993
– ident: ref43
  doi: 10.1109/TIM.2022.3175055
– ident: ref25
  doi: 10.1109/TCSVT.2021.3109895
– ident: ref48
  doi: 10.1109/tmm.2022.3192661
– ident: ref56
  doi: 10.1109/tcsvt.2023.3241196
– ident: ref27
  doi: 10.1016/j.inffus.2021.02.023
– ident: ref38
  doi: 10.1109/TIP.2020.2977573
– ident: ref19
  doi: 10.1016/j.inffus.2017.10.007
– ident: ref36
  doi: 10.1109/TCSVT.2021.3054584
– ident: ref75
  doi: 10.1109/LSP.2012.2227726
– ident: ref52
  doi: 10.1016/j.inffus.2021.02.008
– ident: ref70
  doi: 10.1049/el:20000267
– ident: ref17
  doi: 10.1016/j.infrared.2015.07.003
– ident: ref71
  doi: 10.1109/ICAICT.2014.7036000
– ident: ref74
  doi: 10.1109/TIP.2012.2214050
– ident: ref80
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref81
  doi: 10.1109/ICCV48922.2021.01196
– ident: ref18
  doi: 10.1109/TCI.2022.3151472
– ident: ref72
  doi: 10.1109/TIP.2015.2442920
– ident: ref28
  doi: 10.1109/TPAMI.2020.3012548
– ident: ref33
  doi: 10.1109/LSP.2021.3109818
– ident: ref65
  doi: 10.1109/TPAMI.2021.3063604
– ident: ref62
  doi: 10.1016/j.patrec.2021.08.022
– ident: ref2
  doi: 10.1016/j.sigpro.2021.108036
– ident: ref5
  doi: 10.1016/j.inffus.2021.06.008
– ident: ref29
  doi: 10.1007/978-3-031-19797-0_31
– ident: ref66
  doi: 10.1109/CVPR.2017.19
– ident: ref51
  doi: 10.1109/tcsvt.2023.3234340
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref67
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2020
  ident: ref79
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv:2004.10934
– ident: ref63
  doi: 10.1109/CVPR.2015.7298706
– year: 2022
  ident: ref55
  article-title: CMX: Cross-modal fusion for RGB-X semantic segmentation with transformers
  publication-title: arXiv:2203.04838
– start-page: 10096
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref78
  article-title: EfficientNetv2: Smaller models and faster training
– ident: ref53
  doi: 10.1109/CVPR.2018.00813
– volume: 47
  start-page: 7
  issue: 1
  year: 2002
  ident: ref76
  article-title: A taxonomy and evaluation of dense twoframe stereo correspondence algorithms
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1014573219977
– ident: ref8
  doi: 10.1016/j.inffus.2015.11.003
– ident: ref31
  doi: 10.1109/TCSVT.2021.3075745
– ident: ref1
  doi: 10.1016/j.inffus.2018.02.004
– ident: ref9
  doi: 10.1016/j.ins.2019.08.066
– ident: ref26
  doi: 10.1109/TIP.2018.2887342
– ident: ref11
  doi: 10.1007/978-3-319-71607-7_59
– ident: ref47
  doi: 10.1109/TIM.2022.3191664
– ident: ref57
  doi: 10.1109/TCSVT.2022.3202563
– ident: ref16
  doi: 10.1016/j.inffus.2014.09.004
– ident: ref32
  doi: 10.1109/TIP.2020.3043125
– ident: ref40
  doi: 10.1109/cvpr52688.2022.00571
– ident: ref58
  doi: 10.1007/978-3-030-67070-2_2
– ident: ref6
  doi: 10.1016/j.inffus.2010.03.002
– ident: ref14
  doi: 10.1016/j.infrared.2014.09.019
– ident: ref46
  doi: 10.1109/JAS.2022.105686
– ident: ref21
  doi: 10.1109/TIM.2020.3022438
– ident: ref24
  doi: 10.24963/ijcai.2022/487
– ident: ref3
  doi: 10.1109/CVPRW50498.2020.00060
– ident: ref39
  doi: 10.1109/TCI.2021.3119954
– ident: ref42
  doi: 10.1109/CVPR52688.2022.01107
– ident: ref13
  doi: 10.1109/TBME.2012.2217493
– ident: ref77
  doi: 10.1109/CVPR.2018.00262
– ident: ref30
  doi: 10.1109/TCSVT.2021.3056725
– ident: ref49
  doi: 10.1109/ICIP46576.2022.9897280
– ident: ref73
  doi: 10.1016/j.aeue.2015.09.004
– ident: ref15
  doi: 10.1016/j.ins.2017.09.010
– ident: ref60
  doi: 10.1109/ICCV.2019.00769
– volume: 33
  start-page: 7537
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref68
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
– ident: ref23
  doi: 10.1109/TCI.2021.3100986
– ident: ref10
  doi: 10.1109/TCI.2019.2956873
– ident: ref12
  doi: 10.1109/TIP.2020.2975984
– ident: ref7
  doi: 10.1109/LSP.2014.2354534
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref69
  article-title: Adam: A method for stochastic optimization
– ident: ref37
  doi: 10.1109/TCSVT.2022.3206807
– volume: 30
  start-page: 3
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  ident: ref59
  article-title: Attention is all you need
– ident: ref20
  doi: 10.1109/TCI.2020.2965304
– volume: 34
  start-page: 14200
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref61
  article-title: Attention bottlenecks for multimodal fusion
– ident: ref22
  doi: 10.1109/TIM.2021.3056645
– volume-title: TNO Image Fusion Dataset
  year: 2014
  ident: ref64
– ident: ref4
  doi: 10.1109/TIM.2021.3075747
– ident: ref34
  doi: 10.1109/ACCESS.2022.3226564
– ident: ref41
  doi: 10.1109/TMM.2020.2997127
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref45
  article-title: An image is worth 16×16 words: Transformer for image recognition at scale
– volume: 34
  start-page: 28522
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref54
  article-title: ViTAE: Vision transformer advanced by exploring intrinsic inductive bias
SSID ssj0014847
Score 2.6134984
Snippet Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 770
SubjectTerms Algorithms
Artificial neural networks
Computer vision
Data mining
Feature extraction
Feature maps
Image fusion
infrared image
Infrared imagery
Infrared imaging
Object recognition
Performance enhancement
self-attention
transformer
Transformers
visible image
Title Cross-Modal Transformers for Infrared and Visible Image Fusion
URI https://ieeexplore.ieee.org/document/10163247
https://www.proquest.com/docview/2923122530
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXE6pQdv0q7pV9qLIMOxCdvFbexWkuYFxNnJbC_-9b6k7RiK4qmFJiXkveT9XvLe-xFyq_NxvZBTlABIOxCJsmNwY5sLgSojqFCGDmgyjUbz4GkZLutkdZMLAwAm-Awc_Wru8uU6K_VRWV97mggAWIu00HOrkrW2VwZBbNjEEC9QO0ZD1mTIuEl_NnhezBxNFO746GBQzUy8Y4UMrcqPvdgYmOERmTZDq-JKXp2yEE72-a1q47_HfkwOa6hpPVS6cUL2ID8lBzsFCM_I_UAPz56sJTacNRgWEaGFT2ucq42OT7d4Lq3FCy6eFVjjN9yBrGGpT9k6ZD58nA1Gds2oYGdeEhW2QGPMWRABhdBnKBTFEX8AMM7jiHkqAoQ3PHEVSC8UjHKF5sunklHpCpEI_5y083UOF8QKs0AiXJNhgh4cUyxW-J0rT_gec0G4XUKbGU6zuty4Zr1YpcbtcJPUSCXVUklrqXTJ3bbPe1Vs48_WHT3NOy2rGe6SXiPJtF6QH6mngSxqpe9e_tLtiuzj34MqIrtH2sWmhGsEHIW4MYr2BRkbz3o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F99uBNWpu-0l4EWVx21d2LVbyVpJmAqF3R3Yu_3knayqIonlpoQkNmkvkmmZkP4MTk4waxYCQBVG4kM-2m6KeukJJURjKpLR3QcJT076Krh_ihSVa3uTCIaIPP0DOv9i5fjcupOSo7M54mAQA-D4tk-GNWp2t9XRpEqeUTI8TA3JRMWZsj42dneff2PvcMVbgXkovBDDfxjB2yxCo_dmNrYnprMGoHV0eWPHnTifTKj291G_89-nVYbcCmc1FrxwbMYbUJKzMlCLfgvGuG5w7HihrmLYolTOjQ0xlU-s1EqDuiUs79Iy2fZ3QGL7QHOb2pOWfbhrveZd7tuw2nglsGWTJxJZljwaMEGcYhJ7FoQQgEkQuRJjzQCRLAEZmvUQWx5ExoMmAhU5wpX8pMhjuwUI0r3AUnLiNFgE3FGflwXPNU03ehAxkG3Efpd4C1M1yUTcFxw3vxXFjHw88KK5XCSKVopNKB068-r3W5jT9bb5tpnmlZz3AHDlpJFs2SfC8CA2VJL0N_75dux7DUz4c3xc1gdL0Py_SnqI7PPoCFydsUDwl-TOSRVbpPGhvSww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Modal+Transformers+for+Infrared+and+Visible+Image+Fusion&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Park%2C+Seonghyun&rft.au=An+Gia+Vien&rft.au=Lee%2C+Chul&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=2&rft.spage=770&rft_id=info:doi/10.1109%2FTCSVT.2023.3289170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon