Pseudo-Mono for Monocular 3D Object Detection in Autonomous Driving
Current monocular 3D object detection algorithms generally suffer from inaccurate depth estimation, which leads to reduction of detection accuracy. The depth error from image-to-image generation for the stereo view is insignificant compared with the gap in single-image generation. Therefore, a novel...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 33; no. 8; pp. 3962 - 3975 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current monocular 3D object detection algorithms generally suffer from inaccurate depth estimation, which leads to reduction of detection accuracy. The depth error from image-to-image generation for the stereo view is insignificant compared with the gap in single-image generation. Therefore, a novel pseudo-monocular 3D object detection framework is proposed, which is called Pseudo-Mono. Particularly, stereo images are brought into monocular 3D detection. Firstly, stereo images are taken as input, then a lightweight depth predictor is used to generate the depth map of input images. Secondly, the left input images obtained from stereo camera are used as subjects, which generate enhanced visual feature and multi-scale depth feature by depth indexing and feature matching probabilities, respectively. Finally, sparse anchors set by the foreground probability maps and the multi-scale feature maps are used as reference points to find the suitable initialization approach of object query. The encoded visual feature is adopted to enhance object query for enabling deep interaction between visual feature and depth feature. Compared with popular monocular 3D object detection methods, Pseudo-Mono is able to achieve richer fine-grained information without additional data input. Extensive experimental results on the datasets of KITTI, NuScenes, and MS-COCO demonstrate the generalizability and portability of the proposed method. The effectiveness and efficiency of Pseudo-Mono have been demonstrated by extensive ablation experiments. Experiments on a real vehicle platform have shown that the proposed method maintains high performance in complex real-world environments. |
---|---|
AbstractList | Current monocular 3D object detection algorithms generally suffer from inaccurate depth estimation, which leads to reduction of detection accuracy. The depth error from image-to-image generation for the stereo view is insignificant compared with the gap in single-image generation. Therefore, a novel pseudo-monocular 3D object detection framework is proposed, which is called Pseudo-Mono. Particularly, stereo images are brought into monocular 3D detection. Firstly, stereo images are taken as input, then a lightweight depth predictor is used to generate the depth map of input images. Secondly, the left input images obtained from stereo camera are used as subjects, which generate enhanced visual feature and multi-scale depth feature by depth indexing and feature matching probabilities, respectively. Finally, sparse anchors set by the foreground probability maps and the multi-scale feature maps are used as reference points to find the suitable initialization approach of object query. The encoded visual feature is adopted to enhance object query for enabling deep interaction between visual feature and depth feature. Compared with popular monocular 3D object detection methods, Pseudo-Mono is able to achieve richer fine-grained information without additional data input. Extensive experimental results on the datasets of KITTI, NuScenes, and MS-COCO demonstrate the generalizability and portability of the proposed method. The effectiveness and efficiency of Pseudo-Mono have been demonstrated by extensive ablation experiments. Experiments on a real vehicle platform have shown that the proposed method maintains high performance in complex real-world environments. |
Author | Zhang, Zufeng Gao, Zhen Cao, Jiecheng Wang, Chen Tao, Chongben |
Author_xml | – sequence: 1 givenname: Chongben orcidid: 0000-0002-8196-9280 surname: Tao fullname: Tao, Chongben email: tom1tao@163.com organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China – sequence: 2 givenname: Jiecheng orcidid: 0000-0001-5236-789X surname: Cao fullname: Cao, Jiecheng email: caojc9527@163.com organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China – sequence: 3 givenname: Chen orcidid: 0000-0002-5340-9737 surname: Wang fullname: Wang, Chen email: chenwang@usts.edu.cn organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China – sequence: 4 givenname: Zufeng surname: Zhang fullname: Zhang, Zufeng email: zhangzufeng@tsari.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 5 givenname: Zhen orcidid: 0000-0003-3412-280X surname: Gao fullname: Gao, Zhen email: gaozhen@mcmaster.ca organization: Faculty of Engineering, McMaster University, Hamilton, ON, Canada |
BookMark | eNp9kE9LAzEUxINUsK1-AfEQ8Lw1edlsssfS-g8qFaxew26aSEq7qcmu4Lc3a3sQD55mDvN7w5sRGjS-MQhdUjKhlJQ3q9nL22oCBNiEARNclCdoSDmXGQDhg-QJp5kEys_QKMYNITSXuRii2XM03dpnT77x2PqAe6O7bRUwm-NlvTG6xXPTJnG-wa7B065NkZ3vIp4H9-ma93N0aqttNBdHHaPXu9vV7CFbLO8fZ9NFpqEs2qxmHEAWa1FoKEphktWlFdaaui6ozGvCoZCsZFoaRi2taC4MSENZZSthgY3R9eHuPviPzsRWbXwXmlSpQOZcFEAJTSk4pHTwMQZj1T64XRW-FCWqH0v9jKX6sdRxrATJP5B2bdW_3IbKbf9Hrw6oM8b86iLpJULYNwLzeK4 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3456893 crossref_primary_10_1109_TITS_2024_3439557 crossref_primary_10_1109_TCSVT_2024_3405992 crossref_primary_10_1111_mice_13143 crossref_primary_10_1016_j_patcog_2024_110699 crossref_primary_10_1109_TIV_2023_3323518 crossref_primary_10_1016_j_aei_2023_102348 crossref_primary_10_1016_j_aei_2023_102069 crossref_primary_10_7717_peerj_cs_2656 crossref_primary_10_1109_TIM_2024_3387500 crossref_primary_10_1109_TCSVT_2023_3306361 crossref_primary_10_1587_transinf_2023EDP7200 crossref_primary_10_1109_TCSVT_2024_3499327 crossref_primary_10_3390_app13116448 crossref_primary_10_1109_TCSVT_2024_3366664 crossref_primary_10_1109_TCSVT_2024_3492201 crossref_primary_10_1109_TCSVT_2024_3492289 |
Cites_doi | 10.1109/CVPR.2019.01298 10.1109/ICCV48922.2021.01489 10.1109/CVPR52688.2022.00386 10.1007/978-3-319-10602-1_48 10.1109/CVPRW50498.2020.00506 10.1109/tcsvt.2022.3172971 10.1109/TCSVT.2021.3073718 10.5220/0009102506520659 10.1109/CVPR.2017.198 10.1609/aaai.v34i07.6618 10.1109/CVPR.2019.00864 10.1109/tcsvt.2022.3164230 10.1109/CVPR42600.2020.01169 10.1109/tcsvt.2021.3127149 10.1109/ICCVW54120.2021.00107 10.1109/TCSVT.2020.3014053 10.1007/978-3-030-58452-8_13 10.1109/TCSVT.2020.2975671 10.1007/978-3-030-58601-0_19 10.1109/tcsvt.2022.3178844 10.1109/CVPR46437.2021.01024 10.1109/CVPR46437.2021.00845 10.1109/CVPR52688.2022.00398 10.1109/CVPR52688.2022.00096 10.1007/978-3-030-58580-8_38 10.1109/ICCV48922.2021.00310 10.1109/CVPR.2018.00249 10.1109/CVPR52688.2022.00377 10.1109/TCSVT.2021.3135013 10.1109/TCSVT.2019.2947482 10.1109/tcsvt.2022.3146305 10.1109/tcsvt.2021.3085907 10.1109/ICCV.2019.00938 10.48550/ARXIV.1706.03762 10.1007/978-3-030-58592-1_9 10.1109/LRA.2020.2976305 10.1109/tcsvt.2022.3161815 10.1109/CVPR46437.2021.01437 10.1109/CVPR.2019.00308 10.1109/WACV48630.2021.00157 10.1109/CVPR42600.2020.01211 10.1109/ICCV.2017.324 10.1109/tcsvt.2022.3181490 10.1109/CVPR.2012.6248074 10.1109/ICCV.2015.169 10.1109/tcsvt.2022.3162069 10.1109/TCSVT.2021.3082763 10.1109/CVPR46437.2021.00052 10.1109/tcsvt.2022.3145513 10.1109/CVPR46437.2021.00608 10.1109/CVPR46437.2021.00330 10.1109/ICCV.2019.00636 10.1109/TCSVT.2021.3102025 10.1109/TCSVT.2019.2957275 10.1109/CVPR42600.2020.01164 10.1109/TCSVT.2020.3048440 10.1109/tcsvt.2022.3165934 10.1109/ICCV48922.2021.01535 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2023.3237579 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 3975 |
ExternalDocumentID | 10_1109_TCSVT_2023_3237579 10018400 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2021M691848 funderid: 10.13039/501100002858 – fundername: Science and Technology Projects Fund of Suzhou grantid: SYG202142 – fundername: National Natural Science Foundation of China grantid: 61801323; 62201375 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220635 funderid: 10.13039/501100004608 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-b352286d76c2697e86dc9f7ffebb6184b05268393c8e31f1a147e28e13afa7f23 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 13:55:12 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 00:41:20 EDT 2025 Wed Aug 27 02:55:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-b352286d76c2697e86dc9f7ffebb6184b05268393c8e31f1a147e28e13afa7f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8196-9280 0000-0002-5340-9737 0000-0003-3412-280X 0000-0001-5236-789X |
PQID | 2845762101 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2845762101 crossref_citationtrail_10_1109_TCSVT_2023_3237579 ieee_primary_10018400 crossref_primary_10_1109_TCSVT_2023_3237579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 Wang (ref65) ref15 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref19 Parmar (ref34) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Yao (ref16) 2021 ref49 Zhu (ref35) 2020 ref8 ref7 Zhou (ref63) 2019 ref9 ref4 ref3 ref6 ref5 Zhang (ref55); 32 ref40 ref36 ref31 ref30 ref33 ref32 Zhang (ref37) 2022 ref2 ref1 Chen (ref18) 2021 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref22 ref66 ref21 ref28 ref27 ref29 Loshchilov (ref59) 2016 ref60 ref62 ref61 |
References_xml | – ident: ref61 doi: 10.1109/CVPR.2019.01298 – start-page: 1475 volume-title: Proc. 5th Conf. Robot Learn. ident: ref65 article-title: Probabilistic and geometric depth: Detecting objects in perspective – ident: ref52 doi: 10.1109/ICCV48922.2021.01489 – ident: ref66 doi: 10.1109/CVPR52688.2022.00386 – ident: ref57 doi: 10.1007/978-3-319-10602-1_48 – ident: ref22 doi: 10.1109/CVPRW50498.2020.00506 – ident: ref7 doi: 10.1109/tcsvt.2022.3172971 – ident: ref44 doi: 10.1109/TCSVT.2021.3073718 – ident: ref27 doi: 10.5220/0009102506520659 – volume-title: arXiv:2112.02604 year: 2021 ident: ref18 article-title: PSI: A pedestrian behavior dataset for socially intelligent autonomous car – volume-title: arXiv:1904.07850 year: 2019 ident: ref63 article-title: Objects as points – ident: ref26 doi: 10.1109/CVPR.2017.198 – ident: ref28 doi: 10.1609/aaai.v34i07.6618 – ident: ref31 doi: 10.1109/CVPR.2019.00864 – ident: ref12 doi: 10.1109/tcsvt.2022.3164230 – ident: ref29 doi: 10.1109/CVPR42600.2020.01169 – ident: ref40 doi: 10.1109/tcsvt.2021.3127149 – start-page: 4055 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref34 article-title: Image transformer – volume-title: arXiv:2203.13310 year: 2022 ident: ref37 article-title: MonoDETR: Depth-aware transformer for monocular 3D object detection – ident: ref64 doi: 10.1109/ICCVW54120.2021.00107 – ident: ref3 doi: 10.1109/TCSVT.2020.3014053 – ident: ref14 doi: 10.1007/978-3-030-58452-8_13 – ident: ref43 doi: 10.1109/TCSVT.2020.2975671 – ident: ref32 doi: 10.1007/978-3-030-58601-0_19 – ident: ref41 doi: 10.1109/tcsvt.2022.3178844 – ident: ref50 doi: 10.1109/CVPR46437.2021.01024 – ident: ref46 doi: 10.1109/CVPR46437.2021.00845 – ident: ref36 doi: 10.1109/CVPR52688.2022.00398 – ident: ref45 doi: 10.1109/CVPR52688.2022.00096 – volume-title: arXiv:2104.01318 year: 2021 ident: ref16 article-title: Efficient DETR: Improving end-to-end object detector with dense prior – ident: ref21 doi: 10.1007/978-3-030-58580-8_38 – ident: ref23 doi: 10.1109/ICCV48922.2021.00310 – ident: ref30 doi: 10.1109/CVPR.2018.00249 – ident: ref60 doi: 10.1109/CVPR52688.2022.00377 – ident: ref13 doi: 10.1109/TCSVT.2021.3135013 – ident: ref39 doi: 10.1109/TCSVT.2019.2947482 – ident: ref2 doi: 10.1109/tcsvt.2022.3146305 – ident: ref11 doi: 10.1109/tcsvt.2021.3085907 – ident: ref20 doi: 10.1109/ICCV.2019.00938 – ident: ref15 doi: 10.48550/ARXIV.1706.03762 – ident: ref33 doi: 10.1007/978-3-030-58592-1_9 – ident: ref19 doi: 10.1109/LRA.2020.2976305 – ident: ref9 doi: 10.1109/tcsvt.2022.3161815 – ident: ref47 doi: 10.1109/CVPR46437.2021.01437 – ident: ref48 doi: 10.1109/CVPR.2019.00308 – ident: ref62 doi: 10.1109/WACV48630.2021.00157 – ident: ref67 doi: 10.1109/CVPR42600.2020.01211 – ident: ref53 doi: 10.1109/ICCV.2017.324 – volume-title: arXiv:1608.03983 year: 2016 ident: ref59 article-title: SGDR: Stochastic gradient descent with warm restarts – ident: ref5 doi: 10.1109/tcsvt.2022.3181490 – ident: ref56 doi: 10.1109/CVPR.2012.6248074 – ident: ref54 doi: 10.1109/ICCV.2015.169 – ident: ref8 doi: 10.1109/tcsvt.2022.3162069 – ident: ref38 doi: 10.1109/TCSVT.2021.3082763 – ident: ref49 doi: 10.1109/CVPR46437.2021.00052 – ident: ref1 doi: 10.1109/tcsvt.2022.3145513 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref55 article-title: FreeAnchor: Learning to match anchors for visual object detection – ident: ref24 doi: 10.1109/CVPR46437.2021.00608 – ident: ref25 doi: 10.1109/CVPR46437.2021.00330 – ident: ref17 doi: 10.1109/ICCV.2019.00636 – ident: ref42 doi: 10.1109/TCSVT.2021.3102025 – ident: ref4 doi: 10.1109/TCSVT.2019.2957275 – ident: ref58 doi: 10.1109/CVPR42600.2020.01164 – ident: ref10 doi: 10.1109/TCSVT.2020.3048440 – ident: ref6 doi: 10.1109/tcsvt.2022.3165934 – volume-title: arXiv:2010.04159 year: 2020 ident: ref35 article-title: Deformable DETR: Deformable transformers for end-to-end object detection – ident: ref51 doi: 10.1109/ICCV48922.2021.01535 |
SSID | ssj0014847 |
Score | 2.5388565 |
Snippet | Current monocular 3D object detection algorithms generally suffer from inaccurate depth estimation, which leads to reduction of detection accuracy. The depth... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3962 |
SubjectTerms | 3D object detection Ablation Algorithms Decoding Feature extraction Feature maps Heuristic algorithms Image enhancement Image processing multi-scale feature Object detection Object recognition sparse anchor point stereo images Three-dimensional displays transformer Transformers Visualization |
Title | Pseudo-Mono for Monocular 3D Object Detection in Autonomous Driving |
URI | https://ieeexplore.ieee.org/document/10018400 https://www.proquest.com/docview/2845762101 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoM3Sbc2adoex-YYHqbgJruV5guG0srWXvzrfUm7MRRF6OEdkhLykrzfS37vPYTuKBPacBWSwChOAIHDOQiGmUT9ULCMSQmfZVtM-WTOHhfhoglWd7EwWmtHPtOeFd1bvipkZa_KejZfEDgk4KHvg-dWB2ttnwxY7KqJAV7wSQyGbBMh0096s-HL68yzhcI9GtAotLytHSvkyqr8OIudgRkfo-lmaDWv5M2rSuHJz29ZG_899hN01EBNPKjXxina0_kZOtxJQHiOhs9rXamCwM4uMMBXbAXHTMV0hJ-EvaTBI106vlaOlzkeVKUNgyiqNR6tlvY2oo3m44fZcEKasgpEBgkvibCYK-Yq4jLgSaRBlImJjNFC2PIvwqWAoQmVsaa-8TOfRTqItU8zk0UmoBeolRe5vkQ4FAngHU6ZiUGzigkWKFByBihGKpXpDvI305zKJue4LX3xnjrfo5-kTjWpVU3aqKaD7rd9PuqMG3-2btu53mlZT3MHdTfqTJtduU7BFIN7BU6uf_VLt2t0YP9eM_y6qFWuKn0DqKMUt261fQGc3NFH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5VA4AIWiLrTUB3pCSTe28zpwqHaptvQBElvUW4hfUgVKUDcRov-lf4Xf1hknu1pRtbdKSDn4YCtK5tPMN_bnGYB3QirrEhMH3JkkQAaOfhADc5AOYyVLqTU-pLY4TSZn8tN5fL4C14u7MNZaLz6zIQ39Wb6pdUtbZXtULwgTkmGvoTyyf35jhjb7cDhGc-5yfvBxOpoEfROBQPM8aQJFDCNLTJponuSpxaHOXeqcVYqanShf8ETkQmdWRC4qI5lantlIlK5MHdU1QA__CIlGzLvrYYtDCpn5_mXIUKIgw9A5v5MzzPemo6_fpiG1Jg8FF2lMSrGluOcbudzy_j6kHTyDv_Of0SlZfoRto0J99U-dyP_2bz2Hpz2ZZvsd-tdhxVYv4MlSicWXMPoys62pA_RdNUOCzmjgtbdMjNlnRdtQbGwbr0ir2EXF9tuGLnrU7YyNLy9ov2UDzh7kK17BalVXdhNYrHJkdImQLkPsGqkkNwjjEnmaNqa0A4jmZi10X1Wdmnv8LHx2NcwLD4WCoFD0UBjA-8WaX11NkXtnb5Btl2Z2Zh3A1hw-Re93ZgWSDUwgMY2PXt-xbAfWJtOT4-L48PToDTymN3V6xi1YbS5bu40cq1FvPdIZfH9osNwAdMguSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-Mono+for+Monocular+3D+Object+Detection+in+Autonomous+Driving&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chongben+Tao&rft.au=Cao%2C+Jiecheng&rft.au=Wang%2C+Chen&rft.au=Zhang%2C+Zufeng&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=8&rft.spage=3962&rft_id=info:doi/10.1109%2FTCSVT.2023.3237579&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |