Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data

Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 29; no. 3; pp. 1903 - 1913
Main Authors Li, Xiang, Zhang, Wei, Li, Xu, Hao, Hongshen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1083-4435
1941-014X
DOI10.1109/TMECH.2023.3325538

Cover

Loading…
Abstract Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the maintenance strategy. Despite the promising advances, the current algorithms basically assume the training and testing entities are operating under identical condition, which is less practical in the real industries. In the cross-domain PHM studies, domain adaptation techniques have been successfully applied for building generalized data-driven models. However, the availability of target-domain data in full life cycle is basically required by the existing methods. In most scenarios, only the target data at early degradation period can be obtained, that poses great challenges in transfer learning. This article proposes a partial domain adaptation method for RUL prediction with incomplete target-domain data. Deep neural network-based adversarial learning strategy is adopted as the main framework, and the source-domain instance-weighted degradation fusion scheme is proposed for conditional domain adaptation at similar degradation levels. The source outliers can be well filtered out in learning generalized features across domains. Experiments of machine run-to-failure tests are implemented for validation, and the results indicate the proposed methodology is well suited for practical cross-domain RUL predictions.
AbstractList Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the maintenance strategy. Despite the promising advances, the current algorithms basically assume the training and testing entities are operating under identical condition, which is less practical in the real industries. In the cross-domain PHM studies, domain adaptation techniques have been successfully applied for building generalized data-driven models. However, the availability of target-domain data in full life cycle is basically required by the existing methods. In most scenarios, only the target data at early degradation period can be obtained, that poses great challenges in transfer learning. This article proposes a partial domain adaptation method for RUL prediction with incomplete target-domain data. Deep neural network-based adversarial learning strategy is adopted as the main framework, and the source-domain instance-weighted degradation fusion scheme is proposed for conditional domain adaptation at similar degradation levels. The source outliers can be well filtered out in learning generalized features across domains. Experiments of machine run-to-failure tests are implemented for validation, and the results indicate the proposed methodology is well suited for practical cross-domain RUL predictions.
Author Li, Xu
Li, Xiang
Zhang, Wei
Hao, Hongshen
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0003-0569-2176
  surname: Li
  fullname: Li, Xiang
  email: lixiang@xjtu.edu.cn
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-6478-3110
  surname: Zhang
  fullname: Zhang, Wei
  email: 1012201003@tju.edu.cn
  organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang, China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0002-9375-472X
  surname: Li
  fullname: Li, Xu
  email: lixu@ral.neu.edu.cn
  organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Hongshen
  orcidid: 0000-0003-2542-243X
  surname: Hao
  fullname: Hao, Hongshen
  email: haohong@stu.sau.edu.cn
  organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang, China
BookMark eNp9kEtPwkAUhScGEwH9A8bFJK6L8-prSQCFBCMxEHXV3E5vcUhp63RY-O8tlIVx4eo-cs49N9-A9MqqREJuORtxzuKH9fNsMh8JJuRISuH7MrogfR4r7jGu3nttzyLpKSX9KzJomh1jTHHG--RjBdYZKOi02oMp6TiD2oEzVUnb6RWPS1Nu6abB_FDQpcmRrixmRp80b8Z90kWpq31doEO6BrtFR6fg4Jpc5lA0eHOuQ7J5nK0nc2_58rSYjJeeFnHgvBhFkIJWGiPt55oz4YOSudAZQhjoTIOGrP011SqLlR9yHimZpZAHOhA6TuWQ3Hd3a1t9HbBxya462LKNTCQL4oAHoWStSnQqbaumsZgntTV7sN8JZ8kRYXJCmBwRJmeErSn6Y9Kmg-MsmOJ_611nNYj4K6t9JZRc_gDxqYHy
CODEN IATEFW
CitedBy_id crossref_primary_10_1007_s11227_025_06965_w
crossref_primary_10_1016_j_aei_2024_103072
crossref_primary_10_1177_14759217251324103
crossref_primary_10_1016_j_aei_2024_103053
crossref_primary_10_1007_s00521_024_10849_0
crossref_primary_10_1016_j_aei_2024_102938
crossref_primary_10_1109_JAS_2024_124470
crossref_primary_10_1080_10589759_2024_2431151
crossref_primary_10_1002_cem_3624
crossref_primary_10_1177_00202940251317395
crossref_primary_10_3390_machines12120906
crossref_primary_10_1016_j_knosys_2025_113278
crossref_primary_10_1016_j_knosys_2024_112284
crossref_primary_10_1007_s11760_024_03746_5
crossref_primary_10_1016_j_ress_2025_110905
crossref_primary_10_1007_s10845_024_02464_6
crossref_primary_10_1109_JSEN_2025_3532798
crossref_primary_10_1016_j_engappai_2024_109520
crossref_primary_10_1088_1361_6501_ada570
crossref_primary_10_1016_j_measurement_2024_116211
crossref_primary_10_1016_j_knosys_2025_113095
crossref_primary_10_1016_j_ress_2025_110825
crossref_primary_10_1016_j_ymssp_2025_112541
crossref_primary_10_1016_j_knosys_2025_113075
crossref_primary_10_1007_s10845_025_02586_5
crossref_primary_10_1016_j_ymssp_2025_112582
crossref_primary_10_1007_s00521_024_10457_y
crossref_primary_10_1177_09544054251324677
crossref_primary_10_1016_j_ress_2024_110751
crossref_primary_10_1016_j_rser_2024_115241
crossref_primary_10_1088_1361_6501_ad8940
crossref_primary_10_1109_TICPS_2024_3433492
crossref_primary_10_1016_j_measurement_2024_115901
crossref_primary_10_1080_10589759_2025_2452364
crossref_primary_10_1007_s11071_024_09864_6
crossref_primary_10_1016_j_engappai_2024_109132
crossref_primary_10_1016_j_engappai_2024_109595
crossref_primary_10_1007_s10845_024_02515_y
crossref_primary_10_3390_machines13020076
crossref_primary_10_1007_s10845_024_02534_9
crossref_primary_10_1177_14759217241256690
crossref_primary_10_1002_acs_3908
crossref_primary_10_1016_j_ymssp_2025_112398
crossref_primary_10_1049_smt2_12213
Cites_doi 10.1109/TIE.2018.2877090
10.1109/TNNLS.2021.3070840
10.1109/TIE.2015.2455055
10.1016/j.ress.2015.10.002
10.1109/JAS.2021.1004168
10.1016/j.knosys.2020.105843
10.1016/j.ress.2020.107098
10.1016/j.ymssp.2018.12.051
10.1016/j.neucom.2017.02.045
10.1109/TII.2020.3005965
10.1109/TR.2018.2882682
10.1109/TMECH.2022.3144351
10.1016/j.ress.2013.08.004
10.1109/TMECH.2022.3218771
10.1016/j.jmsy.2023.05.006
10.37965/jdmd.2023.152
10.1109/TIE.2016.2627020
10.1109/TMECH.2022.3195524
10.1109/TMECH.2022.3147534
10.37965/jdmd.v2i2.43
10.1109/TMECH.2021.3079729
10.1016/j.measurement.2020.108052
10.1109/TIM.2019.2917735
10.1109/PHM.2008.4711422
10.1109/AUS.2016.7748035
10.1109/CVPR.2018.00288
10.5555/2969033.2969125
10.1109/tii.2023.3262854
10.1016/j.ress.2021.107938
10.1109/CVPR.2017.316
10.1109/TII.2018.2881543
10.1109/TMECH.2020.2992331
10.1007/978-981-16-9131-7
10.1177/14759217211029201
10.1109/TMECH.2021.3084956
10.1109/JAS.2021.1004051
10.1109/TNNLS.2016.2582798
10.1109/TII.2019.2956294
10.1016/j.ress.2019.106682
10.1109/CVPR.2018.00851
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TMECH.2023.3325538
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 1913
ExternalDocumentID 10_1109_TMECH_2023_3325538
10303731
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52005086
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2022YFB3402100
– fundername: China postdoctoral science foundation
  grantid: 2019M651032
  funderid: 10.13039/501100002858
– fundername: Department of Science & Technology of Liaoning Province
  grantid: 2022-MS-300
– fundername: Department of Education of Liaoning Province; Educational Department of Liaoning Province
  grantid: LJKMZ20220561
  funderid: 10.13039/501100007620
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-9e26bac4ce8c5fc1025a43f2cdea76cdcacad410bc4d945711843dbaf6c62c9b3
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Mon Jun 30 05:23:49 EDT 2025
Tue Jul 01 04:23:28 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:06:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-9e26bac4ce8c5fc1025a43f2cdea76cdcacad410bc4d945711843dbaf6c62c9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9375-472X
0000-0001-6478-3110
0000-0003-0569-2176
0000-0003-2542-243X
PQID 3069616730
PQPubID 85420
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TMECH_2023_3325538
proquest_journals_3069616730
ieee_primary_10303731
crossref_primary_10_1109_TMECH_2023_3325538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-June
2024-6-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Wang (ref28) 2023; 2
ref24
ref23
ref26
ref25
ref20
ref42
ref41
Han (ref18) 2023; 2
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref29
  doi: 10.1109/TIE.2018.2877090
– ident: ref10
  doi: 10.1109/TNNLS.2021.3070840
– ident: ref39
  doi: 10.1109/TIE.2015.2455055
– ident: ref6
  doi: 10.1016/j.ress.2015.10.002
– ident: ref30
  doi: 10.1109/JAS.2021.1004168
– ident: ref41
  doi: 10.1016/j.knosys.2020.105843
– ident: ref33
  doi: 10.1016/j.ress.2020.107098
– ident: ref26
  doi: 10.1016/j.ymssp.2018.12.051
– ident: ref22
  doi: 10.1016/j.neucom.2017.02.045
– ident: ref24
  doi: 10.1109/TII.2020.3005965
– ident: ref40
  doi: 10.1109/TR.2018.2882682
– ident: ref13
  doi: 10.1109/TMECH.2022.3144351
– ident: ref19
  doi: 10.1016/j.ress.2013.08.004
– ident: ref2
  doi: 10.1109/TMECH.2022.3218771
– ident: ref27
  doi: 10.1016/j.jmsy.2023.05.006
– ident: ref15
  doi: 10.37965/jdmd.2023.152
– ident: ref42
  doi: 10.1109/TIE.2016.2627020
– volume: 2
  start-page: 30
  issue: 1
  year: 2023
  ident: ref28
  article-title: Intelligent fault diagnosis for planetary gearbox using transferable deep q network under variable conditions with small training data
  publication-title: J. Dyn., Monit. Diagn.
– ident: ref1
  doi: 10.1109/TMECH.2022.3195524
– ident: ref5
  doi: 10.1109/TMECH.2022.3147534
– ident: ref21
  doi: 10.37965/jdmd.v2i2.43
– ident: ref3
  doi: 10.1109/TMECH.2021.3079729
– ident: ref9
  doi: 10.1016/j.measurement.2020.108052
– ident: ref31
  doi: 10.1109/TIM.2019.2917735
– ident: ref7
  doi: 10.1109/PHM.2008.4711422
– ident: ref23
  doi: 10.1109/AUS.2016.7748035
– ident: ref36
  doi: 10.1109/CVPR.2018.00288
– ident: ref37
  doi: 10.5555/2969033.2969125
– ident: ref14
  doi: 10.1109/tii.2023.3262854
– ident: ref25
  doi: 10.1016/j.ress.2021.107938
– ident: ref38
  doi: 10.1109/CVPR.2017.316
– ident: ref32
  doi: 10.1109/TII.2018.2881543
– ident: ref8
  doi: 10.1109/TMECH.2020.2992331
– ident: ref4
  doi: 10.1007/978-981-16-9131-7
– ident: ref12
  doi: 10.1177/14759217211029201
– ident: ref17
  doi: 10.1109/TMECH.2021.3084956
– volume: 2
  start-page: 51
  issue: 1
  year: 2023
  ident: ref18
  article-title: Deep residual joint transfer strategy for cross-condition fault diagnosis of rolling bearings
  publication-title: J. Dyn., Monit. Diagn.
– ident: ref16
  doi: 10.1109/JAS.2021.1004051
– ident: ref20
  doi: 10.1109/TNNLS.2016.2582798
– ident: ref11
  doi: 10.1109/TII.2019.2956294
– ident: ref34
  doi: 10.1016/j.ress.2019.106682
– ident: ref35
  doi: 10.1109/CVPR.2018.00851
SSID ssj0004101
Score 2.6428714
Snippet Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1903
SubjectTerms Adaptation
Adaptation models
Algorithms
Artificial intelligence
Artificial neural networks
Data models
Deep learning
Degradation
domain adaptation
Feature extraction
incomplete target data
Life prediction
Machine learning
Predictive models
Prognostics and health management
remaining useful life (RUL) prediction
Training
transfer learning
Useful life
Title Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data
URI https://ieeexplore.ieee.org/document/10303731
https://www.proquest.com/docview/3069616730
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEA26Jz34La5f5OBNWrdtkjZH8YNFVER2UU8lmSS4qLvidi_-eidpVxdF8dbCpJS8NHlp5s0j5KBjmHCs6ESMqzxiKlNRwaWJXOF0ypUBCV47fHUtun12cc_vG7F60MJYa0PymY39ZTjLNyOY-F9lR94SK8u9anoed261WOtLBJkEr-MEOUXEkARMFTIdedS7Ojvpxt4oPM4y5NBejDKzCgVblR9zcVhgzpfJ9fTV6rySp3hS6Rjev1Vt_Pe7r5ClhmrS43psrJI5O1wjizMFCNfJw40fORh0OnpRgyE9Nuq1PpuneHdrX2r_CNofWzd5ppcDZ-nNmz_bCTF3g-qR4gzj09KRfNNeSCunp6pSG6R_ftY76UaN2UIEqRRVJG0qtAIGtgDuAHkHVyxzKRircgEGFCiDfayBGcl4nnijGKOVEyBSkDrbJK3haGi3CE0dQx7KEGZhWKG5SnKByFuTa54YztskmXZ-CU0lcm-I8VyGHUlHlgGw0gNWNoC1yeFnm9e6Dsef0RsegZnIuvPbZHcKctl8q-MSN01SJAKnuu1fmu2QBXw6qzPEdkmrepvYPeQild4PY_ADebjadg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA2iD-qD3-L8zINv0rq2Sdo8ih9M3YbIhvpUkpsEh3OTrXvx15uknQ5F8a2FGxpy0uS0uecehI7rijBDsnpAqEgDIhIRZJSrwGRGxlQo4OC0w602a3TJzSN9rMTqXgujtfbJZzp0l_4sXw1h4n6VnTpLrCR1qukF6tS4pVzrSwYZebfjyLKKgFgaMNXI1Plpp3V53gidVXiYJJZFOznKzD7kjVV-rMZ-i7laRe1p58rMkpdwUsgQ3r_Vbfx379fQSkU28Vk5O9bRnB5soOWZEoSb6OnOzR0bdDF8Fb0BPlPirTydx_buXr-WDhK4O9Zm0sfNntH4buROd3zMQ694xnaNcYnpln7jjk8sxxeiEFuoe3XZOW8Eld1CADFnRcB1zKQAAjoDasAyDypIYmJQWqQMFAgQyo6xBKI4oWnkrGKUFIYBi4HLZBvND4YDvYNwbIhlosQCzRTJJBVRyiz2WqWSRorSGoqmg59DVYvcWWL0c_9NUue5Byx3gOUVYDV08tnmrazE8Wf0lkNgJrIc_Bran4KcV2_rOLefTZxFzC52u780O0KLjU6rmTev27d7aMk-iZT5YvtovhhN9IFlJoU89PPxAwa33b4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Domain+Adaptation+in+Remaining+Useful+Life+Prediction+With+Incomplete+Target+Data&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Li%2C+Xiang&rft.au=Zhang%2C+Wei&rft.au=Li%2C+Xu&rft.au=Hao%2C+Hongshen&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=29&rft.issue=3&rft.spage=1903&rft.epage=1913&rft_id=info:doi/10.1109%2FTMECH.2023.3325538&rft.externalDocID=10303731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon