An emerging frontier of battery innovation: tackling lattice rotation in single-crystalline cathodes

Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich b...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 54; no. 1; pp. 413 - 417
Main Authors Liang, Tian, Zhu, Xiaoming, Zeng, Xiaojun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.03.2025
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/d4dt03215b

Cover

Loading…
Abstract Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science , Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles. An MCRC technique (combining X-ray and electron microscopies to capture both statistical and individual lattice distortions) reveals that irrecoverable lattice rotation during cycling accelerates electrochemical decay in single-crystalline cathodes.
AbstractList Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science, Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science, Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science, Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science , Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles. An MCRC technique (combining X-ray and electron microscopies to capture both statistical and individual lattice distortions) reveals that irrecoverable lattice rotation during cycling accelerates electrochemical decay in single-crystalline cathodes.
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
Author Zeng, Xiaojun
Liang, Tian
Zhu, Xiaoming
AuthorAffiliation Hubei University of Science and Technology
National Engineering Research Center for Domestic & Building Ceramics
School of Materials Science and Engineering
School of Nuclear Technology and Chemistry & Biology
Hubei Key Laboratory of Radiation Chemistry and Functional Materials
Jingdezhen Ceramic University
AuthorAffiliation_xml – name: Hubei University of Science and Technology
– name: Hubei Key Laboratory of Radiation Chemistry and Functional Materials
– name: School of Nuclear Technology and Chemistry & Biology
– name: Jingdezhen Ceramic University
– name: School of Materials Science and Engineering
– name: National Engineering Research Center for Domestic & Building Ceramics
Author_xml – sequence: 1
  givenname: Tian
  surname: Liang
  fullname: Liang, Tian
– sequence: 2
  givenname: Xiaoming
  surname: Zhu
  fullname: Zhu, Xiaoming
– sequence: 3
  givenname: Xiaojun
  surname: Zeng
  fullname: Zeng, Xiaojun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39869084$$D View this record in MEDLINE/PubMed
BookMark eNpd0c1LHDEYBvAgW6pre_HeEuhFhLH5mkymN91VKwi92POQSd7obGcTm2SF_e_N7uoKnvLC8yO8yTNFEx88IHRCyTklvP1phc2EM1r3B-iIiqapWsbFZD8zeYimKS0IYYzU7DM65K2SLVHiCNkLj2EJ8WHwD9jF4PMAEQeHe50zxDUevA_POg_B_8JZm3_jBo4lHAzgGPI2KgqnEoxQmbhOWY-FATY6PwYL6Qv65PSY4OvreYz-Xl_dz35Xd39ubmcXd5VhrcxVz2rRq0aqXjPSGsaAt0IIWjuhLEDtyhOhca6xwilhtTLS1k5J0ioieyr5MTrd3fsUw_8VpNwth2RgHLWHsEodp5KQhgq2oT8-0EVYRV-2K6rhTBBC66K-v6pVvwTbPcVhqeO6e_u_As52wMSQUgS3J5R0m3K6uZjfb8u5LPjbDsdk9u69PP4C3m2K0A
Cites_doi 10.1016/j.electacta.2018.11.194
10.1039/c4ra03674c
10.1038/s41467-022-30020-4
10.1126/science.ado1675
10.1002/aenm.202201510
10.1021/acs.nanolett.1c03613
10.1039/D3CS00741C
10.1021/acs.chemmater.9b03202
10.1002/anie.202012773
10.1021/acsenergylett.2c01670
10.1039/D4TA03592E
10.1038/s41586-022-05238-3
10.1038/s41560-019-0387-1
10.1126/science.abc3167
10.1021/acsenergylett.1c01089
10.1002/aenm.202103005
10.1016/j.xcrp.2023.101480
10.1093/nsr/nwad252
10.1038/s41467-020-16824-2
10.1007/s41918-019-00053-3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d4dt03215b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 417
ExternalDocumentID 39869084
10_1039_D4DT03215B
d4dt03215b
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UPT
VH6
WH7
AAYXX
CITATION
H13
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c296t-b254b8768ba209c22e3944415f48dee5f215e7ff7d4f84da8c6d5f8609806b163
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 06:33:25 EDT 2025
Mon Jun 30 12:18:47 EDT 2025
Thu Apr 03 07:00:05 EDT 2025
Tue Jul 01 05:31:14 EDT 2025
Tue May 27 12:02:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-b254b8768ba209c22e3944415f48dee5f215e7ff7d4f84da8c6d5f8609806b163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5729-1361
0000-0002-4754-2945
PMID 39869084
PQID 3173240015
PQPubID 2047498
PageCount 5
ParticipantIDs proquest_journals_3173240015
proquest_miscellaneous_3160071426
pubmed_primary_39869084
rsc_primary_d4dt03215b
crossref_primary_10_1039_D4DT03215B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D4DT03215B/cit14/1) 2019; 3
Wang (D4DT03215B/cit3/1) 2022; 611
Baggetto (D4DT03215B/cit19/1) 2014; 4
Xu (D4DT03215B/cit4/1) 2019; 4
Hu (D4DT03215B/cit9/1) 2023; 10
Bi (D4DT03215B/cit13/1) 2020; 370
Li (D4DT03215B/cit15/1) 2019; 297
Yu (D4DT03215B/cit12/1) 2023; 4
Ou (D4DT03215B/cit11/1) 2022; 13
Zhang (D4DT03215B/cit8/1) 2020; 11
Chen (D4DT03215B/cit18/1) 2024; 12
Ge (D4DT03215B/cit6/1) 2021; 60
Ryu (D4DT03215B/cit10/1) 2021; 6
Jiang (D4DT03215B/cit16/1) 2021; 11
Floresa (D4DT03215B/cit17/1) 2020; 32
Huang (D4DT03215B/cit20/1) 2024; 384
Ryu (D4DT03215B/cit5/1) 2022; 7
Zhu (D4DT03215B/cit7/1) 2021; 21
Ni (D4DT03215B/cit1/1) 2022; 12
Lu (D4DT03215B/cit2/1) 2024; 53
References_xml – volume: 297
  start-page: 1109
  year: 2019
  ident: D4DT03215B/cit15/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.194
– volume: 4
  start-page: 23364
  year: 2014
  ident: D4DT03215B/cit19/1
  publication-title: RSC Adv.
  doi: 10.1039/c4ra03674c
– volume: 13
  start-page: 2319
  year: 2022
  ident: D4DT03215B/cit11/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30020-4
– volume: 384
  start-page: 912
  year: 2024
  ident: D4DT03215B/cit20/1
  publication-title: Science
  doi: 10.1126/science.ado1675
– volume: 12
  start-page: 2201510
  year: 2022
  ident: D4DT03215B/cit1/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201510
– volume: 21
  start-page: 9997
  year: 2021
  ident: D4DT03215B/cit7/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03613
– volume: 53
  start-page: 4707
  year: 2024
  ident: D4DT03215B/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00741C
– volume: 32
  start-page: 186
  year: 2020
  ident: D4DT03215B/cit17/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03202
– volume: 60
  start-page: 17350
  year: 2021
  ident: D4DT03215B/cit6/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202012773
– volume: 7
  start-page: 3072
  year: 2022
  ident: D4DT03215B/cit5/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01670
– volume: 12
  start-page: 25393
  year: 2024
  ident: D4DT03215B/cit18/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D4TA03592E
– volume: 611
  start-page: 61
  year: 2022
  ident: D4DT03215B/cit3/1
  publication-title: Nature
  doi: 10.1038/s41586-022-05238-3
– volume: 4
  start-page: 484
  year: 2019
  ident: D4DT03215B/cit4/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0387-1
– volume: 370
  start-page: 1313
  year: 2020
  ident: D4DT03215B/cit13/1
  publication-title: Science
  doi: 10.1126/science.abc3167
– volume: 6
  start-page: 2726
  year: 2021
  ident: D4DT03215B/cit10/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01089
– volume: 11
  start-page: 2103005
  year: 2021
  ident: D4DT03215B/cit16/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103005
– volume: 4
  start-page: 101480
  year: 2023
  ident: D4DT03215B/cit12/1
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2023.101480
– volume: 10
  start-page: nwad252
  year: 2023
  ident: D4DT03215B/cit9/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwad252
– volume: 11
  start-page: 3050
  year: 2020
  ident: D4DT03215B/cit8/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16824-2
– volume: 3
  start-page: 43
  year: 2019
  ident: D4DT03215B/cit14/1
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-019-00053-3
SSID ssj0022052
Score 2.4568486
SecondaryResourceType review_article
Snippet Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 413
SubjectTerms Atomic structure
Cathodes
Failure mechanisms
Rotation
Single crystals
Title An emerging frontier of battery innovation: tackling lattice rotation in single-crystalline cathodes
URI https://www.ncbi.nlm.nih.gov/pubmed/39869084
https://www.proquest.com/docview/3173240015
https://www.proquest.com/docview/3160071426
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiNdCYUFGcKsCWcdJbG6FdrWgslxSqbfIThxUKAnqtgf4P_xPZhw7yWpXCLikzSRKWs-X8efJPAh5ydNYxalkgeZSBDw2JpBayUBFkkei5BXjmO_88Tw5W_IPq3g1Gv0aRC3td_pV8fPavJL_0SrIQK-YJfsPmu0uCgL4DvqFLWgYtn-l42k9wfxe22eowkoEmDoC7E_bopmY0edbntrwDVV8tcnnGzgM9mGybVyo4bqeoMtgY4Ji-wPo4sZyT6zo2pQuxtDx15nCLtTYWMJ3Gb-wTgVV28ITvW_xUkWKtnVUMSl8d7nOX7B2qQ_w-bn3Ye9Rtlqr5tt6IDatWUL5l309dFew2MZr9e7K1iniI1JtxMnwzq0R5vhamTFXInsoc45PZ7nb8tMeoeHADuOqcTCnw2567XwRRlhuteTlLoyA_Oh-VvSRAOef8tPlYpFn81V2gxwyWI2A_T-czrP3i25lz0Lb2qn74b4ObiRf99e-zHyuLGeA3Gx90xlLbrI75LZbldBpC7G7ZGTqe-RmN2j3STmtqYca9VCjTUUd1GgPtTfUA406oFEPNDiLXgUa9UB7QJan8-zdWeAadAQFk8ku0CzmGqZToRULZcGYwTRroIQVF6UxcQV_26RVlcIzL3ipRJGUcSWSUIow0bASOCIHdVObR4RiaUKYbAopODDiEyV4kZhEp7JiFWOlHpMXfvDy720dltzGT0Qyn_FZZof47Zgc-3HNHc4vcmDIWHUSeO-YPO8Ow_jhqzFVm2aP52CfhhOgq2PysNVHd5tIYtc2wcfkCBTUiXvFPv7zXZ-QW_2DcEwOdtu9eQpMdqefORz9BsyxpLA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+emerging+frontier+of+battery+innovation%3A+tackling+lattice+rotation+in+single-crystalline+cathodes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Tian%2C+Liang&rft.au=Zhu%2C+Xiaoming&rft.au=Zeng%2C+Xiaojun&rft.date=2025-03-04&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=54&rft.issue=10&rft.spage=4013&rft.epage=4017&rft_id=info:doi/10.1039%2Fd4dt03215b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon