Understanding and Mitigating Overfitting in Prompt Tuning for Vision-Language Models

Pretrained vision-language models (VLMs) such as CLIP have shown impressive generalization capability in downstream vision tasks with appropriate text prompts. Instead of designing prompts manually, Context Optimization (CoOp) has been recently proposed to learn continuous prompts using task-specifi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 9; p. 1
Main Authors Ma, Chengcheng, Liu, Yang, Deng, Jiankang, Xie, Lingxi, Dong, Weiming, Xu, Changsheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pretrained vision-language models (VLMs) such as CLIP have shown impressive generalization capability in downstream vision tasks with appropriate text prompts. Instead of designing prompts manually, Context Optimization (CoOp) has been recently proposed to learn continuous prompts using task-specific training data. Despite the performance improvements on downstream tasks, several studies have reported that CoOp suffers from the overfitting issue in two aspects: (i) the test accuracy on base classes first improves and then worsens during training;(ii) the test accuracy on novel classes keeps decreasing. However, none of the existing studies can understand and mitigate such overfitting problems. In this study, we first explore the cause of overfitting by analyzing the gradient flow. Comparative experiments reveal that CoOp favors generalizable and spurious features in the early and later training stages, respectively, leading to the non-overfitting and overfitting phenomena. Given those observations, we propose Subspace Prompt Tuning ( Sub PT) to project the gradients in back-propagation onto the low-rank subspace spanned by the early-stage gradient flow eigenvectors during the entire training process and successfully eliminate the overfitting problem. In addition, we equip CoOp with a Novel Feature Learner (NFL) to enhance the generalization ability of the learned prompts onto novel categories beyond the training set, needless of image training data. Extensive experiments on 11 classification datasets demonstrate that Sub PT+NFL consistently boost the performance of CoOp and outperform the state-of-the-art CoCoOp approach. Experiments on more challenging vision downstream tasks, including open-vocabulary object detection and zero-shot semantic segmentation, also verify the effectiveness of the proposed method. Codes can be found at https://tinyurl.com/mpe64f89.
AbstractList Pretrained vision-language models (VLMs) such as CLIP have shown impressive generalization capability in downstream vision tasks with appropriate text prompts. Instead of designing prompts manually, Context Optimization (CoOp) has been recently proposed to learn continuous prompts using task-specific training data. Despite the performance improvements on downstream tasks, several studies have reported that CoOp suffers from the overfitting issue in two aspects: (i) the test accuracy on base classes first improves and then worsens during training; (ii) the test accuracy on novel classes keeps decreasing. However, none of the existing studies can understand and mitigate such overfitting problems. In this study, we first explore the cause of overfitting by analyzing the gradient flow. Comparative experiments reveal that CoOp favors generalizable and spurious features in the early and later training stages, respectively, leading to the non-overfitting and overfitting phenomena. Given those observations, we propose Subspace Prompt Tuning (Sub PT) to project the gradients in back-propagation onto the low-rank subspace spanned by the early-stage gradient flow eigenvectors during the entire training process and successfully eliminate the overfitting problem. In addition, we equip CoOp with a Novel Feature Learner (NFL) to enhance the generalization ability of the learned prompts onto novel categories beyond the training set, needless of image training data. Extensive experiments on 11 classification datasets demonstrate that Sub PT+NFL consistently boost the performance of CoOp and outperform the state-of-the-art CoCoOp approach. Experiments on more challenging vision downstream tasks, including open-vocabulary object detection and zero-shot semantic segmentation, also verify the effectiveness of the proposed method. Codes can be found at https://tinyurl.com/mpe64f89 .
Author Dong, Weiming
Ma, Chengcheng
Liu, Yang
Xie, Lingxi
Deng, Jiankang
Xu, Changsheng
Author_xml – sequence: 1
  givenname: Chengcheng
  orcidid: 0000-0002-0502-3960
  surname: Ma
  fullname: Ma, Chengcheng
  organization: National Lab of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Alibaba DAMO Academy, Hangzhou, China
– sequence: 3
  givenname: Jiankang
  orcidid: 0000-0002-3709-6216
  surname: Deng
  fullname: Deng, Jiankang
  organization: Huawei Inc, Shenzhen, China
– sequence: 4
  givenname: Lingxi
  orcidid: 0000-0003-4831-9451
  surname: Xie
  fullname: Xie, Lingxi
  organization: Huawei Inc, Shenzhen, China
– sequence: 5
  givenname: Weiming
  orcidid: 0000-0001-6502-145X
  surname: Dong
  fullname: Dong, Weiming
  organization: National Lab of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China
– sequence: 6
  givenname: Changsheng
  orcidid: 0000-0001-8343-9665
  surname: Xu
  fullname: Xu, Changsheng
  organization: National Lab of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China
BookMark eNp9kE1LAzEQhoNUsK3-AfGw4HlrMptkd49S_IKWCm57XdLdZElpk5qkgv_ebNuDePD0zgzzzMc7QgNjjUToluAJIbh8qKYfq2oCGLJJBpSxgl6gIYmaAmA2iDFmJC2AsCs08n6DMaEFzYeoWppWOh-EabXpkijJXAfdidCniy_plA7HWJvk3dndPiTVwfQFZV2y0l5bk86E6Q6ik8nctnLrr9GlElsvb846Rsvnp2r6ms4WL2_Tx1naQMlDKnBDJVdrrjLSkrxkgrYCIM_WLTRlnrUFESxrVakw8KbJIWck3t1ALDGQ62yM7k9z985-HqQP9cYenIkrayg4oTwvizJ2FaeuxlnvnVR1o0P8z5rghN7WBNe9h_XRw7r3sD57GFH4g-6d3gn3_T90d4K0lPIXgCnjnGY_Y6iAGw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3401451
crossref_primary_10_48084_etasr_8455
crossref_primary_10_1109_TCSVT_2024_3454227
crossref_primary_10_1109_TCSVT_2023_3343495
crossref_primary_10_1109_TMM_2024_3521702
crossref_primary_10_1109_TMM_2024_3413318
crossref_primary_10_3390_math12213359
crossref_primary_10_1109_TCSVT_2024_3462100
crossref_primary_10_1016_j_knosys_2024_111790
crossref_primary_10_1007_s00530_024_01373_1
crossref_primary_10_1109_TCSVT_2024_3489024
crossref_primary_10_1109_TCSVT_2024_3366935
crossref_primary_10_1016_j_neucom_2024_128421
crossref_primary_10_1109_TCSVT_2024_3383914
crossref_primary_10_1016_j_knosys_2024_112358
crossref_primary_10_1016_j_neunet_2025_107168
crossref_primary_10_1007_s10462_024_10915_y
crossref_primary_10_1109_TCSVT_2024_3475510
crossref_primary_10_1016_j_patcog_2023_110096
crossref_primary_10_1109_TCSVT_2023_3327605
crossref_primary_10_1093_jamia_ocae325
crossref_primary_10_1109_TIM_2024_3485403
crossref_primary_10_1109_TPAMI_2023_3346405
Cites_doi 10.1109/tpami.2022.3195549
10.1109/CVPR52688.2022.01631
10.1007/s13373-017-0101-1
10.1109/TCSVT.2020.3038720
10.18653/v1/2021.acllong.353
10.1109/CVPR.2009.5206848
10.1007/s11263-022-01653-1
10.1109/CVPR.2004.383
10.1109/CVPR46437.2021.01501
10.1109/TCSVT.2021.3137430
10.1109/CVPR52688.2022.01503
10.1109/TCSVT.2022.3152615
10.18653/v1/2022.emnlp-main.763
10.1109/CVPR52688.2022.00514
10.1109/tkde.2022.3178128
10.1109/TCSVT.2021.3088545
10.1109/CVPR52688.2022.01512
10.1109/CVPR52688.2022.01759
10.1109/ICCV.2017.322
10.1109/CVPR.2010.5539970
10.48550/ARXIV.1212.0402
10.1109/TIP.2022.3169693
10.1109/CVPR.2014.461
10.1109/ICVGIP.2008.47
10.1109/JSTARS.2019.2918242
10.1007/978-3-031-19827-4_41
10.18653/v1/2021.emnlp-main.243
10.1109/TCSVT.2020.2995754
10.1109/TPAMI.2022.3178101
10.1109/CVPR.2019.00550
10.1109/ICCV48922.2021.00823
10.1109/TCSVT.2020.3039522
10.1109/TCSVT.2019.2947482
10.1007/978-3-319-10599-4_29
10.1162/neco.1996.8.7.1341
10.1109/CVPR.2012.6248092
10.1109/ICCVW.2013.77
10.1109/CVPR.2016.90
10.1109/TPAMI.2020.2981604
10.1109/CVPR.2018.00132
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3245584
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2023_3245584
10045664
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61832016; U20B2070
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-a0c4e6fb6f31d1795a4da2273bd2c973d81a53df9f026cc72751014c2df952eb3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 08:20:03 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 00:41:20 EDT 2025
Wed Aug 27 02:21:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-a0c4e6fb6f31d1795a4da2273bd2c973d81a53df9f026cc72751014c2df952eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8343-9665
0000-0001-6502-145X
0000-0002-3709-6216
0000-0003-4831-9451
0000-0002-0502-3960
PQID 2861467989
PQPubID 85433
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2023_3245584
proquest_journals_2861467989
ieee_primary_10045664
crossref_primary_10_1109_TCSVT_2023_3245584
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref14
ref52
ref55
ref54
Feng (ref62) 2022
ref17
ref16
ref18
Koh (ref31)
Liu (ref42); 30
Yao (ref28) 2021
ref51
ref50
Xing (ref24) 2022
ref45
Tsimpoukelli (ref19); 34
ref48
ref41
ref49
ref8
ref7
ref9
ref4
Lee (ref46); 32
ref6
ref5
Bommasani (ref3) 2021
ref40
Maji (ref53) 2013
ref35
ref34
ref37
Wang (ref59); 32
ref33
Larsen (ref47)
ref32
Radford (ref1)
Recht (ref58)
ref39
Liutkus (ref44)
ref38
Cheng (ref67); 34
Yu (ref26); 33
Zhang (ref30) 2022
Zhang (ref27) 2021
Xu (ref65) 2021
Wang (ref20)
ref23
ref25
ref64
ref63
ref22
ref66
Zhu (ref10) 2022
ref29
Pezeshki (ref13); 34
ref60
Arbel (ref43); 32
Derakhshani (ref11) 2022
Liang (ref21) 2022
Yang (ref36)
ref61
Jia (ref2)
References_xml – ident: ref34
  doi: 10.1109/tpami.2022.3195549
– ident: ref9
  doi: 10.1109/CVPR52688.2022.01631
– ident: ref41
  doi: 10.1007/s13373-017-0101-1
– volume: 34
  start-page: 1256
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Gradient starvation: A learning proclivity in neural networks
– year: 2022
  ident: ref21
  article-title: Local-global context aware transformer for language-guided video segmentation
  publication-title: arXiv:2203.09773
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref47
  article-title: How many degrees of freedom do we need to train deep networks: A loss landscape perspective
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref59
  article-title: Learning robust global representations by penalizing local predictive power
– year: 2022
  ident: ref10
  article-title: Prompt-aligned gradient for prompt tuning
  publication-title: arXiv:2205.14865
– ident: ref15
  doi: 10.1109/TCSVT.2020.3038720
– ident: ref7
  doi: 10.18653/v1/2021.acllong.353
– ident: ref48
  doi: 10.1109/CVPR.2009.5206848
– start-page: 5389
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref58
  article-title: Do ImageNet classifiers generalize to ImageNet?
– start-page: 4904
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref2
  article-title: Scaling up visual and vision-language representation learning with noisy text supervision
– ident: ref8
  doi: 10.1007/s11263-022-01653-1
– year: 2021
  ident: ref28
  article-title: CPT: Colorful prompt tuning for pre-trained vision-language models
  publication-title: arXiv:2109.11797
– volume: 34
  start-page: 17864
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref67
  article-title: Per-pixel classification is not all you need for semantic segmentation
– year: 2022
  ident: ref24
  article-title: Class-aware visual prompt tuning for vision-language pre-trained model
  publication-title: arXiv:2208.08340
– ident: ref40
  doi: 10.1109/CVPR.2004.383
– ident: ref60
  doi: 10.1109/CVPR46437.2021.01501
– ident: ref4
  doi: 10.1109/TCSVT.2021.3137430
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Stein variational gradient descent as gradient flow
– year: 2022
  ident: ref62
  article-title: PromptDet: Expand your detector vocabulary with uncurated images
  publication-title: arXiv:2203.16513
– ident: ref22
  doi: 10.1109/CVPR52688.2022.01503
– ident: ref35
  doi: 10.1109/TCSVT.2022.3152615
– year: 2013
  ident: ref53
  article-title: Fine-grained visual classification of aircraft
  publication-title: arXiv:1306.5151
– ident: ref25
  doi: 10.18653/v1/2022.emnlp-main.763
– ident: ref23
  doi: 10.1109/CVPR52688.2022.00514
– year: 2021
  ident: ref27
  article-title: Tip-adapter: Training-free CLIP-adapter for better vision-language modeling
  publication-title: arXiv:2111.03930
– volume: 32
  start-page: 8572
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Wide neural networks of any depth evolve as linear models under gradient descent
– year: 2022
  ident: ref11
  article-title: Variational prompt tuning improves generalization of vision-language models
  publication-title: arXiv:2210.02390
– ident: ref33
  doi: 10.1109/tkde.2022.3178128
– ident: ref38
  doi: 10.1109/TCSVT.2021.3088545
– year: 2021
  ident: ref65
  article-title: A simple baseline for open-vocabulary semantic segmentation with pre-trained vision-language model
  publication-title: arXiv:2112.14757
– start-page: 8748
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref1
  article-title: Learning transferable visual models from natural language supervision
– volume: 33
  start-page: 5824
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Gradient surgery for multi-task learning
– ident: ref18
  doi: 10.1109/CVPR52688.2022.01512
– start-page: 5637
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref31
  article-title: WILDS: A benchmark of in-the-wild distribution shifts
– ident: ref17
  doi: 10.1109/CVPR52688.2022.01759
– year: 2022
  ident: ref30
  article-title: Neural prompt search
  publication-title: arXiv:2206.04673
– ident: ref64
  doi: 10.1109/ICCV.2017.322
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Maximum mean discrepancy gradient flow
– ident: ref54
  doi: 10.1109/CVPR.2010.5539970
– ident: ref57
  doi: 10.48550/ARXIV.1212.0402
– ident: ref16
  doi: 10.1109/TIP.2022.3169693
– volume: 34
  start-page: 200
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Multimodal few-shot learning with frozen language models
– ident: ref55
  doi: 10.1109/CVPR.2014.461
– ident: ref51
  doi: 10.1109/ICVGIP.2008.47
– ident: ref56
  doi: 10.1109/JSTARS.2019.2918242
– ident: ref29
  doi: 10.1007/978-3-031-19827-4_41
– ident: ref6
  doi: 10.18653/v1/2021.emnlp-main.243
– ident: ref37
  doi: 10.1109/TCSVT.2020.2995754
– ident: ref45
  doi: 10.1109/TPAMI.2022.3178101
– ident: ref63
  doi: 10.1109/CVPR.2019.00550
– year: 2021
  ident: ref3
  article-title: On the opportunities and risks of foundation models
  publication-title: arXiv:2108.07258
– ident: ref61
  doi: 10.1109/ICCV48922.2021.00823
– ident: ref5
  doi: 10.1109/TCSVT.2020.3039522
– ident: ref14
  doi: 10.1109/TCSVT.2019.2947482
– ident: ref52
  doi: 10.1007/978-3-319-10599-4_29
– ident: ref12
  doi: 10.1162/neco.1996.8.7.1341
– ident: ref49
  doi: 10.1109/CVPR.2012.6248092
– ident: ref50
  doi: 10.1109/ICCVW.2013.77
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref36
  article-title: Free lunch for few-shot learning: Distribution calibration
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1109/TPAMI.2020.2981604
– ident: ref66
  doi: 10.1109/CVPR.2018.00132
– start-page: 4104
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref44
  article-title: Sliced-Wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions
– start-page: 23318
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref20
  article-title: OFA: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework
SSID ssj0014847
Score 2.619536
Snippet Pretrained vision-language models (VLMs) such as CLIP have shown impressive generalization capability in downstream vision tasks with appropriate text prompts....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Back propagation
Data models
Eigenvectors
Gradient flow
gradient projection
Image segmentation
Object recognition
Optimization
overfitting
prompt tuning
Semantic segmentation
subspace learning
Task analysis
Training
Training data
Tuning
Vision-language model
Visualization
Title Understanding and Mitigating Overfitting in Prompt Tuning for Vision-Language Models
URI https://ieeexplore.ieee.org/document/10045664
https://www.proquest.com/docview/2861467989
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoM3SdePNG2OMhxD3BTsxm4lTVIYjk22zoN_vS9pO6aieOoHSRvyXvJ-7-V9IHQjokgxT2nCdaQI5dInPOYRCbmKgJ8zHVuX_8GQ9Uf0YRJOqmB1GwujtbbOZ9oxt_YsXy3k2pjKOp4FIIzuol3Q3Mpgrc2RAY1tNTHACx6JQZDVETIu7yTdl3HimELhDuCHMIzpFylky6r82IutgOkdomE9tNKv5NVZF5kjP75lbfz32I_QQQU18V3JG8doR89P0P5WAsJTlIy2Y1swXPBgWmbdgMend1PC2jpG4-kcPy9h7yhwsjamFAxgF49tYDp5rGye2BRWm62aaNS7T7p9UtVZINLnrCDClVSzPGN54ClYoKGgSviAazLlSx4FKvZEGKic56CwSQmIxyxkKn14FfqgjZ-hxnwx1-cICwFwJw-YOQ2lgrtZACzCGfxHaBkEWQt59bynskpCbmphzFKrjLg8tbRKDa3SilYtdLvp81am4PizddNM_lbLct5bqF3TN62W6Sr1Y2YkBXDnxS_dLtGe-XrpVdZGjWK51lcAQ4rs2rLfJ9-U2HE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9swGH5V2GFwYB-AVsaYD9sJOTSO48QHDlM3VEbLkEgRt-DYjoSGCqIpaPsv-yv8tr120qoMwQ1pp3zIjhX7sd_ntd8PgE8qSYwIjaXSJoZyqRmVqUxoLE2CeC5s6k3-B4eiN-TfT-PTFvyZ-cJYa73xmQ3crT_LN5d64rbKdkJPQARvbCgP7K9b1NDGu_tfcTg_M7b3Lev2aJNEgGomRUVVR3MrykKUUWgQfbHiRjEU2oVhWiaRSUMVR6aUJWojWqM4dyjlmuGrmKGqid9dgBdINGJWu4fNDil46vOXIUMJaYqic-qT05E7Wff4JAtcavIAGUscp_ye3POJXB6s_l6k7b2Cu2ln1JYsP4NJVQT69z9xIv_b3noNKw2ZJl9q9L-Blh29heW5EIurkA3nvXcIXsjgvI4rgo8_blySbm_6Tc5H5OgaV8eKZBO3WUSQzpMT73pP-82uLnGp4y7GazB8lt9ah8XR5ci-A6IUEroyEu68lyvZKSKcBFJgO8rqKCraEE7HOddNmHWX7eMi9-pWR-YeG7nDRt5gow3bszpXdZCRJ0uvucGeK1mPcxs2p3jKm4VonLNUOFmI82_jkWof4WUvG_Tz_v7hwXtYci3VNnSbsFhdT-wHJF1VseWhT-DsudHzF5DTNiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+and+Mitigating+Overfitting+in+Prompt+Tuning+for+Vision-Language+Models&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Ma%2C+Chengcheng&rft.au=Liu%2C+Yang&rft.au=Deng%2C+Jiankang&rft.au=Xie%2C+Lingxi&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2023.3245584&rft.externalDocID=10045664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon