Automated crack segmentation in close-range building façade inspection images using deep learning techniques
Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable damages. Inspection practitioners have to manually examine the large amounts of high-resolution images collected by UAVs to identify anomalies...
Saved in:
Published in | Journal of Building Engineering Vol. 43; p. 102913 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-7102 2352-7102 |
DOI | 10.1016/j.jobe.2021.102913 |
Cover
Abstract | Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable damages. Inspection practitioners have to manually examine the large amounts of high-resolution images collected by UAVs to identify anomalies or damages on building facades for reporting and repairs. The computer vision and deep learning technologies have emerged as promising solutions to automate the image-based inspection process. However, for the detection of façade cracks from UAV-captured images, existing deep learning solutions may not perform well due to the complicated background noises caused by different façade components and materials. Towards that end, this paper proposed a two-step deep learning method for the automated detection of façade cracks from UAV-captured images. In the first step, a convolutional neural network (CNN) model was designed and trained on 26,177 images to classify images in a patch-level size of 128 × 128 pixels into crack or non-crack. In the second step, a U-Net neural network model was trained on 2870 image sets to segment crack pixels within those patches classified as cracks. Experimental results show a high performance of 94% and 96% precision, 94% and 95% recall, and 94% and 96% F1-scores was achieved by the CNN model and the U-Net model respectively. The experimental results proved that the two-step method can improve the reliability and efficiency of detecting and differentiating façade cracks from complicated façade noises. The proposed method can also be extended to detect other types of façade anomalies (e.g., corrosion and joint failures), thus facilitating a comprehensive assessment of façade conditions for better decision-making for the maintenance of building facades during its service life.
•Automated UAV-image processing for building façade crack detection.•Segmenting cracking pixels from diverse façade component and material noises.•2-step deep neural network method.•CNN model for patch-level crack classification.•U-Net model for pixel-level crack segmentation. |
---|---|
AbstractList | Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable damages. Inspection practitioners have to manually examine the large amounts of high-resolution images collected by UAVs to identify anomalies or damages on building facades for reporting and repairs. The computer vision and deep learning technologies have emerged as promising solutions to automate the image-based inspection process. However, for the detection of façade cracks from UAV-captured images, existing deep learning solutions may not perform well due to the complicated background noises caused by different façade components and materials. Towards that end, this paper proposed a two-step deep learning method for the automated detection of façade cracks from UAV-captured images. In the first step, a convolutional neural network (CNN) model was designed and trained on 26,177 images to classify images in a patch-level size of 128 × 128 pixels into crack or non-crack. In the second step, a U-Net neural network model was trained on 2870 image sets to segment crack pixels within those patches classified as cracks. Experimental results show a high performance of 94% and 96% precision, 94% and 95% recall, and 94% and 96% F1-scores was achieved by the CNN model and the U-Net model respectively. The experimental results proved that the two-step method can improve the reliability and efficiency of detecting and differentiating façade cracks from complicated façade noises. The proposed method can also be extended to detect other types of façade anomalies (e.g., corrosion and joint failures), thus facilitating a comprehensive assessment of façade conditions for better decision-making for the maintenance of building facades during its service life.
•Automated UAV-image processing for building façade crack detection.•Segmenting cracking pixels from diverse façade component and material noises.•2-step deep neural network method.•CNN model for patch-level crack classification.•U-Net model for pixel-level crack segmentation. |
ArticleNumber | 102913 |
Author | Reichard, Georg Chen, Kaiwen Xu, Xin Akanmu, Abiola |
Author_xml | – sequence: 1 givenname: Kaiwen surname: Chen fullname: Chen, Kaiwen email: kaiwen.chen@ua.edu organization: Department of Civil, Construction and Environmental Engineering, The University of Alabama, 401 7th Avenue, Tuscaloosa, AL, 35487, USA – sequence: 2 givenname: Georg orcidid: 0000-0003-4041-9968 surname: Reichard fullname: Reichard, Georg email: reichard@vt.edu organization: Department of Building Construction, Virginia Polytechnic Institute and State University, 1365 Perry St, Blacksburg, VA, 24061, USA – sequence: 3 givenname: Xin surname: Xu fullname: Xu, Xin email: xu942@purdue.edu organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47906, USA – sequence: 4 givenname: Abiola orcidid: 0000-0003-4330-5376 surname: Akanmu fullname: Akanmu, Abiola email: abiola@vt.edu organization: Department of Building Construction, Virginia Polytechnic Institute and State University, 1365 Perry St, Blacksburg, VA, 24061, USA |
BookMark | eNp9kEtOwzAQhi1UJErpBVj5Aim282gisakqXhISG1hb9ngSHBKn2AkSJ-IgXIxEYYFYdGWP__lG4--cLFznkJBLzjac8eyq3tSdxo1ggo8PouDxCVmKOBXRdiwXf-5nZB1CzdjYlMZ5lixJuxv6rlU9GgpewRsNWLXoetXbzlHrKDRdwMgrVyHVg22MdRUt1feXMjjm4YAwt7aqwkCHMOUG8UAbVN5NVY_w6uz7gOGCnJaqCbj-PVfk5fbmeX8fPT7dPex3jxGIIusjBdoUbKu1MGWigcWgmObIEoZcCw1xBmnKdbktME_STMUllDpPMm1ihgqyeEXEPBd8F4LHUh78uKD_lJzJyZms5eRMTs7k7GyE8n8Q2NlD75VtjqPXM4rjpz4sehnAogM01o9-pOnsMfwHNcaNeg |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105186 crossref_primary_10_3390_buildings13082089 crossref_primary_10_1016_j_conbuildmat_2023_132839 crossref_primary_10_1038_s41598_024_78774_9 crossref_primary_10_1177_14759217231183661 crossref_primary_10_1016_j_jobe_2022_104098 crossref_primary_10_1088_1361_6501_ada0d0 crossref_primary_10_1007_s13349_024_00904_8 crossref_primary_10_1111_mice_12832 crossref_primary_10_20396_parc_v15i00_8674187 crossref_primary_10_3390_s22166070 crossref_primary_10_1061_JCCEE5_CPENG_5512 crossref_primary_10_3390_buildings14010005 crossref_primary_10_3390_civileng5010014 crossref_primary_10_1016_j_landurbplan_2022_104569 crossref_primary_10_3390_polym16142039 crossref_primary_10_1111_mice_12881 crossref_primary_10_3390_drones6100279 crossref_primary_10_1038_s41598_024_82612_3 crossref_primary_10_3390_s23239315 crossref_primary_10_3130_aijt_28_673 crossref_primary_10_3390_buildings13081883 crossref_primary_10_3390_app12115626 crossref_primary_10_3390_rs16162910 crossref_primary_10_36680_j_itcon_2022_043 crossref_primary_10_1155_2023_9982080 crossref_primary_10_3390_su15065591 crossref_primary_10_14718_RevArq_2023_25_4265 crossref_primary_10_1177_13694332241242975 crossref_primary_10_3390_fractalfract7110820 crossref_primary_10_3390_s24217076 crossref_primary_10_1109_ACCESS_2023_3296793 crossref_primary_10_3390_s24217074 crossref_primary_10_1016_j_engstruct_2023_116988 crossref_primary_10_1063_5_0125563 crossref_primary_10_3390_app11188404 crossref_primary_10_1109_ACCESS_2025_3550021 crossref_primary_10_1017_S0263574724000559 crossref_primary_10_3390_app13042304 crossref_primary_10_1038_s41598_025_91352_x crossref_primary_10_1007_s13243_024_00147_2 crossref_primary_10_3390_app122010651 crossref_primary_10_1016_j_measurement_2024_115603 crossref_primary_10_1061__ASCE_AE_1943_5568_0000564 crossref_primary_10_1177_13694332241260136 crossref_primary_10_1080_19475683_2024_2335953 crossref_primary_10_3390_buildings13071814 crossref_primary_10_3390_buildings14030669 crossref_primary_10_1007_s11554_024_01503_y crossref_primary_10_1061_JAEIED_AEENG_1635 crossref_primary_10_1080_19648189_2024_2409266 crossref_primary_10_1002_tee_70014 crossref_primary_10_1016_j_scs_2024_105280 crossref_primary_10_1007_s13369_024_09772_2 |
Cites_doi | 10.1111/mice.12263 10.1016/j.conbuildmat.2017.04.195 10.1016/j.autcon.2018.11.028 10.1109/TITS.2016.2552248 10.5194/nhess-15-1087-2015 10.1111/mice.12412 10.1016/j.procs.2015.06.058 10.1155/2014/286856 10.1016/j.joule.2018.05.009 10.1109/TITS.2015.2477675 10.1109/JSTARS.2018.2865528 10.1061/(ASCE)CP.1943-5487.0000907 10.3390/s18093017 10.1061/(ASCE)CP.1943-5487.0000831 10.1109/TIP.2018.2878966 10.1061/(ASCE)CF.1943-5509.0000536 10.1061/(ASCE)CP.1943-5487.0000854 10.3390/s19194251 10.2749/nantes.2018.s24-119 10.1061/(ASCE)CP.1943-5487.0000334 10.3390/s18103452 10.1016/j.autcon.2019.04.005 10.1016/j.conbuildmat.2019.117367 10.1016/j.neucom.2019.01.036 10.1111/mice.12351 10.1111/mice.12477 10.1016/j.autcon.2019.102959 10.1109/TIE.2017.2764844 10.3846/13923730.2013.801923 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jobe.2021.102913 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-7102 |
ExternalDocumentID | 10_1016_j_jobe_2021_102913 S2352710221007713 |
GroupedDBID | --M 0R~ 4.4 457 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM M41 O9- OAUVE ROL SPC SPCBC SSB SSL SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c296t-acbd907bb2df4bc03ca0b1e040e1b2bc36c551bf79e8456a3fcfb846bd30eac63 |
IEDL.DBID | AIKHN |
ISSN | 2352-7102 |
IngestDate | Thu Apr 24 22:59:38 EDT 2025 Tue Jul 01 04:03:25 EDT 2025 Fri Feb 23 02:42:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CNN Facade cracks UAV-Images Segmentation Classification UNet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-acbd907bb2df4bc03ca0b1e040e1b2bc36c551bf79e8456a3fcfb846bd30eac63 |
ORCID | 0000-0003-4041-9968 0000-0003-4330-5376 |
ParticipantIDs | crossref_primary_10_1016_j_jobe_2021_102913 crossref_citationtrail_10_1016_j_jobe_2021_102913 elsevier_sciencedirect_doi_10_1016_j_jobe_2021_102913 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Building Engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Choi, Yeum, Dyke, Jahanshahi (bib18) 2018; 18 Sankarasrinivasan, Balasubramanian, Karthik, Chandrasekar, Gupta (bib20) 2015; 54 Hou, Samaras, Kurc, Gao, Davis, Saltz (bib37) 2016 Chen, Jahanshahi, Nb-Cnn (bib13) 2018; 65 Kim, Cho (bib26) 2018; 18 Katzer, Cichocki, Domski (bib19) 2018 Li, Ma, He, Ren, Liu (bib34) 2020; 14248220 Eschmann, Kuo, Kuo, Boller (bib2) 2012 Liu, Yao, Lu, Xie, Li (bib44) 2019; 338 Yang, Li, Li, Liu, Yang, Xiao (bib43) 2017 Alipour, Harris, Miller (bib10) 2019; 33 Li, Yuan, Zhang, Yuan (bib12) 2018; 33 Fernandez Galarreta, Kerle, Gerke (bib21) 2015; 15 Zou, Zhang, Li, Qi, Wang, Wang (bib14) 2019; 28 Dung, Anh (bib28) 2019; 99 Madureira, Flores-Colen, de Brito, Pereira (bib17) 2017; 147 Zhang, Rajan, Story (bib36) 2019; 34 khanhha (bib15) 2020 Guo, Wang, Li, Liu (bib8) 2020; 1 Huyan, Li, Tighe, Xu, Zhai, CrackU-net (bib33) 2020 Zhu, Styler, Calloway (bib39) 2019 Hoskere, Narazaki, Hoang, Spencer (bib7) 2018 Amhaz, Chambon, Idier, Baltazart (bib40) 2016; 17 Paulo, Branco, de Brito (bib4) 2014; 28 Ronneberger, Fischer, Brox, U-Net (bib38) 2015 Pan, Zhang, Cervone, Yang (bib11) 2018; 11 Park, Bang, Kim, Kim (bib27) 2019; 33 Zhang, Yang, Zhang, Zhu (bib41) 2016 Torok, Golparvar-Fard, Kochersberger (bib3) 2014; 28 Shi, Cui, Qi, Meng, Chen (bib42) 2016; 17 Liu, Yeoh, Chua (bib24) 2020; 34 Hoskere, Narazaki, Hoang, Spencer (bib9) 2018 Iakovidis, Goudas, Smailis, Maglogiannis, Ratsnake (bib45) 2014; 2014 Kouzehgar, Krishnasamy Tamilselvam, Vega Heredia, Rajesh Elara (bib23) 2019; 108 Yang, Li, Yu, Luo, Huang, Yang (bib31) 2018; 33 Ren, Huang, Hong, Lu, Yin, Zou, Shen (bib30) 2020; 234 Cheng, Xiong, Chen, Gu, Li (bib32) 2018 RyM-CIC (bib47) 2018 Shih, Chi (bib22) 2020 Islam, Kim (bib29) 2019; 19 Liu, Cao, Wang, Wang (bib35) 2019; 104 Ellenberg, Kontsos, Bartoli, Pradhan (bib1) 2014 Cha, Choi, Büyüköztürk (bib25) 2017; 32 Amaro, Saraiva, de Brito, Flores-Colen (bib16) 2014; 20 Correa-Baena, Hippalgaonkar, van Duren, Jaffer, Chandrasekhar, Stevanovic, Wadia, Guha, Buonassisi (bib46) 2018; 2 Pereira, Pereira (bib5) 2015; 48 Kersten, Rodehorst, Hallermann, Debus, Morgenthal (bib6) 2018 Alipour (10.1016/j.jobe.2021.102913_bib10) 2019; 33 Liu (10.1016/j.jobe.2021.102913_bib44) 2019; 338 khanhha (10.1016/j.jobe.2021.102913_bib15) Amaro (10.1016/j.jobe.2021.102913_bib16) 2014; 20 Eschmann (10.1016/j.jobe.2021.102913_bib2) 2012 Katzer (10.1016/j.jobe.2021.102913_bib19) 2018 Zhang (10.1016/j.jobe.2021.102913_bib41) 2016 Liu (10.1016/j.jobe.2021.102913_bib24) 2020; 34 Pereira (10.1016/j.jobe.2021.102913_bib5) 2015; 48 Kersten (10.1016/j.jobe.2021.102913_bib6) 2018 Guo (10.1016/j.jobe.2021.102913_bib8) 2020; 1 Choi (10.1016/j.jobe.2021.102913_bib18) 2018; 18 Iakovidis (10.1016/j.jobe.2021.102913_bib45) 2014; 2014 Madureira (10.1016/j.jobe.2021.102913_bib17) 2017; 147 Ronneberger (10.1016/j.jobe.2021.102913_bib38) 2015 Ren (10.1016/j.jobe.2021.102913_bib30) 2020; 234 Zou (10.1016/j.jobe.2021.102913_bib14) 2019; 28 Zhu (10.1016/j.jobe.2021.102913_bib39) 2019 Ellenberg (10.1016/j.jobe.2021.102913_bib1) 2014 Li (10.1016/j.jobe.2021.102913_bib12) 2018; 33 Islam (10.1016/j.jobe.2021.102913_bib29) 2019; 19 Cheng (10.1016/j.jobe.2021.102913_bib32) 2018 Shi (10.1016/j.jobe.2021.102913_bib42) 2016; 17 Sankarasrinivasan (10.1016/j.jobe.2021.102913_bib20) 2015; 54 Hoskere (10.1016/j.jobe.2021.102913_bib7) 2018 Zhang (10.1016/j.jobe.2021.102913_bib36) 2019; 34 Amhaz (10.1016/j.jobe.2021.102913_bib40) 2016; 17 Torok (10.1016/j.jobe.2021.102913_bib3) 2014; 28 Kouzehgar (10.1016/j.jobe.2021.102913_bib23) 2019; 108 Dung (10.1016/j.jobe.2021.102913_bib28) 2019; 99 Fernandez Galarreta (10.1016/j.jobe.2021.102913_bib21) 2015; 15 RyM-CIC (10.1016/j.jobe.2021.102913_bib47) Hoskere (10.1016/j.jobe.2021.102913_bib9) 2018 Chen (10.1016/j.jobe.2021.102913_bib13) 2018; 65 Liu (10.1016/j.jobe.2021.102913_bib35) 2019; 104 Yang (10.1016/j.jobe.2021.102913_bib31) 2018; 33 Pan (10.1016/j.jobe.2021.102913_bib11) 2018; 11 Paulo (10.1016/j.jobe.2021.102913_bib4) 2014; 28 Hou (10.1016/j.jobe.2021.102913_bib37) 2016 Shih (10.1016/j.jobe.2021.102913_bib22) 2020 Cha (10.1016/j.jobe.2021.102913_bib25) 2017; 32 Park (10.1016/j.jobe.2021.102913_bib27) 2019; 33 Yang (10.1016/j.jobe.2021.102913_bib43) 2017 Correa-Baena (10.1016/j.jobe.2021.102913_bib46) 2018; 2 Kim (10.1016/j.jobe.2021.102913_bib26) 2018; 18 Li (10.1016/j.jobe.2021.102913_bib34) 2020; 14248220 Huyan (10.1016/j.jobe.2021.102913_bib33) 2020 |
References_xml | – start-page: 2424 year: 2016 end-page: 2433 ident: bib37 article-title: Patch-based convolutional neural network for whole slide tissue image classification publication-title: 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR – volume: 48 start-page: 16 year: 2015 end-page: 21 ident: bib5 article-title: Embedded image processing systems for automatic recognition of cracks using UAVs publication-title: IFAC-Pap. – volume: 33 start-page: 1090 year: 2018 end-page: 1109 ident: bib31 article-title: Automatic pixel-level crack detection and measurement using fully convolutional network publication-title: Comput. Aided Civ. Infrastruct. Eng. – year: 2020 ident: bib15 article-title: Crack segmentation – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: bib25 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civ. Infrastruct. Eng. – volume: 18 start-page: 3452 year: 2018 ident: bib26 article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique publication-title: Sensors – volume: 34 year: 2020 ident: bib24 article-title: Deep learning–based enhancement of motion blurred UAV concrete crack images publication-title: J. Comput. Civ. Eng. – volume: 17 start-page: 2718 year: 2016 end-page: 2729 ident: bib40 article-title: Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 338 start-page: 139 year: 2019 end-page: 153 ident: bib44 article-title: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing – volume: 28 start-page: 1498 year: 2019 end-page: 1512 ident: bib14 article-title: DeepCrack: learning hierarchical convolutional features for crack detection publication-title: IEEE Trans. Image Process. – year: 2015 ident: bib38 article-title: Convolutional Networks for Biomedical Image Segmentation – volume: 1 year: 2020 ident: bib8 article-title: Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network publication-title: Comput. Aided Civ. Infrastruct. Eng. – volume: 28 year: 2014 ident: bib3 article-title: Image-based automated 3D crack detection for post-disaster building assessment publication-title: J. Comput. Civ. Eng. – volume: 34 start-page: 951 year: 2019 end-page: 971 ident: bib36 article-title: Concrete crack detection using context-aware deep semantic segmentation network publication-title: Comput. Aided Civ. Infrastruct. Eng. – start-page: 9 year: 2018 ident: bib6 article-title: Potentials of autonomous UAS and automated image analysis for structural health monitoring publication-title: 40th IABSE Symp – start-page: 1788 year: 2014 end-page: 1795 ident: bib1 article-title: Masonry crack detection application of an unmanned aerial vehicle publication-title: Comput. Civ. Build. Eng. 2014 – volume: 19 start-page: 4251 year: 2019 ident: bib29 article-title: Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network publication-title: Sensors – year: 2018 ident: bib9 article-title: Towards automated post-earthquake inspections with deep learning-based condition-aware models – volume: 18 start-page: 3017 year: 2018 ident: bib18 article-title: Computer-aided approach for rapid post-event visual evaluation of a building façade publication-title: Sensors – volume: 108 start-page: 102959 year: 2019 ident: bib23 article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks publication-title: Autom. ConStruct. – start-page: 26 year: 2020 end-page: 32 ident: bib22 article-title: A deep learning application for detecting facade tile degradation publication-title: Hum. Syst. Eng. Des. II – year: 2018 ident: bib7 article-title: Vision-based structural inspection using multiscale deep convolutional neural networks publication-title: Urbana-Champaign – volume: 33 year: 2019 ident: bib27 article-title: Patch-based crack detection in black box images using convolutional neural networks publication-title: J. Comput. Civ. Eng. – volume: 99 start-page: 52 year: 2019 end-page: 58 ident: bib28 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. ConStruct. – start-page: e2551 year: 2020 ident: bib33 article-title: A novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct. Contr. Health Monit. – year: 2019 ident: bib39 article-title: A CNN-Based Tool for Automatic Tongue Contour Tracking in Ultrasound Images – volume: 2014 year: 2014 ident: bib45 article-title: A versatile image annotation tool with application to computer-aided diagnosis publication-title: Sci. World J. – start-page: 6 year: 2017 ident: bib43 article-title: Deep concrete inspection using unmanned aerial vehicle towards CSSC database publication-title: IEEERSJ Int. Conf. Intell. Robots Syst. IROS – year: 2012 ident: bib2 article-title: Unmanned aircraft systems for remote building inspection and monitoring publication-title: Proc. 6th Eur. Workshop Struct. Health Monit. Dresd – volume: 147 start-page: 790 year: 2017 end-page: 802 ident: bib17 article-title: Maintenance planning of facades in current buildings publication-title: Construct. Build. Mater. – start-page: 3708 year: 2016 end-page: 3712 ident: bib41 article-title: Road crack detection using deep convolutional neural network publication-title: IEEE Int. Conf. Image Process. ICIP – volume: 17 start-page: 3434 year: 2016 end-page: 3445 ident: bib42 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 234 start-page: 117367 year: 2020 ident: bib30 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Construct. Build. Mater. – year: 2018 ident: bib32 article-title: Pixel-level crack detection using U-net publication-title: TENCON 2018 - 2018 IEEE Reg. 10 Conf – volume: 28 year: 2014 ident: bib4 article-title: Using orthophotography based on BuildingsLife software to inspect building facades publication-title: J. Perform. Constr. Facil. – volume: 11 start-page: 3701 year: 2018 end-page: 3712 ident: bib11 article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 65 start-page: 4392 year: 2018 end-page: 4400 ident: bib13 article-title: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion publication-title: IEEE Trans. Ind. Electron. – volume: 20 start-page: 511 year: 2014 end-page: 526 ident: bib16 article-title: Statistical survey of the pathology, diagnosis and rehabilitation of ETICS in walls publication-title: J. Civ. Eng. Manag. – volume: 54 start-page: 508 year: 2015 end-page: 515 ident: bib20 article-title: Health monitoring of civil structures with integrated UAV and image processing system publication-title: Procedia Comput. Sci. – volume: 14248220 year: 2020 ident: bib34 article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique publication-title: Sens – volume: 33 year: 2019 ident: bib10 article-title: Robust pixel-level crack detection using deep fully convolutional neural networks publication-title: J. Comput. Civ. Eng. – volume: 15 start-page: 1087 year: 2015 end-page: 1101 ident: bib21 article-title: UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning publication-title: Nat. Hazards Earth Syst. Sci. – year: 2018 ident: bib47 article-title: Fully convolutional networks for automatic pavement crack segmentation – volume: 2 start-page: 1410 year: 2018 end-page: 1420 ident: bib46 article-title: Accelerating materials development via automation, machine learning, and high-performance computing publication-title: Joule – volume: 104 start-page: 129 year: 2019 end-page: 139 ident: bib35 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. ConStruct. – year: 2018 ident: bib19 article-title: Politechnika Koszalińska, wydawnictwo uczelniane, publication-title: Research and Modelling in Civil Engineering 2018 – volume: 33 start-page: 527 year: 2018 end-page: 544 ident: bib12 article-title: Unified vision-based methodology for simultaneous concrete defect detection and geolocalization publication-title: Comput. Aided Civ. Infrastruct. Eng. – volume: 32 start-page: 361 year: 2017 ident: 10.1016/j.jobe.2021.102913_bib25 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – volume: 147 start-page: 790 year: 2017 ident: 10.1016/j.jobe.2021.102913_bib17 article-title: Maintenance planning of facades in current buildings publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2017.04.195 – volume: 99 start-page: 52 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib28 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2018.11.028 – volume: 17 start-page: 3434 year: 2016 ident: 10.1016/j.jobe.2021.102913_bib42 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2016.2552248 – year: 2018 ident: 10.1016/j.jobe.2021.102913_bib7 article-title: Vision-based structural inspection using multiscale deep convolutional neural networks – volume: 15 start-page: 1087 year: 2015 ident: 10.1016/j.jobe.2021.102913_bib21 article-title: UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-15-1087-2015 – start-page: 6 year: 2017 ident: 10.1016/j.jobe.2021.102913_bib43 article-title: Deep concrete inspection using unmanned aerial vehicle towards CSSC database – year: 2018 ident: 10.1016/j.jobe.2021.102913_bib19 article-title: Politechnika Koszalińska, wydawnictwo uczelniane, – volume: 33 start-page: 1090 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib31 article-title: Automatic pixel-level crack detection and measurement using fully convolutional network publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12412 – year: 2019 ident: 10.1016/j.jobe.2021.102913_bib39 – ident: 10.1016/j.jobe.2021.102913_bib15 – start-page: 1788 year: 2014 ident: 10.1016/j.jobe.2021.102913_bib1 article-title: Masonry crack detection application of an unmanned aerial vehicle – volume: 54 start-page: 508 year: 2015 ident: 10.1016/j.jobe.2021.102913_bib20 article-title: Health monitoring of civil structures with integrated UAV and image processing system publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.06.058 – volume: 2014 year: 2014 ident: 10.1016/j.jobe.2021.102913_bib45 article-title: A versatile image annotation tool with application to computer-aided diagnosis publication-title: Sci. World J. doi: 10.1155/2014/286856 – volume: 2 start-page: 1410 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib46 article-title: Accelerating materials development via automation, machine learning, and high-performance computing publication-title: Joule doi: 10.1016/j.joule.2018.05.009 – volume: 17 start-page: 2718 year: 2016 ident: 10.1016/j.jobe.2021.102913_bib40 article-title: Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2015.2477675 – volume: 11 start-page: 3701 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib11 article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2865528 – ident: 10.1016/j.jobe.2021.102913_bib47 – volume: 34 year: 2020 ident: 10.1016/j.jobe.2021.102913_bib24 article-title: Deep learning–based enhancement of motion blurred UAV concrete crack images publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000907 – start-page: 2424 year: 2016 ident: 10.1016/j.jobe.2021.102913_bib37 article-title: Patch-based convolutional neural network for whole slide tissue image classification – year: 2012 ident: 10.1016/j.jobe.2021.102913_bib2 article-title: Unmanned aircraft systems for remote building inspection and monitoring – start-page: 3708 year: 2016 ident: 10.1016/j.jobe.2021.102913_bib41 article-title: Road crack detection using deep convolutional neural network publication-title: IEEE Int. Conf. Image Process. ICIP – volume: 18 start-page: 3017 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib18 article-title: Computer-aided approach for rapid post-event visual evaluation of a building façade publication-title: Sensors doi: 10.3390/s18093017 – year: 2015 ident: 10.1016/j.jobe.2021.102913_bib38 – volume: 33 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib27 article-title: Patch-based crack detection in black box images using convolutional neural networks publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000831 – volume: 1 year: 2020 ident: 10.1016/j.jobe.2021.102913_bib8 article-title: Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network publication-title: Comput. Aided Civ. Infrastruct. Eng. – volume: 28 start-page: 1498 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib14 article-title: DeepCrack: learning hierarchical convolutional features for crack detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2878966 – start-page: 26 year: 2020 ident: 10.1016/j.jobe.2021.102913_bib22 article-title: A deep learning application for detecting facade tile degradation – volume: 28 year: 2014 ident: 10.1016/j.jobe.2021.102913_bib4 article-title: Using orthophotography based on BuildingsLife software to inspect building facades publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000536 – year: 2018 ident: 10.1016/j.jobe.2021.102913_bib9 article-title: Towards automated post-earthquake inspections with deep learning-based condition-aware models – volume: 33 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib10 article-title: Robust pixel-level crack detection using deep fully convolutional neural networks publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000854 – volume: 19 start-page: 4251 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib29 article-title: Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network publication-title: Sensors doi: 10.3390/s19194251 – start-page: 9 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib6 article-title: Potentials of autonomous UAS and automated image analysis for structural health monitoring doi: 10.2749/nantes.2018.s24-119 – volume: 28 year: 2014 ident: 10.1016/j.jobe.2021.102913_bib3 article-title: Image-based automated 3D crack detection for post-disaster building assessment publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000334 – year: 2018 ident: 10.1016/j.jobe.2021.102913_bib32 article-title: Pixel-level crack detection using U-net – volume: 18 start-page: 3452 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib26 article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique publication-title: Sensors doi: 10.3390/s18103452 – volume: 48 start-page: 16 year: 2015 ident: 10.1016/j.jobe.2021.102913_bib5 article-title: Embedded image processing systems for automatic recognition of cracks using UAVs publication-title: IFAC-Pap. – volume: 14248220 issue: 20 year: 2020 ident: 10.1016/j.jobe.2021.102913_bib34 article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique publication-title: Sens – volume: 104 start-page: 129 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib35 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2019.04.005 – start-page: e2551 year: 2020 ident: 10.1016/j.jobe.2021.102913_bib33 article-title: A novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct. Contr. Health Monit. – volume: 234 start-page: 117367 year: 2020 ident: 10.1016/j.jobe.2021.102913_bib30 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117367 – volume: 338 start-page: 139 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib44 article-title: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.036 – volume: 33 start-page: 527 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib12 article-title: Unified vision-based methodology for simultaneous concrete defect detection and geolocalization publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12351 – volume: 34 start-page: 951 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib36 article-title: Concrete crack detection using context-aware deep semantic segmentation network publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12477 – volume: 108 start-page: 102959 year: 2019 ident: 10.1016/j.jobe.2021.102913_bib23 article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2019.102959 – volume: 65 start-page: 4392 year: 2018 ident: 10.1016/j.jobe.2021.102913_bib13 article-title: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2764844 – volume: 20 start-page: 511 year: 2014 ident: 10.1016/j.jobe.2021.102913_bib16 article-title: Statistical survey of the pathology, diagnosis and rehabilitation of ETICS in walls publication-title: J. Civ. Eng. Manag. doi: 10.3846/13923730.2013.801923 |
SSID | ssj0002953864 |
Score | 2.5036652 |
Snippet | Nowadays, unmanned aerial vehicles (UAVs) are frequently used for periodic visual inspection of building envelopes to detect unsafe conditions or vulnerable... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102913 |
SubjectTerms | Classification CNN Facade cracks Segmentation UAV-Images UNet |
Title | Automated crack segmentation in close-range building façade inspection images using deep learning techniques |
URI | https://dx.doi.org/10.1016/j.jobe.2021.102913 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEN4QuHgxGjXiX_bgzWxod9tCj4RIUCMXJeHW7C8BoRAKz-SD-GLO0C3RxHDw2HYnaWZnZ75p55sh5B6MwKVOBIzzjmaRkZKlLuZMODAGazoq2E2eex0mg1H0PI7HNdKruDBYVul9f-nTd97a32l5bbZW02nrjQN2wPjI8Ud_GyfXNrhIk7hOGt2nl8Fw_6mFp3Cqd42kUASrD7mnz5SVXjPk3XAIdtjHIA3F3yHqR9jpn5Bjjxdpt3ylU1Kz-RlZdLebJUBNa6heS_1BCztZeBJRTqc51fNlYdkaiQNU-cHX1MmvT2ksPC_plbh0Ae6koFj8PqHG2hX1UyQmdN_ctTgno_7je2_A_NwEpnmabJjUykDOqxQ3LlI6EFoGKrRwXG2ouNIi0YCTFOyG7QB-ksJppwCHKCMC8MOJuCD1fJnbS0IBPEkJWY5sxyoKDeRmiYYMI0nbXGNr9yYJK1Vl2jcVx9kW86yqHptlqN4M1ZuV6m2Sh73MqmypcXB1XO1A9sswMvD5B-Su_il3TY7wqqQb3pD6Zr21t4A7NurO29U3S4HXwg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOOjFaNSIzz14Mxva7QN6JERS5HEREm7NPgkIhdDym_wh_jFn6ZZoYjh47e4kzezszDftfDMIPYMR6Eh7DqG0JYgvGSORDijxNBiDki3u7CfPDUdhPPHfpsG0gjolF8aUVVrfX_j0vbe2TxpWm43NfN54p4AdTHyk5kd_00yurfkBZHtVVGv3-vHo8KmFRnCr942kjIipPqSWPlNUei0M74ZCsDN9DCLX-ztE_Qg73XN0ZvEibhevdIEqKr1Eq_YuXwPUVBKLLRMfOFOzlSURpXieYrFcZ4psDXEAczv4Gmv29cmkgvWCXmm2rsCdZNgUv8-wVGqD7RSJGT40d82u0KT7Ou7ExM5NIIJGYU6Y4BJyXs6p1D4XjieYw10F11W5nHLhhQJwEofTUC3AT8zTQnPAIVx6Dvjh0LtG1XSdqhuEATwxBlkOawbcdyXkZqGADCOMmlSY1u515JaqSoRtKm5mWyyTsnpskRj1Jka9SaHeOno5yGyKlhpHdwflCSS_DCMBn39E7vafck_oJB4PB8mgN-rfoVOzUlAP71E13-7UA2CQnD9aG_sGkLTarw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+crack+segmentation+in+close-range+building+fa%C3%A7ade+inspection+images+using+deep+learning+techniques&rft.jtitle=Journal+of+Building+Engineering&rft.au=Chen%2C+Kaiwen&rft.au=Reichard%2C+Georg&rft.au=Xu%2C+Xin&rft.au=Akanmu%2C+Abiola&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=2352-7102&rft.volume=43&rft_id=info:doi/10.1016%2Fj.jobe.2021.102913&rft.externalDocID=S2352710221007713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon |