An emerging frontier of battery innovation: tackling lattice rotation in single-crystalline cathodes
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich b...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 54; no. 1; pp. 413 - 417 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/d4dt03215b |
Cover
Loading…
Abstract | Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in
Science
, Huang
et al.
developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
An MCRC technique (combining X-ray and electron microscopies to capture both statistical and individual lattice distortions) reveals that irrecoverable lattice rotation during cycling accelerates electrochemical decay in single-crystalline cathodes. |
---|---|
AbstractList | Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science, Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles. Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science, Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science, Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles. Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in Science , Huang et al. developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles. An MCRC technique (combining X-ray and electron microscopies to capture both statistical and individual lattice distortions) reveals that irrecoverable lattice rotation during cycling accelerates electrochemical decay in single-crystalline cathodes. Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles. |
Author | Zeng, Xiaojun Liang, Tian Zhu, Xiaoming |
AuthorAffiliation | Hubei University of Science and Technology National Engineering Research Center for Domestic & Building Ceramics School of Materials Science and Engineering School of Nuclear Technology and Chemistry & Biology Hubei Key Laboratory of Radiation Chemistry and Functional Materials Jingdezhen Ceramic University |
AuthorAffiliation_xml | – name: Hubei University of Science and Technology – name: Hubei Key Laboratory of Radiation Chemistry and Functional Materials – name: School of Nuclear Technology and Chemistry & Biology – name: Jingdezhen Ceramic University – name: School of Materials Science and Engineering – name: National Engineering Research Center for Domestic & Building Ceramics |
Author_xml | – sequence: 1 givenname: Tian surname: Liang fullname: Liang, Tian – sequence: 2 givenname: Xiaoming surname: Zhu fullname: Zhu, Xiaoming – sequence: 3 givenname: Xiaojun surname: Zeng fullname: Zeng, Xiaojun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39869084$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c1LHDEYBvAgW6pre_HeEuhFhLH5mkymN91VKwi92POQSd7obGcTm2SF_e_N7uoKnvLC8yO8yTNFEx88IHRCyTklvP1phc2EM1r3B-iIiqapWsbFZD8zeYimKS0IYYzU7DM65K2SLVHiCNkLj2EJ8WHwD9jF4PMAEQeHe50zxDUevA_POg_B_8JZm3_jBo4lHAzgGPI2KgqnEoxQmbhOWY-FATY6PwYL6Qv65PSY4OvreYz-Xl_dz35Xd39ubmcXd5VhrcxVz2rRq0aqXjPSGsaAt0IIWjuhLEDtyhOhca6xwilhtTLS1k5J0ioieyr5MTrd3fsUw_8VpNwth2RgHLWHsEodp5KQhgq2oT8-0EVYRV-2K6rhTBBC66K-v6pVvwTbPcVhqeO6e_u_As52wMSQUgS3J5R0m3K6uZjfb8u5LPjbDsdk9u69PP4C3m2K0A |
Cites_doi | 10.1016/j.electacta.2018.11.194 10.1039/c4ra03674c 10.1038/s41467-022-30020-4 10.1126/science.ado1675 10.1002/aenm.202201510 10.1021/acs.nanolett.1c03613 10.1039/D3CS00741C 10.1021/acs.chemmater.9b03202 10.1002/anie.202012773 10.1021/acsenergylett.2c01670 10.1039/D4TA03592E 10.1038/s41586-022-05238-3 10.1038/s41560-019-0387-1 10.1126/science.abc3167 10.1021/acsenergylett.1c01089 10.1002/aenm.202103005 10.1016/j.xcrp.2023.101480 10.1093/nsr/nwad252 10.1038/s41467-020-16824-2 10.1007/s41918-019-00053-3 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4dt03215b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 417 |
ExternalDocumentID | 39869084 10_1039_D4DT03215B d4dt03215b |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO HZ~ H~N IDZ J3G J3H J3I M4U O9- R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UPT VH6 WH7 AAYXX CITATION H13 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c296t-b254b8768ba209c22e3944415f48dee5f215e7ff7d4f84da8c6d5f8609806b163 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 06:33:25 EDT 2025 Mon Jun 30 12:18:47 EDT 2025 Thu Apr 03 07:00:05 EDT 2025 Tue Jul 01 05:31:14 EDT 2025 Tue May 27 12:02:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-b254b8768ba209c22e3944415f48dee5f215e7ff7d4f84da8c6d5f8609806b163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5729-1361 0000-0002-4754-2945 |
PMID | 39869084 |
PQID | 3173240015 |
PQPubID | 2047498 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3173240015 proquest_miscellaneous_3160071426 pubmed_primary_39869084 rsc_primary_d4dt03215b crossref_primary_10_1039_D4DT03215B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-04 |
PublicationDateYYYYMMDD | 2025-03-04 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D4DT03215B/cit14/1) 2019; 3 Wang (D4DT03215B/cit3/1) 2022; 611 Baggetto (D4DT03215B/cit19/1) 2014; 4 Xu (D4DT03215B/cit4/1) 2019; 4 Hu (D4DT03215B/cit9/1) 2023; 10 Bi (D4DT03215B/cit13/1) 2020; 370 Li (D4DT03215B/cit15/1) 2019; 297 Yu (D4DT03215B/cit12/1) 2023; 4 Ou (D4DT03215B/cit11/1) 2022; 13 Zhang (D4DT03215B/cit8/1) 2020; 11 Chen (D4DT03215B/cit18/1) 2024; 12 Ge (D4DT03215B/cit6/1) 2021; 60 Ryu (D4DT03215B/cit10/1) 2021; 6 Jiang (D4DT03215B/cit16/1) 2021; 11 Floresa (D4DT03215B/cit17/1) 2020; 32 Huang (D4DT03215B/cit20/1) 2024; 384 Ryu (D4DT03215B/cit5/1) 2022; 7 Zhu (D4DT03215B/cit7/1) 2021; 21 Ni (D4DT03215B/cit1/1) 2022; 12 Lu (D4DT03215B/cit2/1) 2024; 53 |
References_xml | – volume: 297 start-page: 1109 year: 2019 ident: D4DT03215B/cit15/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.194 – volume: 4 start-page: 23364 year: 2014 ident: D4DT03215B/cit19/1 publication-title: RSC Adv. doi: 10.1039/c4ra03674c – volume: 13 start-page: 2319 year: 2022 ident: D4DT03215B/cit11/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30020-4 – volume: 384 start-page: 912 year: 2024 ident: D4DT03215B/cit20/1 publication-title: Science doi: 10.1126/science.ado1675 – volume: 12 start-page: 2201510 year: 2022 ident: D4DT03215B/cit1/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201510 – volume: 21 start-page: 9997 year: 2021 ident: D4DT03215B/cit7/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03613 – volume: 53 start-page: 4707 year: 2024 ident: D4DT03215B/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00741C – volume: 32 start-page: 186 year: 2020 ident: D4DT03215B/cit17/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03202 – volume: 60 start-page: 17350 year: 2021 ident: D4DT03215B/cit6/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202012773 – volume: 7 start-page: 3072 year: 2022 ident: D4DT03215B/cit5/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01670 – volume: 12 start-page: 25393 year: 2024 ident: D4DT03215B/cit18/1 publication-title: J. Mater. Chem. A doi: 10.1039/D4TA03592E – volume: 611 start-page: 61 year: 2022 ident: D4DT03215B/cit3/1 publication-title: Nature doi: 10.1038/s41586-022-05238-3 – volume: 4 start-page: 484 year: 2019 ident: D4DT03215B/cit4/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0387-1 – volume: 370 start-page: 1313 year: 2020 ident: D4DT03215B/cit13/1 publication-title: Science doi: 10.1126/science.abc3167 – volume: 6 start-page: 2726 year: 2021 ident: D4DT03215B/cit10/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01089 – volume: 11 start-page: 2103005 year: 2021 ident: D4DT03215B/cit16/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103005 – volume: 4 start-page: 101480 year: 2023 ident: D4DT03215B/cit12/1 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2023.101480 – volume: 10 start-page: nwad252 year: 2023 ident: D4DT03215B/cit9/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwad252 – volume: 11 start-page: 3050 year: 2020 ident: D4DT03215B/cit8/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16824-2 – volume: 3 start-page: 43 year: 2019 ident: D4DT03215B/cit14/1 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00053-3 |
SSID | ssj0022052 |
Score | 2.4568486 |
SecondaryResourceType | review_article |
Snippet | Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 413 |
SubjectTerms | Atomic structure Cathodes Failure mechanisms Rotation Single crystals |
Title | An emerging frontier of battery innovation: tackling lattice rotation in single-crystalline cathodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39869084 https://www.proquest.com/docview/3173240015 https://www.proquest.com/docview/3160071426 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiNdCYUFGcKsCWcdJbG6FdrWgslxSqbfIThxUKAnqtgf4P_xPZhw7yWpXCLikzSRKWs-X8efJPAh5ydNYxalkgeZSBDw2JpBayUBFkkei5BXjmO_88Tw5W_IPq3g1Gv0aRC3td_pV8fPavJL_0SrIQK-YJfsPmu0uCgL4DvqFLWgYtn-l42k9wfxe22eowkoEmDoC7E_bopmY0edbntrwDVV8tcnnGzgM9mGybVyo4bqeoMtgY4Ji-wPo4sZyT6zo2pQuxtDx15nCLtTYWMJ3Gb-wTgVV28ITvW_xUkWKtnVUMSl8d7nOX7B2qQ_w-bn3Ye9Rtlqr5tt6IDatWUL5l309dFew2MZr9e7K1iniI1JtxMnwzq0R5vhamTFXInsoc45PZ7nb8tMeoeHADuOqcTCnw2567XwRRlhuteTlLoyA_Oh-VvSRAOef8tPlYpFn81V2gxwyWI2A_T-czrP3i25lz0Lb2qn74b4ObiRf99e-zHyuLGeA3Gx90xlLbrI75LZbldBpC7G7ZGTqe-RmN2j3STmtqYca9VCjTUUd1GgPtTfUA406oFEPNDiLXgUa9UB7QJan8-zdWeAadAQFk8ku0CzmGqZToRULZcGYwTRroIQVF6UxcQV_26RVlcIzL3ipRJGUcSWSUIow0bASOCIHdVObR4RiaUKYbAopODDiEyV4kZhEp7JiFWOlHpMXfvDy720dltzGT0Qyn_FZZof47Zgc-3HNHc4vcmDIWHUSeO-YPO8Ow_jhqzFVm2aP52CfhhOgq2PysNVHd5tIYtc2wcfkCBTUiXvFPv7zXZ-QW_2DcEwOdtu9eQpMdqefORz9BsyxpLA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+emerging+frontier+of+battery+innovation%3A+tackling+lattice+rotation+in+single-crystalline+cathodes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Tian%2C+Liang&rft.au=Zhu%2C+Xiaoming&rft.au=Zeng%2C+Xiaojun&rft.date=2025-03-04&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=54&rft.issue=10&rft.spage=4013&rft.epage=4017&rft_id=info:doi/10.1039%2Fd4dt03215b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |