Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data
Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 29; no. 3; pp. 1903 - 1913 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1083-4435 1941-014X |
DOI | 10.1109/TMECH.2023.3325538 |
Cover
Loading…
Abstract | Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the maintenance strategy. Despite the promising advances, the current algorithms basically assume the training and testing entities are operating under identical condition, which is less practical in the real industries. In the cross-domain PHM studies, domain adaptation techniques have been successfully applied for building generalized data-driven models. However, the availability of target-domain data in full life cycle is basically required by the existing methods. In most scenarios, only the target data at early degradation period can be obtained, that poses great challenges in transfer learning. This article proposes a partial domain adaptation method for RUL prediction with incomplete target-domain data. Deep neural network-based adversarial learning strategy is adopted as the main framework, and the source-domain instance-weighted degradation fusion scheme is proposed for conditional domain adaptation at similar degradation levels. The source outliers can be well filtered out in learning generalized features across domains. Experiments of machine run-to-failure tests are implemented for validation, and the results indicate the proposed methodology is well suited for practical cross-domain RUL predictions. |
---|---|
AbstractList | Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the maintenance strategy. Despite the promising advances, the current algorithms basically assume the training and testing entities are operating under identical condition, which is less practical in the real industries. In the cross-domain PHM studies, domain adaptation techniques have been successfully applied for building generalized data-driven models. However, the availability of target-domain data in full life cycle is basically required by the existing methods. In most scenarios, only the target data at early degradation period can be obtained, that poses great challenges in transfer learning. This article proposes a partial domain adaptation method for RUL prediction with incomplete target-domain data. Deep neural network-based adversarial learning strategy is adopted as the main framework, and the source-domain instance-weighted degradation fusion scheme is proposed for conditional domain adaptation at similar degradation levels. The source outliers can be well filtered out in learning generalized features across domains. Experiments of machine run-to-failure tests are implemented for validation, and the results indicate the proposed methodology is well suited for practical cross-domain RUL predictions. |
Author | Li, Xu Li, Xiang Zhang, Wei Hao, Hongshen |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0003-0569-2176 surname: Li fullname: Li, Xiang email: lixiang@xjtu.edu.cn organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Wei orcidid: 0000-0001-6478-3110 surname: Zhang fullname: Zhang, Wei email: 1012201003@tju.edu.cn organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang, China – sequence: 3 givenname: Xu orcidid: 0000-0002-9375-472X surname: Li fullname: Li, Xu email: lixu@ral.neu.edu.cn organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China – sequence: 4 givenname: Hongshen orcidid: 0000-0003-2542-243X surname: Hao fullname: Hao, Hongshen email: haohong@stu.sau.edu.cn organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang, China |
BookMark | eNp9kEtPwkAUhScGEwH9A8bFJK6L8-prSQCFBCMxEHXV3E5vcUhp63RY-O8tlIVx4eo-cs49N9-A9MqqREJuORtxzuKH9fNsMh8JJuRISuH7MrogfR4r7jGu3nttzyLpKSX9KzJomh1jTHHG--RjBdYZKOi02oMp6TiD2oEzVUnb6RWPS1Nu6abB_FDQpcmRrixmRp80b8Z90kWpq31doEO6BrtFR6fg4Jpc5lA0eHOuQ7J5nK0nc2_58rSYjJeeFnHgvBhFkIJWGiPt55oz4YOSudAZQhjoTIOGrP011SqLlR9yHimZpZAHOhA6TuWQ3Hd3a1t9HbBxya462LKNTCQL4oAHoWStSnQqbaumsZgntTV7sN8JZ8kRYXJCmBwRJmeErSn6Y9Kmg-MsmOJ_611nNYj4K6t9JZRc_gDxqYHy |
CODEN | IATEFW |
CitedBy_id | crossref_primary_10_1007_s11227_025_06965_w crossref_primary_10_1016_j_aei_2024_103072 crossref_primary_10_1177_14759217251324103 crossref_primary_10_1016_j_aei_2024_103053 crossref_primary_10_1007_s00521_024_10849_0 crossref_primary_10_1016_j_aei_2024_102938 crossref_primary_10_1109_JAS_2024_124470 crossref_primary_10_1080_10589759_2024_2431151 crossref_primary_10_1002_cem_3624 crossref_primary_10_1177_00202940251317395 crossref_primary_10_3390_machines12120906 crossref_primary_10_1016_j_knosys_2025_113278 crossref_primary_10_1016_j_knosys_2024_112284 crossref_primary_10_1007_s11760_024_03746_5 crossref_primary_10_1016_j_ress_2025_110905 crossref_primary_10_1007_s10845_024_02464_6 crossref_primary_10_1109_JSEN_2025_3532798 crossref_primary_10_1016_j_engappai_2024_109520 crossref_primary_10_1088_1361_6501_ada570 crossref_primary_10_1016_j_measurement_2024_116211 crossref_primary_10_1016_j_knosys_2025_113095 crossref_primary_10_1016_j_ress_2025_110825 crossref_primary_10_1016_j_ymssp_2025_112541 crossref_primary_10_1016_j_knosys_2025_113075 crossref_primary_10_1007_s10845_025_02586_5 crossref_primary_10_1016_j_ymssp_2025_112582 crossref_primary_10_1007_s00521_024_10457_y crossref_primary_10_1177_09544054251324677 crossref_primary_10_1016_j_ress_2024_110751 crossref_primary_10_1016_j_rser_2024_115241 crossref_primary_10_1088_1361_6501_ad8940 crossref_primary_10_1109_TICPS_2024_3433492 crossref_primary_10_1016_j_measurement_2024_115901 crossref_primary_10_1080_10589759_2025_2452364 crossref_primary_10_1007_s11071_024_09864_6 crossref_primary_10_1016_j_engappai_2024_109132 crossref_primary_10_1016_j_engappai_2024_109595 crossref_primary_10_1007_s10845_024_02515_y crossref_primary_10_3390_machines13020076 crossref_primary_10_1007_s10845_024_02534_9 crossref_primary_10_1177_14759217241256690 crossref_primary_10_1002_acs_3908 crossref_primary_10_1016_j_ymssp_2025_112398 crossref_primary_10_1049_smt2_12213 |
Cites_doi | 10.1109/TIE.2018.2877090 10.1109/TNNLS.2021.3070840 10.1109/TIE.2015.2455055 10.1016/j.ress.2015.10.002 10.1109/JAS.2021.1004168 10.1016/j.knosys.2020.105843 10.1016/j.ress.2020.107098 10.1016/j.ymssp.2018.12.051 10.1016/j.neucom.2017.02.045 10.1109/TII.2020.3005965 10.1109/TR.2018.2882682 10.1109/TMECH.2022.3144351 10.1016/j.ress.2013.08.004 10.1109/TMECH.2022.3218771 10.1016/j.jmsy.2023.05.006 10.37965/jdmd.2023.152 10.1109/TIE.2016.2627020 10.1109/TMECH.2022.3195524 10.1109/TMECH.2022.3147534 10.37965/jdmd.v2i2.43 10.1109/TMECH.2021.3079729 10.1016/j.measurement.2020.108052 10.1109/TIM.2019.2917735 10.1109/PHM.2008.4711422 10.1109/AUS.2016.7748035 10.1109/CVPR.2018.00288 10.5555/2969033.2969125 10.1109/tii.2023.3262854 10.1016/j.ress.2021.107938 10.1109/CVPR.2017.316 10.1109/TII.2018.2881543 10.1109/TMECH.2020.2992331 10.1007/978-981-16-9131-7 10.1177/14759217211029201 10.1109/TMECH.2021.3084956 10.1109/JAS.2021.1004051 10.1109/TNNLS.2016.2582798 10.1109/TII.2019.2956294 10.1016/j.ress.2019.106682 10.1109/CVPR.2018.00851 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TMECH.2023.3325538 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 1913 |
ExternalDocumentID | 10_1109_TMECH_2023_3325538 10303731 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52005086 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2022YFB3402100 – fundername: China postdoctoral science foundation grantid: 2019M651032 funderid: 10.13039/501100002858 – fundername: Department of Science & Technology of Liaoning Province grantid: 2022-MS-300 – fundername: Department of Education of Liaoning Province; Educational Department of Liaoning Province grantid: LJKMZ20220561 funderid: 10.13039/501100007620 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-9e26bac4ce8c5fc1025a43f2cdea76cdcacad410bc4d945711843dbaf6c62c9b3 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Mon Jun 30 05:23:49 EDT 2025 Tue Jul 01 04:23:28 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:06:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-9e26bac4ce8c5fc1025a43f2cdea76cdcacad410bc4d945711843dbaf6c62c9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9375-472X 0000-0001-6478-3110 0000-0003-0569-2176 0000-0003-2542-243X |
PQID | 3069616730 |
PQPubID | 85420 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TMECH_2023_3325538 proquest_journals_3069616730 ieee_primary_10303731 crossref_primary_10_1109_TMECH_2023_3325538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-June 2024-6-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Wang (ref28) 2023; 2 ref24 ref23 ref26 ref25 ref20 ref42 ref41 Han (ref18) 2023; 2 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref29 doi: 10.1109/TIE.2018.2877090 – ident: ref10 doi: 10.1109/TNNLS.2021.3070840 – ident: ref39 doi: 10.1109/TIE.2015.2455055 – ident: ref6 doi: 10.1016/j.ress.2015.10.002 – ident: ref30 doi: 10.1109/JAS.2021.1004168 – ident: ref41 doi: 10.1016/j.knosys.2020.105843 – ident: ref33 doi: 10.1016/j.ress.2020.107098 – ident: ref26 doi: 10.1016/j.ymssp.2018.12.051 – ident: ref22 doi: 10.1016/j.neucom.2017.02.045 – ident: ref24 doi: 10.1109/TII.2020.3005965 – ident: ref40 doi: 10.1109/TR.2018.2882682 – ident: ref13 doi: 10.1109/TMECH.2022.3144351 – ident: ref19 doi: 10.1016/j.ress.2013.08.004 – ident: ref2 doi: 10.1109/TMECH.2022.3218771 – ident: ref27 doi: 10.1016/j.jmsy.2023.05.006 – ident: ref15 doi: 10.37965/jdmd.2023.152 – ident: ref42 doi: 10.1109/TIE.2016.2627020 – volume: 2 start-page: 30 issue: 1 year: 2023 ident: ref28 article-title: Intelligent fault diagnosis for planetary gearbox using transferable deep q network under variable conditions with small training data publication-title: J. Dyn., Monit. Diagn. – ident: ref1 doi: 10.1109/TMECH.2022.3195524 – ident: ref5 doi: 10.1109/TMECH.2022.3147534 – ident: ref21 doi: 10.37965/jdmd.v2i2.43 – ident: ref3 doi: 10.1109/TMECH.2021.3079729 – ident: ref9 doi: 10.1016/j.measurement.2020.108052 – ident: ref31 doi: 10.1109/TIM.2019.2917735 – ident: ref7 doi: 10.1109/PHM.2008.4711422 – ident: ref23 doi: 10.1109/AUS.2016.7748035 – ident: ref36 doi: 10.1109/CVPR.2018.00288 – ident: ref37 doi: 10.5555/2969033.2969125 – ident: ref14 doi: 10.1109/tii.2023.3262854 – ident: ref25 doi: 10.1016/j.ress.2021.107938 – ident: ref38 doi: 10.1109/CVPR.2017.316 – ident: ref32 doi: 10.1109/TII.2018.2881543 – ident: ref8 doi: 10.1109/TMECH.2020.2992331 – ident: ref4 doi: 10.1007/978-981-16-9131-7 – ident: ref12 doi: 10.1177/14759217211029201 – ident: ref17 doi: 10.1109/TMECH.2021.3084956 – volume: 2 start-page: 51 issue: 1 year: 2023 ident: ref18 article-title: Deep residual joint transfer strategy for cross-condition fault diagnosis of rolling bearings publication-title: J. Dyn., Monit. Diagn. – ident: ref16 doi: 10.1109/JAS.2021.1004051 – ident: ref20 doi: 10.1109/TNNLS.2016.2582798 – ident: ref11 doi: 10.1109/TII.2019.2956294 – ident: ref34 doi: 10.1016/j.ress.2019.106682 – ident: ref35 doi: 10.1109/CVPR.2018.00851 |
SSID | ssj0004101 |
Score | 2.6428714 |
Snippet | Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1903 |
SubjectTerms | Adaptation Adaptation models Algorithms Artificial intelligence Artificial neural networks Data models Deep learning Degradation domain adaptation Feature extraction incomplete target data Life prediction Machine learning Predictive models Prognostics and health management remaining useful life (RUL) prediction Training transfer learning Useful life |
Title | Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data |
URI | https://ieeexplore.ieee.org/document/10303731 https://www.proquest.com/docview/3069616730 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEA26Jz34La5f5OBNWrdtkjZH8YNFVER2UU8lmSS4qLvidi_-eidpVxdF8dbCpJS8NHlp5s0j5KBjmHCs6ESMqzxiKlNRwaWJXOF0ypUBCV47fHUtun12cc_vG7F60MJYa0PymY39ZTjLNyOY-F9lR94SK8u9anoed261WOtLBJkEr-MEOUXEkARMFTIdedS7Ojvpxt4oPM4y5NBejDKzCgVblR9zcVhgzpfJ9fTV6rySp3hS6Rjev1Vt_Pe7r5ClhmrS43psrJI5O1wjizMFCNfJw40fORh0OnpRgyE9Nuq1PpuneHdrX2r_CNofWzd5ppcDZ-nNmz_bCTF3g-qR4gzj09KRfNNeSCunp6pSG6R_ftY76UaN2UIEqRRVJG0qtAIGtgDuAHkHVyxzKRircgEGFCiDfayBGcl4nnijGKOVEyBSkDrbJK3haGi3CE0dQx7KEGZhWKG5SnKByFuTa54YztskmXZ-CU0lcm-I8VyGHUlHlgGw0gNWNoC1yeFnm9e6Dsef0RsegZnIuvPbZHcKctl8q-MSN01SJAKnuu1fmu2QBXw6qzPEdkmrepvYPeQild4PY_ADebjadg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA2iD-qD3-L8zINv0rq2Sdo8ih9M3YbIhvpUkpsEh3OTrXvx15uknQ5F8a2FGxpy0uS0uecehI7rijBDsnpAqEgDIhIRZJSrwGRGxlQo4OC0w602a3TJzSN9rMTqXgujtfbJZzp0l_4sXw1h4n6VnTpLrCR1qukF6tS4pVzrSwYZebfjyLKKgFgaMNXI1Plpp3V53gidVXiYJJZFOznKzD7kjVV-rMZ-i7laRe1p58rMkpdwUsgQ3r_Vbfx379fQSkU28Vk5O9bRnB5soOWZEoSb6OnOzR0bdDF8Fb0BPlPirTydx_buXr-WDhK4O9Zm0sfNntH4buROd3zMQ694xnaNcYnpln7jjk8sxxeiEFuoe3XZOW8Eld1CADFnRcB1zKQAAjoDasAyDypIYmJQWqQMFAgQyo6xBKI4oWnkrGKUFIYBi4HLZBvND4YDvYNwbIhlosQCzRTJJBVRyiz2WqWSRorSGoqmg59DVYvcWWL0c_9NUue5Byx3gOUVYDV08tnmrazE8Wf0lkNgJrIc_Bran4KcV2_rOLefTZxFzC52u780O0KLjU6rmTev27d7aMk-iZT5YvtovhhN9IFlJoU89PPxAwa33b4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Domain+Adaptation+in+Remaining+Useful+Life+Prediction+With+Incomplete+Target+Data&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Li%2C+Xiang&rft.au=Zhang%2C+Wei&rft.au=Li%2C+Xu&rft.au=Hao%2C+Hongshen&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=29&rft.issue=3&rft.spage=1903&rft.epage=1913&rft_id=info:doi/10.1109%2FTMECH.2023.3325538&rft.externalDocID=10303731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |