Automated crack segmentation in close-range building façade inspection images using deep learning techniques

Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable damages. Inspection practitioners have to manually examine the large amounts of high-resolution images collected by UAVs to identify anomalies...

Full description

Saved in:
Bibliographic Details
Published inJournal of Building Engineering Vol. 43; p. 102913
Main Authors Chen, Kaiwen, Reichard, Georg, Xu, Xin, Akanmu, Abiola
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text
ISSN2352-7102
2352-7102
DOI10.1016/j.jobe.2021.102913

Cover

Abstract Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable damages. Inspection practitioners have to manually examine the large amounts of high-resolution images collected by UAVs to identify anomalies or damages on building facades for reporting and repairs. The computer vision and deep learning technologies have emerged as promising solutions to automate the image-based inspection process. However, for the detection of façade cracks from UAV-captured images, existing deep learning solutions may not perform well due to the complicated background noises caused by different façade components and materials. Towards that end, this paper proposed a two-step deep learning method for the automated detection of façade cracks from UAV-captured images. In the first step, a convolutional neural network (CNN) model was designed and trained on 26,177 images to classify images in a patch-level size of 128 × 128 pixels into crack or non-crack. In the second step, a U-Net neural network model was trained on 2870 image sets to segment crack pixels within those patches classified as cracks. Experimental results show a high performance of 94% and 96% precision, 94% and 95% recall, and 94% and 96% F1-scores was achieved by the CNN model and the U-Net model respectively. The experimental results proved that the two-step method can improve the reliability and efficiency of detecting and differentiating façade cracks from complicated façade noises. The proposed method can also be extended to detect other types of façade anomalies (e.g., corrosion and joint failures), thus facilitating a comprehensive assessment of façade conditions for better decision-making for the maintenance of building facades during its service life. •Automated UAV-image processing for building façade crack detection.•Segmenting cracking pixels from diverse façade component and material noises.•2-step deep neural network method.•CNN model for patch-level crack classification.•U-Net model for pixel-level crack segmentation.
AbstractList Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable damages. Inspection practitioners have to manually examine the large amounts of high-resolution images collected by UAVs to identify anomalies or damages on building facades for reporting and repairs. The computer vision and deep learning technologies have emerged as promising solutions to automate the image-based inspection process. However, for the detection of façade cracks from UAV-captured images, existing deep learning solutions may not perform well due to the complicated background noises caused by different façade components and materials. Towards that end, this paper proposed a two-step deep learning method for the automated detection of façade cracks from UAV-captured images. In the first step, a convolutional neural network (CNN) model was designed and trained on 26,177 images to classify images in a patch-level size of 128 × 128 pixels into crack or non-crack. In the second step, a U-Net neural network model was trained on 2870 image sets to segment crack pixels within those patches classified as cracks. Experimental results show a high performance of 94% and 96% precision, 94% and 95% recall, and 94% and 96% F1-scores was achieved by the CNN model and the U-Net model respectively. The experimental results proved that the two-step method can improve the reliability and efficiency of detecting and differentiating façade cracks from complicated façade noises. The proposed method can also be extended to detect other types of façade anomalies (e.g., corrosion and joint failures), thus facilitating a comprehensive assessment of façade conditions for better decision-making for the maintenance of building facades during its service life. •Automated UAV-image processing for building façade crack detection.•Segmenting cracking pixels from diverse façade component and material noises.•2-step deep neural network method.•CNN model for patch-level crack classification.•U-Net model for pixel-level crack segmentation.
ArticleNumber 102913
Author Reichard, Georg
Chen, Kaiwen
Xu, Xin
Akanmu, Abiola
Author_xml – sequence: 1
  givenname: Kaiwen
  surname: Chen
  fullname: Chen, Kaiwen
  email: kaiwen.chen@ua.edu
  organization: Department of Civil, Construction and Environmental Engineering, The University of Alabama, 401 7th Avenue, Tuscaloosa, AL, 35487, USA
– sequence: 2
  givenname: Georg
  orcidid: 0000-0003-4041-9968
  surname: Reichard
  fullname: Reichard, Georg
  email: reichard@vt.edu
  organization: Department of Building Construction, Virginia Polytechnic Institute and State University, 1365 Perry St, Blacksburg, VA, 24061, USA
– sequence: 3
  givenname: Xin
  surname: Xu
  fullname: Xu, Xin
  email: xu942@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47906, USA
– sequence: 4
  givenname: Abiola
  orcidid: 0000-0003-4330-5376
  surname: Akanmu
  fullname: Akanmu, Abiola
  email: abiola@vt.edu
  organization: Department of Building Construction, Virginia Polytechnic Institute and State University, 1365 Perry St, Blacksburg, VA, 24061, USA
BookMark eNp9kEtOwzAQhi1UJErpBVj5Aim282gisakqXhISG1hb9ngSHBKn2AkSJ-IgXIxEYYFYdGWP__lG4--cLFznkJBLzjac8eyq3tSdxo1ggo8PouDxCVmKOBXRdiwXf-5nZB1CzdjYlMZ5lixJuxv6rlU9GgpewRsNWLXoetXbzlHrKDRdwMgrVyHVg22MdRUt1feXMjjm4YAwt7aqwkCHMOUG8UAbVN5NVY_w6uz7gOGCnJaqCbj-PVfk5fbmeX8fPT7dPex3jxGIIusjBdoUbKu1MGWigcWgmObIEoZcCw1xBmnKdbktME_STMUllDpPMm1ihgqyeEXEPBd8F4LHUh78uKD_lJzJyZms5eRMTs7k7GyE8n8Q2NlD75VtjqPXM4rjpz4sehnAogM01o9-pOnsMfwHNcaNeg
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105186
crossref_primary_10_3390_buildings13082089
crossref_primary_10_1016_j_conbuildmat_2023_132839
crossref_primary_10_1038_s41598_024_78774_9
crossref_primary_10_1177_14759217231183661
crossref_primary_10_1016_j_jobe_2022_104098
crossref_primary_10_1088_1361_6501_ada0d0
crossref_primary_10_1007_s13349_024_00904_8
crossref_primary_10_1111_mice_12832
crossref_primary_10_20396_parc_v15i00_8674187
crossref_primary_10_3390_s22166070
crossref_primary_10_1061_JCCEE5_CPENG_5512
crossref_primary_10_3390_buildings14010005
crossref_primary_10_3390_civileng5010014
crossref_primary_10_1016_j_landurbplan_2022_104569
crossref_primary_10_3390_polym16142039
crossref_primary_10_1111_mice_12881
crossref_primary_10_3390_drones6100279
crossref_primary_10_1038_s41598_024_82612_3
crossref_primary_10_3390_s23239315
crossref_primary_10_3130_aijt_28_673
crossref_primary_10_3390_buildings13081883
crossref_primary_10_3390_app12115626
crossref_primary_10_3390_rs16162910
crossref_primary_10_36680_j_itcon_2022_043
crossref_primary_10_1155_2023_9982080
crossref_primary_10_3390_su15065591
crossref_primary_10_14718_RevArq_2023_25_4265
crossref_primary_10_1177_13694332241242975
crossref_primary_10_3390_fractalfract7110820
crossref_primary_10_3390_s24217076
crossref_primary_10_1109_ACCESS_2023_3296793
crossref_primary_10_3390_s24217074
crossref_primary_10_1016_j_engstruct_2023_116988
crossref_primary_10_1063_5_0125563
crossref_primary_10_3390_app11188404
crossref_primary_10_1109_ACCESS_2025_3550021
crossref_primary_10_1017_S0263574724000559
crossref_primary_10_3390_app13042304
crossref_primary_10_1038_s41598_025_91352_x
crossref_primary_10_1007_s13243_024_00147_2
crossref_primary_10_3390_app122010651
crossref_primary_10_1016_j_measurement_2024_115603
crossref_primary_10_1061__ASCE_AE_1943_5568_0000564
crossref_primary_10_1177_13694332241260136
crossref_primary_10_1080_19475683_2024_2335953
crossref_primary_10_3390_buildings13071814
crossref_primary_10_3390_buildings14030669
crossref_primary_10_1007_s11554_024_01503_y
crossref_primary_10_1061_JAEIED_AEENG_1635
crossref_primary_10_1080_19648189_2024_2409266
crossref_primary_10_1002_tee_70014
crossref_primary_10_1016_j_scs_2024_105280
crossref_primary_10_1007_s13369_024_09772_2
Cites_doi 10.1111/mice.12263
10.1016/j.conbuildmat.2017.04.195
10.1016/j.autcon.2018.11.028
10.1109/TITS.2016.2552248
10.5194/nhess-15-1087-2015
10.1111/mice.12412
10.1016/j.procs.2015.06.058
10.1155/2014/286856
10.1016/j.joule.2018.05.009
10.1109/TITS.2015.2477675
10.1109/JSTARS.2018.2865528
10.1061/(ASCE)CP.1943-5487.0000907
10.3390/s18093017
10.1061/(ASCE)CP.1943-5487.0000831
10.1109/TIP.2018.2878966
10.1061/(ASCE)CF.1943-5509.0000536
10.1061/(ASCE)CP.1943-5487.0000854
10.3390/s19194251
10.2749/nantes.2018.s24-119
10.1061/(ASCE)CP.1943-5487.0000334
10.3390/s18103452
10.1016/j.autcon.2019.04.005
10.1016/j.conbuildmat.2019.117367
10.1016/j.neucom.2019.01.036
10.1111/mice.12351
10.1111/mice.12477
10.1016/j.autcon.2019.102959
10.1109/TIE.2017.2764844
10.3846/13923730.2013.801923
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jobe.2021.102913
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID 10_1016_j_jobe_2021_102913
S2352710221007713
GroupedDBID --M
0R~
4.4
457
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c296t-acbd907bb2df4bc03ca0b1e040e1b2bc36c551bf79e8456a3fcfb846bd30eac63
IEDL.DBID AIKHN
ISSN 2352-7102
IngestDate Thu Apr 24 22:59:38 EDT 2025
Tue Jul 01 04:03:25 EDT 2025
Fri Feb 23 02:42:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CNN
Facade cracks
UAV-Images
Segmentation
Classification
UNet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-acbd907bb2df4bc03ca0b1e040e1b2bc36c551bf79e8456a3fcfb846bd30eac63
ORCID 0000-0003-4041-9968
0000-0003-4330-5376
ParticipantIDs crossref_primary_10_1016_j_jobe_2021_102913
crossref_citationtrail_10_1016_j_jobe_2021_102913
elsevier_sciencedirect_doi_10_1016_j_jobe_2021_102913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Choi, Yeum, Dyke, Jahanshahi (bib18) 2018; 18
Sankarasrinivasan, Balasubramanian, Karthik, Chandrasekar, Gupta (bib20) 2015; 54
Hou, Samaras, Kurc, Gao, Davis, Saltz (bib37) 2016
Chen, Jahanshahi, Nb-Cnn (bib13) 2018; 65
Kim, Cho (bib26) 2018; 18
Katzer, Cichocki, Domski (bib19) 2018
Li, Ma, He, Ren, Liu (bib34) 2020; 14248220
Eschmann, Kuo, Kuo, Boller (bib2) 2012
Liu, Yao, Lu, Xie, Li (bib44) 2019; 338
Yang, Li, Li, Liu, Yang, Xiao (bib43) 2017
Alipour, Harris, Miller (bib10) 2019; 33
Li, Yuan, Zhang, Yuan (bib12) 2018; 33
Fernandez Galarreta, Kerle, Gerke (bib21) 2015; 15
Zou, Zhang, Li, Qi, Wang, Wang (bib14) 2019; 28
Dung, Anh (bib28) 2019; 99
Madureira, Flores-Colen, de Brito, Pereira (bib17) 2017; 147
Zhang, Rajan, Story (bib36) 2019; 34
khanhha (bib15) 2020
Guo, Wang, Li, Liu (bib8) 2020; 1
Huyan, Li, Tighe, Xu, Zhai, CrackU-net (bib33) 2020
Zhu, Styler, Calloway (bib39) 2019
Hoskere, Narazaki, Hoang, Spencer (bib7) 2018
Amhaz, Chambon, Idier, Baltazart (bib40) 2016; 17
Paulo, Branco, de Brito (bib4) 2014; 28
Ronneberger, Fischer, Brox, U-Net (bib38) 2015
Pan, Zhang, Cervone, Yang (bib11) 2018; 11
Park, Bang, Kim, Kim (bib27) 2019; 33
Zhang, Yang, Zhang, Zhu (bib41) 2016
Torok, Golparvar-Fard, Kochersberger (bib3) 2014; 28
Shi, Cui, Qi, Meng, Chen (bib42) 2016; 17
Liu, Yeoh, Chua (bib24) 2020; 34
Hoskere, Narazaki, Hoang, Spencer (bib9) 2018
Iakovidis, Goudas, Smailis, Maglogiannis, Ratsnake (bib45) 2014; 2014
Kouzehgar, Krishnasamy Tamilselvam, Vega Heredia, Rajesh Elara (bib23) 2019; 108
Yang, Li, Yu, Luo, Huang, Yang (bib31) 2018; 33
Ren, Huang, Hong, Lu, Yin, Zou, Shen (bib30) 2020; 234
Cheng, Xiong, Chen, Gu, Li (bib32) 2018
RyM-CIC (bib47) 2018
Shih, Chi (bib22) 2020
Islam, Kim (bib29) 2019; 19
Liu, Cao, Wang, Wang (bib35) 2019; 104
Ellenberg, Kontsos, Bartoli, Pradhan (bib1) 2014
Cha, Choi, Büyüköztürk (bib25) 2017; 32
Amaro, Saraiva, de Brito, Flores-Colen (bib16) 2014; 20
Correa-Baena, Hippalgaonkar, van Duren, Jaffer, Chandrasekhar, Stevanovic, Wadia, Guha, Buonassisi (bib46) 2018; 2
Pereira, Pereira (bib5) 2015; 48
Kersten, Rodehorst, Hallermann, Debus, Morgenthal (bib6) 2018
Alipour (10.1016/j.jobe.2021.102913_bib10) 2019; 33
Liu (10.1016/j.jobe.2021.102913_bib44) 2019; 338
khanhha (10.1016/j.jobe.2021.102913_bib15)
Amaro (10.1016/j.jobe.2021.102913_bib16) 2014; 20
Eschmann (10.1016/j.jobe.2021.102913_bib2) 2012
Katzer (10.1016/j.jobe.2021.102913_bib19) 2018
Zhang (10.1016/j.jobe.2021.102913_bib41) 2016
Liu (10.1016/j.jobe.2021.102913_bib24) 2020; 34
Pereira (10.1016/j.jobe.2021.102913_bib5) 2015; 48
Kersten (10.1016/j.jobe.2021.102913_bib6) 2018
Guo (10.1016/j.jobe.2021.102913_bib8) 2020; 1
Choi (10.1016/j.jobe.2021.102913_bib18) 2018; 18
Iakovidis (10.1016/j.jobe.2021.102913_bib45) 2014; 2014
Madureira (10.1016/j.jobe.2021.102913_bib17) 2017; 147
Ronneberger (10.1016/j.jobe.2021.102913_bib38) 2015
Ren (10.1016/j.jobe.2021.102913_bib30) 2020; 234
Zou (10.1016/j.jobe.2021.102913_bib14) 2019; 28
Zhu (10.1016/j.jobe.2021.102913_bib39) 2019
Ellenberg (10.1016/j.jobe.2021.102913_bib1) 2014
Li (10.1016/j.jobe.2021.102913_bib12) 2018; 33
Islam (10.1016/j.jobe.2021.102913_bib29) 2019; 19
Cheng (10.1016/j.jobe.2021.102913_bib32) 2018
Shi (10.1016/j.jobe.2021.102913_bib42) 2016; 17
Sankarasrinivasan (10.1016/j.jobe.2021.102913_bib20) 2015; 54
Hoskere (10.1016/j.jobe.2021.102913_bib7) 2018
Zhang (10.1016/j.jobe.2021.102913_bib36) 2019; 34
Amhaz (10.1016/j.jobe.2021.102913_bib40) 2016; 17
Torok (10.1016/j.jobe.2021.102913_bib3) 2014; 28
Kouzehgar (10.1016/j.jobe.2021.102913_bib23) 2019; 108
Dung (10.1016/j.jobe.2021.102913_bib28) 2019; 99
Fernandez Galarreta (10.1016/j.jobe.2021.102913_bib21) 2015; 15
RyM-CIC (10.1016/j.jobe.2021.102913_bib47)
Hoskere (10.1016/j.jobe.2021.102913_bib9) 2018
Chen (10.1016/j.jobe.2021.102913_bib13) 2018; 65
Liu (10.1016/j.jobe.2021.102913_bib35) 2019; 104
Yang (10.1016/j.jobe.2021.102913_bib31) 2018; 33
Pan (10.1016/j.jobe.2021.102913_bib11) 2018; 11
Paulo (10.1016/j.jobe.2021.102913_bib4) 2014; 28
Hou (10.1016/j.jobe.2021.102913_bib37) 2016
Shih (10.1016/j.jobe.2021.102913_bib22) 2020
Cha (10.1016/j.jobe.2021.102913_bib25) 2017; 32
Park (10.1016/j.jobe.2021.102913_bib27) 2019; 33
Yang (10.1016/j.jobe.2021.102913_bib43) 2017
Correa-Baena (10.1016/j.jobe.2021.102913_bib46) 2018; 2
Kim (10.1016/j.jobe.2021.102913_bib26) 2018; 18
Li (10.1016/j.jobe.2021.102913_bib34) 2020; 14248220
Huyan (10.1016/j.jobe.2021.102913_bib33) 2020
References_xml – start-page: 2424
  year: 2016
  end-page: 2433
  ident: bib37
  article-title: Patch-based convolutional neural network for whole slide tissue image classification
  publication-title: 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 48
  start-page: 16
  year: 2015
  end-page: 21
  ident: bib5
  article-title: Embedded image processing systems for automatic recognition of cracks using UAVs
  publication-title: IFAC-Pap.
– volume: 33
  start-page: 1090
  year: 2018
  end-page: 1109
  ident: bib31
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– year: 2020
  ident: bib15
  article-title: Crack segmentation
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: bib25
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– volume: 18
  start-page: 3452
  year: 2018
  ident: bib26
  article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique
  publication-title: Sensors
– volume: 34
  year: 2020
  ident: bib24
  article-title: Deep learning–based enhancement of motion blurred UAV concrete crack images
  publication-title: J. Comput. Civ. Eng.
– volume: 17
  start-page: 2718
  year: 2016
  end-page: 2729
  ident: bib40
  article-title: Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  ident: bib44
  article-title: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
– volume: 28
  start-page: 1498
  year: 2019
  end-page: 1512
  ident: bib14
  article-title: DeepCrack: learning hierarchical convolutional features for crack detection
  publication-title: IEEE Trans. Image Process.
– year: 2015
  ident: bib38
  article-title: Convolutional Networks for Biomedical Image Segmentation
– volume: 1
  year: 2020
  ident: bib8
  article-title: Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– volume: 28
  year: 2014
  ident: bib3
  article-title: Image-based automated 3D crack detection for post-disaster building assessment
  publication-title: J. Comput. Civ. Eng.
– volume: 34
  start-page: 951
  year: 2019
  end-page: 971
  ident: bib36
  article-title: Concrete crack detection using context-aware deep semantic segmentation network
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– start-page: 9
  year: 2018
  ident: bib6
  article-title: Potentials of autonomous UAS and automated image analysis for structural health monitoring
  publication-title: 40th IABSE Symp
– start-page: 1788
  year: 2014
  end-page: 1795
  ident: bib1
  article-title: Masonry crack detection application of an unmanned aerial vehicle
  publication-title: Comput. Civ. Build. Eng. 2014
– volume: 19
  start-page: 4251
  year: 2019
  ident: bib29
  article-title: Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network
  publication-title: Sensors
– year: 2018
  ident: bib9
  article-title: Towards automated post-earthquake inspections with deep learning-based condition-aware models
– volume: 18
  start-page: 3017
  year: 2018
  ident: bib18
  article-title: Computer-aided approach for rapid post-event visual evaluation of a building façade
  publication-title: Sensors
– volume: 108
  start-page: 102959
  year: 2019
  ident: bib23
  article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks
  publication-title: Autom. ConStruct.
– start-page: 26
  year: 2020
  end-page: 32
  ident: bib22
  article-title: A deep learning application for detecting facade tile degradation
  publication-title: Hum. Syst. Eng. Des. II
– year: 2018
  ident: bib7
  article-title: Vision-based structural inspection using multiscale deep convolutional neural networks
  publication-title: Urbana-Champaign
– volume: 33
  year: 2019
  ident: bib27
  article-title: Patch-based crack detection in black box images using convolutional neural networks
  publication-title: J. Comput. Civ. Eng.
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  ident: bib28
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. ConStruct.
– start-page: e2551
  year: 2020
  ident: bib33
  article-title: A novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct. Contr. Health Monit.
– year: 2019
  ident: bib39
  article-title: A CNN-Based Tool for Automatic Tongue Contour Tracking in Ultrasound Images
– volume: 2014
  year: 2014
  ident: bib45
  article-title: A versatile image annotation tool with application to computer-aided diagnosis
  publication-title: Sci. World J.
– start-page: 6
  year: 2017
  ident: bib43
  article-title: Deep concrete inspection using unmanned aerial vehicle towards CSSC database
  publication-title: IEEERSJ Int. Conf. Intell. Robots Syst. IROS
– year: 2012
  ident: bib2
  article-title: Unmanned aircraft systems for remote building inspection and monitoring
  publication-title: Proc. 6th Eur. Workshop Struct. Health Monit. Dresd
– volume: 147
  start-page: 790
  year: 2017
  end-page: 802
  ident: bib17
  article-title: Maintenance planning of facades in current buildings
  publication-title: Construct. Build. Mater.
– start-page: 3708
  year: 2016
  end-page: 3712
  ident: bib41
  article-title: Road crack detection using deep convolutional neural network
  publication-title: IEEE Int. Conf. Image Process. ICIP
– volume: 17
  start-page: 3434
  year: 2016
  end-page: 3445
  ident: bib42
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 234
  start-page: 117367
  year: 2020
  ident: bib30
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Construct. Build. Mater.
– year: 2018
  ident: bib32
  article-title: Pixel-level crack detection using U-net
  publication-title: TENCON 2018 - 2018 IEEE Reg. 10 Conf
– volume: 28
  year: 2014
  ident: bib4
  article-title: Using orthophotography based on BuildingsLife software to inspect building facades
  publication-title: J. Perform. Constr. Facil.
– volume: 11
  start-page: 3701
  year: 2018
  end-page: 3712
  ident: bib11
  article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 65
  start-page: 4392
  year: 2018
  end-page: 4400
  ident: bib13
  article-title: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
– volume: 20
  start-page: 511
  year: 2014
  end-page: 526
  ident: bib16
  article-title: Statistical survey of the pathology, diagnosis and rehabilitation of ETICS in walls
  publication-title: J. Civ. Eng. Manag.
– volume: 54
  start-page: 508
  year: 2015
  end-page: 515
  ident: bib20
  article-title: Health monitoring of civil structures with integrated UAV and image processing system
  publication-title: Procedia Comput. Sci.
– volume: 14248220
  year: 2020
  ident: bib34
  article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique
  publication-title: Sens
– volume: 33
  year: 2019
  ident: bib10
  article-title: Robust pixel-level crack detection using deep fully convolutional neural networks
  publication-title: J. Comput. Civ. Eng.
– volume: 15
  start-page: 1087
  year: 2015
  end-page: 1101
  ident: bib21
  article-title: UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning
  publication-title: Nat. Hazards Earth Syst. Sci.
– year: 2018
  ident: bib47
  article-title: Fully convolutional networks for automatic pavement crack segmentation
– volume: 2
  start-page: 1410
  year: 2018
  end-page: 1420
  ident: bib46
  article-title: Accelerating materials development via automation, machine learning, and high-performance computing
  publication-title: Joule
– volume: 104
  start-page: 129
  year: 2019
  end-page: 139
  ident: bib35
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. ConStruct.
– year: 2018
  ident: bib19
  article-title: Politechnika Koszalińska, wydawnictwo uczelniane,
  publication-title: Research and Modelling in Civil Engineering 2018
– volume: 33
  start-page: 527
  year: 2018
  end-page: 544
  ident: bib12
  article-title: Unified vision-based methodology for simultaneous concrete defect detection and geolocalization
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– volume: 32
  start-page: 361
  year: 2017
  ident: 10.1016/j.jobe.2021.102913_bib25
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 147
  start-page: 790
  year: 2017
  ident: 10.1016/j.jobe.2021.102913_bib17
  article-title: Maintenance planning of facades in current buildings
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.04.195
– volume: 99
  start-page: 52
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib28
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2018.11.028
– volume: 17
  start-page: 3434
  year: 2016
  ident: 10.1016/j.jobe.2021.102913_bib42
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2016.2552248
– year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib7
  article-title: Vision-based structural inspection using multiscale deep convolutional neural networks
– volume: 15
  start-page: 1087
  year: 2015
  ident: 10.1016/j.jobe.2021.102913_bib21
  article-title: UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-15-1087-2015
– start-page: 6
  year: 2017
  ident: 10.1016/j.jobe.2021.102913_bib43
  article-title: Deep concrete inspection using unmanned aerial vehicle towards CSSC database
– year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib19
  article-title: Politechnika Koszalińska, wydawnictwo uczelniane,
– volume: 33
  start-page: 1090
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib31
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12412
– year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib39
– ident: 10.1016/j.jobe.2021.102913_bib15
– start-page: 1788
  year: 2014
  ident: 10.1016/j.jobe.2021.102913_bib1
  article-title: Masonry crack detection application of an unmanned aerial vehicle
– volume: 54
  start-page: 508
  year: 2015
  ident: 10.1016/j.jobe.2021.102913_bib20
  article-title: Health monitoring of civil structures with integrated UAV and image processing system
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.06.058
– volume: 2014
  year: 2014
  ident: 10.1016/j.jobe.2021.102913_bib45
  article-title: A versatile image annotation tool with application to computer-aided diagnosis
  publication-title: Sci. World J.
  doi: 10.1155/2014/286856
– volume: 2
  start-page: 1410
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib46
  article-title: Accelerating materials development via automation, machine learning, and high-performance computing
  publication-title: Joule
  doi: 10.1016/j.joule.2018.05.009
– volume: 17
  start-page: 2718
  year: 2016
  ident: 10.1016/j.jobe.2021.102913_bib40
  article-title: Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2015.2477675
– volume: 11
  start-page: 3701
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib11
  article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2865528
– ident: 10.1016/j.jobe.2021.102913_bib47
– volume: 34
  year: 2020
  ident: 10.1016/j.jobe.2021.102913_bib24
  article-title: Deep learning–based enhancement of motion blurred UAV concrete crack images
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000907
– start-page: 2424
  year: 2016
  ident: 10.1016/j.jobe.2021.102913_bib37
  article-title: Patch-based convolutional neural network for whole slide tissue image classification
– year: 2012
  ident: 10.1016/j.jobe.2021.102913_bib2
  article-title: Unmanned aircraft systems for remote building inspection and monitoring
– start-page: 3708
  year: 2016
  ident: 10.1016/j.jobe.2021.102913_bib41
  article-title: Road crack detection using deep convolutional neural network
  publication-title: IEEE Int. Conf. Image Process. ICIP
– volume: 18
  start-page: 3017
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib18
  article-title: Computer-aided approach for rapid post-event visual evaluation of a building façade
  publication-title: Sensors
  doi: 10.3390/s18093017
– year: 2015
  ident: 10.1016/j.jobe.2021.102913_bib38
– volume: 33
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib27
  article-title: Patch-based crack detection in black box images using convolutional neural networks
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000831
– volume: 1
  year: 2020
  ident: 10.1016/j.jobe.2021.102913_bib8
  article-title: Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– volume: 28
  start-page: 1498
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib14
  article-title: DeepCrack: learning hierarchical convolutional features for crack detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2878966
– start-page: 26
  year: 2020
  ident: 10.1016/j.jobe.2021.102913_bib22
  article-title: A deep learning application for detecting facade tile degradation
– volume: 28
  year: 2014
  ident: 10.1016/j.jobe.2021.102913_bib4
  article-title: Using orthophotography based on BuildingsLife software to inspect building facades
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000536
– year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib9
  article-title: Towards automated post-earthquake inspections with deep learning-based condition-aware models
– volume: 33
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib10
  article-title: Robust pixel-level crack detection using deep fully convolutional neural networks
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000854
– volume: 19
  start-page: 4251
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib29
  article-title: Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network
  publication-title: Sensors
  doi: 10.3390/s19194251
– start-page: 9
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib6
  article-title: Potentials of autonomous UAS and automated image analysis for structural health monitoring
  doi: 10.2749/nantes.2018.s24-119
– volume: 28
  year: 2014
  ident: 10.1016/j.jobe.2021.102913_bib3
  article-title: Image-based automated 3D crack detection for post-disaster building assessment
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000334
– year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib32
  article-title: Pixel-level crack detection using U-net
– volume: 18
  start-page: 3452
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib26
  article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique
  publication-title: Sensors
  doi: 10.3390/s18103452
– volume: 48
  start-page: 16
  year: 2015
  ident: 10.1016/j.jobe.2021.102913_bib5
  article-title: Embedded image processing systems for automatic recognition of cracks using UAVs
  publication-title: IFAC-Pap.
– volume: 14248220
  issue: 20
  year: 2020
  ident: 10.1016/j.jobe.2021.102913_bib34
  article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique
  publication-title: Sens
– volume: 104
  start-page: 129
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib35
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2019.04.005
– start-page: e2551
  year: 2020
  ident: 10.1016/j.jobe.2021.102913_bib33
  article-title: A novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct. Contr. Health Monit.
– volume: 234
  start-page: 117367
  year: 2020
  ident: 10.1016/j.jobe.2021.102913_bib30
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117367
– volume: 338
  start-page: 139
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib44
  article-title: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.036
– volume: 33
  start-page: 527
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib12
  article-title: Unified vision-based methodology for simultaneous concrete defect detection and geolocalization
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12351
– volume: 34
  start-page: 951
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib36
  article-title: Concrete crack detection using context-aware deep semantic segmentation network
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12477
– volume: 108
  start-page: 102959
  year: 2019
  ident: 10.1016/j.jobe.2021.102913_bib23
  article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2019.102959
– volume: 65
  start-page: 4392
  year: 2018
  ident: 10.1016/j.jobe.2021.102913_bib13
  article-title: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2764844
– volume: 20
  start-page: 511
  year: 2014
  ident: 10.1016/j.jobe.2021.102913_bib16
  article-title: Statistical survey of the pathology, diagnosis and rehabilitation of ETICS in walls
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2013.801923
SSID ssj0002953864
Score 2.5036652
Snippet Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102913
SubjectTerms Classification
CNN
Facade cracks
Segmentation
UAV-Images
UNet
Title Automated crack segmentation in close-range building façade inspection images using deep learning techniques
URI https://dx.doi.org/10.1016/j.jobe.2021.102913
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEN4QuHgxGjXiX_bgzWxod9tCj4RIUCMXJeHW7C8BoRAKz-SD-GLO0C3RxHDw2HYnaWZnZ75p55sh5B6MwKVOBIzzjmaRkZKlLuZMODAGazoq2E2eex0mg1H0PI7HNdKruDBYVul9f-nTd97a32l5bbZW02nrjQN2wPjI8Ud_GyfXNrhIk7hOGt2nl8Fw_6mFp3Cqd42kUASrD7mnz5SVXjPk3XAIdtjHIA3F3yHqR9jpn5Bjjxdpt3ylU1Kz-RlZdLebJUBNa6heS_1BCztZeBJRTqc51fNlYdkaiQNU-cHX1MmvT2ksPC_plbh0Ae6koFj8PqHG2hX1UyQmdN_ctTgno_7je2_A_NwEpnmabJjUykDOqxQ3LlI6EFoGKrRwXG2ouNIi0YCTFOyG7QB-ksJppwCHKCMC8MOJuCD1fJnbS0IBPEkJWY5sxyoKDeRmiYYMI0nbXGNr9yYJK1Vl2jcVx9kW86yqHptlqN4M1ZuV6m2Sh73MqmypcXB1XO1A9sswMvD5B-Su_il3TY7wqqQb3pD6Zr21t4A7NurO29U3S4HXwg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOOjFaNSIzz14Mxva7QN6JERS5HEREm7NPgkIhdDym_wh_jFn6ZZoYjh47e4kzezszDftfDMIPYMR6Eh7DqG0JYgvGSORDijxNBiDki3u7CfPDUdhPPHfpsG0gjolF8aUVVrfX_j0vbe2TxpWm43NfN54p4AdTHyk5kd_00yurfkBZHtVVGv3-vHo8KmFRnCr942kjIipPqSWPlNUei0M74ZCsDN9DCLX-ztE_Qg73XN0ZvEibhevdIEqKr1Eq_YuXwPUVBKLLRMfOFOzlSURpXieYrFcZ4psDXEAczv4Gmv29cmkgvWCXmm2rsCdZNgUv8-wVGqD7RSJGT40d82u0KT7Ou7ExM5NIIJGYU6Y4BJyXs6p1D4XjieYw10F11W5nHLhhQJwEofTUC3AT8zTQnPAIVx6Dvjh0LtG1XSdqhuEATwxBlkOawbcdyXkZqGADCOMmlSY1u515JaqSoRtKm5mWyyTsnpskRj1Jka9SaHeOno5yGyKlhpHdwflCSS_DCMBn39E7vafck_oJB4PB8mgN-rfoVOzUlAP71E13-7UA2CQnD9aG_sGkLTarw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+crack+segmentation+in+close-range+building+fa%C3%A7ade+inspection+images+using+deep+learning+techniques&rft.jtitle=Journal+of+Building+Engineering&rft.au=Chen%2C+Kaiwen&rft.au=Reichard%2C+Georg&rft.au=Xu%2C+Xin&rft.au=Akanmu%2C+Abiola&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=2352-7102&rft.volume=43&rft_id=info:doi/10.1016%2Fj.jobe.2021.102913&rft.externalDocID=S2352710221007713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon