Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification

The goal of Few-shot classification (FSL) is to identify unseen classes with very limited samples has attracted more and more attention. Usually, it is formulated as a metric learning problem. The core issue of few-shot classification is how to learn (1) consistent representations for images in both...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 12; p. 1
Main Authors Wang, Xixi, Wang, Xiao, Jiang, Bo, Luo, Bin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal of Few-shot classification (FSL) is to identify unseen classes with very limited samples has attracted more and more attention. Usually, it is formulated as a metric learning problem. The core issue of few-shot classification is how to learn (1) consistent representations for images in both support and query sets and (2) effective metric learning for images between support and query sets. In this paper, we show that the two challenges can be well modeled simultaneously via a unified Query-Support TransFormer (QSFormer) model. To be specific, the proposed QSFormer involves global query-support sample Transformer (sampleFormer) branch and local patch Transformer (patchFormer) learning branch. sampleFormer aims to capture the dependence of samples in support and query sets for image representation. It adopts the Encoder, QS-Decoder and Cross-Attention to respectively model the Support, Query (image) representation and Metric learning for few-shot classification task. Also, as a complementary to global learning branch, we adopt a local patch Transformer to extract structural representation for each image sample by capturing the long-range dependence of local image patches. In addition, we introduce a novel Cross-scale Interactive Feature Extractor (CIFE) to extract and fuse different scale CNN features as an effective backbone module for the proposed few-shot learning method. We integrate these into a unified framework and train it in an end-to-end way. A large number of experiments are conducted on four popular datasets to validate the superiority and effectiveness of the proposed QSFormer.
AbstractList The goal of Few-shot classification (FSL) is to identify unseen classes with very limited samples has attracted more and more attention. Usually, it is formulated as a metric learning problem. The core issue of few-shot classification is how to learn (1) consistent representations for images in both support and query sets and (2) effective metric learning for images between support and query sets. In this paper, we show that the two challenges can be well modeled simultaneously via a unified Query-Support TransFormer (QSFormer) model. To be specific, the proposed QSFormer involves global query-support sample Transformer (sampleFormer) branch and local patch Transformer (patchFormer) learning branch. sampleFormer aims to capture the dependence of samples in support and query sets for image representation. It adopts the Encoder, QS-Decoder and Cross-Attention to respectively model the Support, Query (image) representation and Metric learning for few-shot classification task. Also, as a complementary to global learning branch, we adopt a local patch Transformer to extract structural representation for each image sample by capturing the long-range dependence of local image patches. In addition, we introduce a novel Cross-scale Interactive Feature Extractor (CIFE) to extract and fuse different scale CNN features as an effective backbone module for the proposed few-shot learning method. We integrate these into a unified framework and train it in an end-to-end way. A large number of experiments are conducted on four popular datasets to validate the superiority and effectiveness of the proposed QSFormer.
Author Jiang, Bo
Wang, Xixi
Luo, Bin
Wang, Xiao
Author_xml – sequence: 1
  givenname: Xixi
  orcidid: 0000-0001-8510-0964
  surname: Wang
  fullname: Wang, Xixi
  organization: School of Computer Science and Technology, Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei, China
– sequence: 2
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: School of Computer Science and Technology, Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-6238-1596
  surname: Jiang
  fullname: Jiang, Bo
  organization: School of Computer Science and Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0002-1414-3307
  surname: Luo
  fullname: Luo, Bin
  organization: School of Computer Science and Technology, Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei, China
BookMark eNp9kF9LwzAUxYMouE2_gPhQ8LkzSZsm8U2KU2Eiss7XkLW32rElNUmRfXu7P8jwwadz4Z7fuZczRKfGGkDoiuAxIVjeFvnsvRhTTJNxQgXlnJ-gAWFMxJRidtrPmJFYUMLO0dD7JcYkFSkfoHIC3_Hs04ZoCtqZxnxELwDBR4XTxtfWrcHdRXPT1A1U0VsHbhPPura1LhxbfNRr9JuVr7T3PVLq0Fhzgc5qvfJwedARmk8eivwpnr4-Puf307ikMguxTgipMkGZhEVCKiF5RRPGgS-Ai1SU1WK7rIUkiag0hUoTjGtKM5nVDEtIRuhmn9s6-9WBD2ppO2f6k4oKKdOM8Z4dIbF3lc5676BWZRN2fwanm5UiWG0rVbtK1bZSdai0R-kftHXNWrvN_9D1HmoA4AggaYo5TX4ArCSE_w
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_neunet_2024_107083
crossref_primary_10_1109_TCSVT_2024_3480279
crossref_primary_10_1007_s10489_025_06361_0
crossref_primary_10_1109_TCSVT_2024_3456127
crossref_primary_10_1016_j_inffus_2024_102611
crossref_primary_10_1109_TCSVT_2024_3432753
crossref_primary_10_1109_TGRS_2024_3407812
crossref_primary_10_1007_s11263_024_02284_4
crossref_primary_10_1109_ACCESS_2024_3406018
crossref_primary_10_1109_TCSVT_2024_3484530
crossref_primary_10_1016_j_patcog_2024_110736
crossref_primary_10_1109_TCSVT_2024_3486455
crossref_primary_10_1109_TCSVT_2024_3499937
crossref_primary_10_1109_TCSVT_2024_3432596
crossref_primary_10_1109_TCSVT_2024_3435003
crossref_primary_10_1109_TMM_2024_3453055
crossref_primary_10_1109_TMM_2023_3283132
crossref_primary_10_1007_s00371_025_03804_0
crossref_primary_10_1016_j_patrec_2023_12_023
crossref_primary_10_3390_electronics14010130
crossref_primary_10_1007_s00138_024_01529_z
crossref_primary_10_1016_j_eswa_2024_124811
crossref_primary_10_1016_j_neucom_2025_130056
crossref_primary_10_1007_s00371_024_03650_6
crossref_primary_10_1109_TIM_2024_3381270
crossref_primary_10_1007_s11263_024_02175_8
crossref_primary_10_1016_j_compeleceng_2024_110004
crossref_primary_10_1016_j_neunet_2025_107339
crossref_primary_10_1109_LSENS_2024_3500785
crossref_primary_10_1109_ACCESS_2024_3501475
Cites_doi 10.1109/TGRS.2021.3116349
10.3390/rs15020331
10.1109/TCSVT.2021.3076523
10.1109/CVPR.2019.00011
10.1007/978-3-7908-2604-3_16
10.1109/CVPR.2019.01091
10.1007/s11263-015-0816-y
10.1109/CVPR.2018.00131
10.1109/CVPR.2018.00755
10.1007/978-3-030-58452-8_13
10.1109/CVPR42600.2020.00883
10.1609/aaai.v35i10.17047
10.1109/tcsvt.2023.3241651
10.1109/tmm.2022.3150169
10.1109/TCSVT.2022.3202563
10.1109/CVPR.2019.00743
10.1109/tpami.2022.3174072
10.1109/CVPR42600.2020.01222
10.1109/TIP.2022.3148867
10.1109/ICCV.2019.00676
10.1007/978-3-030-87193-2_4
10.1109/TCSVT.2020.2995754
10.1109/ICCV48922.2021.00893
10.1007/978-3-030-87589-3_28
10.1109/TGRS.2023.3271218
10.1109/CVPR52688.2022.00525
10.1109/CVPR52688.2022.00781
10.1109/CVPR46437.2021.00162
10.1016/j.neucom.2021.09.070
10.1109/ICCV.2019.00042
10.1109/CVPR.2019.00948
10.1016/j.patrec.2022.03.022
10.1016/j.neucom.2022.02.073
10.1109/CVPR.2019.01199
10.1109/TCSVT.2021.3132912
10.1109/TGRS.2022.3147198
10.1109/ICCV48922.2021.01474
10.1109/CVPR46437.2021.00792
10.1002/sapm1941201224
10.1109/CVPR.2019.00844
10.1109/LSP.2022.3155991
10.1109/CVPR.2019.00049
10.1109/CVPR46437.2021.01621
10.1109/ICCV48922.2021.00290
10.1016/j.neucom.2021.11.074
10.1109/WACV51458.2022.00235
10.1109/CVPR52688.2022.00891
10.1109/TMM.2022.3141267
10.1109/ICCV48922.2021.00042
10.1109/TCSVT.2022.3181490
10.1609/aaai.v34i07.6916
10.1109/CVPR52688.2022.01415
10.1007/978-3-031-20044-1_19
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3282777
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2023_3282777
10144072
Genre orig-research
GrantInformation_xml – fundername: Anhui Provincial Key Research and Development Program
  grantid: 2022i01020014
– fundername: National Natural Science Foundation of China
  grantid: 62076004; 62102205
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Anhui Province
  grantid: 2108085Y23
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-a311d68259eb31d897d2357e7be7848cdb6825f89138da2eda100f22696f509e3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 07:04:34 EDT 2025
Tue Jul 01 00:41:22 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:57:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-a311d68259eb31d897d2357e7be7848cdb6825f89138da2eda100f22696f509e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1414-3307
0000-0002-6238-1596
0000-0001-8510-0964
0000-0001-6117-6745
PQID 2899465791
PQPubID 85433
PageCount 1
ParticipantIDs ieee_primary_10144072
proquest_journals_2899465791
crossref_citationtrail_10_1109_TCSVT_2023_3282777
crossref_primary_10_1109_TCSVT_2023_3282777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Rusu (ref7)
Chen (ref32)
Hou (ref42); 32
ref57
ref12
Liao (ref56); 34
ref58
ref53
ref52
Ravi (ref83)
ref11
ref55
ref10
ref54
Snell (ref28); 30
Luketina (ref14)
Xu (ref90); 34
Wah (ref81) 2011
Koch (ref27); 2
ref51
ref50
Zhou (ref89) 2018
Finn (ref88)
ref46
ref85
ref44
ref43
Raghu (ref17) 2019
Rajeswaran (ref21); 32
Xiao (ref48) 2022
Zhang (ref86)
Munkhdalai (ref19)
Park (ref22); 32
ref8
Dosovitskiy (ref35) 2020
ref9
ref4
ref3
ref6
ref5
ref82
Santoro (ref15)
ref40
ref84
Ye (ref16) 2018
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
Metz (ref18)
ref33
ref77
Vaswani (ref49); 30
ref76
Ren (ref80)
ref2
ref1
Zhmoginov (ref41) 2022
Oreshkin (ref29); 31
ref39
ref38
Li (ref23); 32
Vinyals (ref13); 29
ref71
Van der Maaten (ref91) 2008; 9
ref70
ref73
Liu (ref59) 2021
ref68
Antoniou (ref24)
ref25
ref69
ref20
ref64
Liu (ref45)
Doersch (ref47); 33
ref63
ref66
Liu (ref65)
van den Oord (ref72) 2018
Park (ref87)
ref60
Flennerhag (ref26)
ref62
ref61
Fei (ref67)
References_xml – ident: ref1
  doi: 10.1109/TGRS.2021.3116349
– year: 2019
  ident: ref17
  article-title: Rapid learning or feature reuse? Towards understanding the effectiveness of MAML
  publication-title: arXiv:1909.09157
– volume: 34
  start-page: 1992
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref56
  article-title: TransMatcher: Deep image matching through transformers for generalizable person re-identification
– volume: 29
  start-page: 3637
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Matching networks for one shot learning
– ident: ref3
  doi: 10.3390/rs15020331
– ident: ref10
  doi: 10.1109/TCSVT.2021.3076523
– ident: ref79
  doi: 10.1109/CVPR.2019.00011
– ident: ref84
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref78
  doi: 10.1109/CVPR.2019.01091
– ident: ref82
  doi: 10.1007/s11263-015-0816-y
– year: 2022
  ident: ref48
  article-title: Semantic cross attention for few-shot learning
  publication-title: arXiv:2210.06311
– volume: 30
  start-page: 6000
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Attention is all you need
– ident: ref30
  doi: 10.1109/CVPR.2018.00131
– volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref65
  article-title: A universal representation transformer layer for few-shot image classification
– year: 2018
  ident: ref72
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv:1807.03748
– start-page: 1126
  volume-title: Proc. IEEE/CVF Int. Conf. Mach. Learn.
  ident: ref88
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– start-page: 3664
  volume-title: Proc. IEEE/CVF Int. Conf. Mach. Learn.
  ident: ref19
  article-title: Rapid adaptation with conditionally shifted neurons
– ident: ref20
  doi: 10.1109/CVPR.2018.00755
– volume: 33
  start-page: 21981
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref47
  article-title: CrossTransformers: Spatially-aware few-shot transfer
– ident: ref52
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref64
  doi: 10.1109/CVPR42600.2020.00883
– ident: ref73
  doi: 10.1609/aaai.v35i10.17047
– ident: ref12
  doi: 10.1109/tcsvt.2023.3241651
– start-page: 2952
  volume-title: Proc. IEEE/CVF Int. Conf. Mach. Learn.
  ident: ref14
  article-title: Scalable gradient-based tuning of continuous regularization hyperparameters
– ident: ref51
  doi: 10.1109/tmm.2022.3150169
– ident: ref54
  doi: 10.1109/TCSVT.2022.3202563
– volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref24
  article-title: How to train your MAML
– volume: 32
  start-page: 113
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Meta-learning with implicit gradients
– ident: ref31
  doi: 10.1109/CVPR.2019.00743
– ident: ref4
  doi: 10.1109/tpami.2022.3174072
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref83
  article-title: Optimization as a model for few-shot learning
– start-page: 7510
  volume-title: Proc. IEEE/CVF Int. Conf. Mach. Learn.
  ident: ref87
  article-title: Meta variance transfer: Learning to augment from the others
– ident: ref9
  doi: 10.1109/CVPR42600.2020.01222
– ident: ref61
  doi: 10.1109/TIP.2022.3148867
– year: 2018
  ident: ref16
  article-title: Few-shot learning via embedding adaptation with set-to-set functions
  publication-title: arXiv:1812.03664
– start-page: 1
  volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref18
  article-title: Meta-learning update rules for unsupervised representation learning
– ident: ref46
  doi: 10.1109/ICCV.2019.00676
– ident: ref62
  doi: 10.1007/978-3-030-87193-2_4
– volume: 32
  start-page: 3314
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Meta-curvature
– ident: ref43
  doi: 10.1109/TCSVT.2020.2995754
– ident: ref33
  doi: 10.1109/ICCV48922.2021.00893
– ident: ref63
  doi: 10.1007/978-3-030-87589-3_28
– ident: ref2
  doi: 10.1109/TGRS.2023.3271218
– start-page: 1
  volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref67
  article-title: MELR: Meta-learning via modeling episode-level relationships for few-shot learning
– ident: ref5
  doi: 10.1109/CVPR52688.2022.00525
– volume: 31
  start-page: 719
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: TADAM: Task dependent adaptive metric for improved few-shot learning
– volume: 2
  start-page: 8
  volume-title: Proc. ICML Deep Learn. Workshop
  ident: ref27
  article-title: Siamese neural networks for one-shot image recognition
– ident: ref44
  doi: 10.1109/CVPR52688.2022.00781
– ident: ref50
  doi: 10.1109/CVPR46437.2021.00162
– ident: ref74
  doi: 10.1016/j.neucom.2021.09.070
– volume: 34
  start-page: 28522
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref90
  article-title: ViTAE: Vision transformer advanced by exploring intrinsic inductive bias
– ident: ref75
  doi: 10.1109/ICCV.2019.00042
– ident: ref77
  doi: 10.1109/CVPR.2019.00948
– ident: ref6
  doi: 10.1016/j.patrec.2022.03.022
– volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref26
  article-title: Meta-learning with warped gradient descent
– year: 2022
  ident: ref41
  article-title: HyperTransformer: Model generation for supervised and semi-supervised few-shot learning
  publication-title: arXiv:2201.04182
– volume: 9
  start-page: 1
  issue: 11
  year: 2008
  ident: ref91
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 10276
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Learning to self-train for semi-supervised few-shot classification
– volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref86
  article-title: IEPT: Instance-level and episode-level pretext tasks for few-shot learning
– ident: ref85
  doi: 10.1016/j.neucom.2022.02.073
– start-page: 6907
  volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref7
  article-title: Meta-learning with latent embedding optimization
– ident: ref8
  doi: 10.1109/CVPR.2019.01199
– ident: ref34
  doi: 10.1109/TCSVT.2021.3132912
– ident: ref70
  doi: 10.1109/TGRS.2022.3147198
– year: 2020
  ident: ref35
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref58
  doi: 10.1109/ICCV48922.2021.01474
– ident: ref11
  doi: 10.1109/CVPR46437.2021.00792
– start-page: 1842
  volume-title: Proc. IEEE/CVF Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Meta-learning with memory-augmented neural networks
– ident: ref71
  doi: 10.1002/sapm1941201224
– ident: ref25
  doi: 10.1109/CVPR.2019.00844
– ident: ref66
  doi: 10.1109/LSP.2022.3155991
– ident: ref76
  doi: 10.1109/CVPR.2019.00049
– year: 2021
  ident: ref59
  article-title: Query2Label: A simple transformer way to multi-label classification
  publication-title: arXiv:2107.10834
– ident: ref60
  doi: 10.1109/CVPR46437.2021.01621
– ident: ref53
  doi: 10.1109/ICCV48922.2021.00290
– ident: ref68
  doi: 10.1016/j.neucom.2021.11.074
– volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref32
  article-title: A closer look at few-shot classification
– ident: ref55
  doi: 10.1109/WACV51458.2022.00235
– ident: ref37
  doi: 10.1109/CVPR52688.2022.00891
– start-page: 1
  volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref80
  article-title: Meta-learning for semi-supervised few-shot classification
– volume: 30
  start-page: 4080
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Prototypical networks for few-shot learning
– ident: ref57
  doi: 10.1109/TMM.2022.3141267
– volume-title: The Caltech-UCSD birds-200–2011 dataset
  year: 2011
  ident: ref81
– ident: ref36
  doi: 10.1109/ICCV48922.2021.00042
– ident: ref40
  doi: 10.1109/TCSVT.2022.3181490
– volume: 32
  start-page: 4003
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Cross attention network for few-shot classification
– ident: ref69
  doi: 10.1609/aaai.v34i07.6916
– ident: ref39
  doi: 10.1109/CVPR52688.2022.01415
– ident: ref38
  doi: 10.1007/978-3-031-20044-1_19
– volume-title: Proc. IEEE/CVF Int. Conf. Learn. Represent.
  ident: ref45
  article-title: Learning to propagate labels: Transductive propagation network for few-shot learning
– year: 2018
  ident: ref89
  article-title: Deep meta-learning: Learning to learn in the concept space
  publication-title: arXiv:1802.03596
SSID ssj0014847
Score 2.6302333
Snippet The goal of Few-shot classification (FSL) is to identify unseen classes with very limited samples has attracted more and more attention. Usually, it is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Computational modeling
Deep Learning
Feature extraction
Few-Shot Learning
Image representation
Learning
Measurement
Metric Learning
Queries
Representation learning
Representations
Task analysis
Transformer
Transformers
Title Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification
URI https://ieeexplore.ieee.org/document/10144072
https://www.proquest.com/docview/2899465791
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg7eJF27dU3jTYZjCBvIOtmttOmrgrLJ1iL61_te2o6pKJ5aaBIKL02-r3nv-xi7JJMiXBdB2FJJ4cY4jf1IaRG5Kbgd24tkl6qRR2NvOHXvZr1ZWaxuamEAwCSfgUW35iw_WeicfpW1yVeWBL1qrIbMrSjWWh8ZuL5xE0O84AgfN7KqQsZW7aA_eQgsMgq3ukgxpJRfdiFjq_JjLTYbzGCPjatXK_JKnq08iy398U218d_vvs92S6jJb4q5ccC2YH7IdjYECI-YHsCbmDwtMl7qrD7yEUC24kGFZ2F5zRGXpohU-X0Oy3dBPqCI2TebrDhe-XosY7RJKUgm6g02HdwG_aEobReE7igvE1HXcRIPmaNCou0kvpIJaeKAjEH6rq-TmB6mdL7pJ1EHksix7RRhnPJShB_QPWb1-WIOJ4wjXZKKRPPSXoS8U8fa6SS4I8ZSI41JZZM5VRhCXWqSkzXGS2i4ia1CE7qQQheWoWuyq3Wf10KR48_WDYrFRssiDE3WqsIdll_tKiTy6Xo9qZzTX7qdsW0avchnabF6tszhHFFJFl-Y2fgJcmjcxQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BTttAEB1Remg5QFtABGi7h_aE1tiO4_UicUC0USgECWEqbq69HoMESlDiCMG_8Ct8GzNrO0pb0RtST7bkXVveGe-8552dB_CFRYpoXkTpKq1kkJEbR6k2Mg0KDHw3TFWbdyP3j8PeWfDjvHM-Bw_TvTCIaJPP0OFTu5afD82Ef5Vts64sF_SqcygP8e6WGNp49-AbmfOr73e_x_s9WYsISOPrsJRp2_PykHiQJtro5ZFWOVd4QZWhioLI5BlfLHi1LspTH_PUc92CQIkOCwqm2Kb7voLXBDQ6frU9bLpIEURWv4wQiicjCp3NnhxXb8f7pz9jh6XJnTaRGqXUb3HPCrn8NfvbkNZdgsdmMKpMlitnUmaOuf-jTuR_O1rvYLEG02Kv8v73MIeDD7AwU2JxGUwXb-Xp5bAUdSXZC9FHLMcibhA7jnYEIe-CsLg4meDoTrLSKbGS2SZjQUcxvZeVEuUkK-vXK3D2Im-5CvOD4QDXQBAhVJrLAhadlJi1yYzn5xTzM2WIqBWqBV5j9sTUVddZ_OM6sezL1Yl1lYRdJaldpQVb0z43Vc2Rf7ZeYdvPtKzM3oLNxr2Sel4aJ0yvg7CjtLf-TLfP8KYX94-So4Pjww14y0-qsnc2Yb4cTfAjYbAy-2S_BAG_XtqZngAT-zim
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Shot+Learning+Meets+Transformer%3A+Unified+Query-Support+Transformers+for+Few-Shot+Classification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Wang%2C+Xixi&rft.au=Wang%2C+Xiao&rft.au=Jiang%2C+Bo&rft.au=Luo%2C+Bin&rft.date=2023-12-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=12&rft.spage=7789&rft.epage=7802&rft_id=info:doi/10.1109%2FTCSVT.2023.3282777&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2023_3282777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon