Event-Triggered Output Feedback Control for a Class of Nonlinear Systems via Disturbance Observer and Adaptive Dynamic Programming
An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from constructing a nonlinear disturbance observer which only depends on the measurement of system output. A state observer is then developed based o...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 31; no. 9; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from constructing a nonlinear disturbance observer which only depends on the measurement of system output. A state observer is then developed based on approximation information of system dynamics via neural networks. In order to avoid continuous transmission and reduce communication burden in the closed-loop system, an event-triggered mechanism is introduced such that the control signal is updated only at specific instant that a triggered condition is violated. By virtue of the disturbance observer and state observer, an output-feedback ADP control approach then is developed, where only a critic network is employed to estimate the value function. Based on Lyapunov stability theory, stability of the closed-loop system is rigorously analyzed, and the effectiveness of the proposed control approach is verified by two simulation examples. |
---|---|
AbstractList | An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts by constructing a nonlinear disturbance observer, which only depends on the measurement of system output. A state observer is then developed based on approximation information of system dynamics via neural networks. In order to avoid continuous transmission and reduce the communication burden in the closed-loop system, an event-triggered mechanism is introduced such that the control signal is updated only at a specific instant when a triggered condition is violated. By virtue of the disturbance observer and state observer, an output-feedback ADP control approach then is developed, where only a critic network is employed to estimate the value function. Based on the Lyapunov stability theory, the stability of the closed-loop system is rigorously analyzed, and the effectiveness of the proposed control approach is verified by two simulation examples. An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from constructing a nonlinear disturbance observer which only depends on the measurement of system output. A state observer is then developed based on approximation information of system dynamics via neural networks. In order to avoid continuous transmission and reduce communication burden in the closed-loop system, an event-triggered mechanism is introduced such that the control signal is updated only at specific instant that a triggered condition is violated. By virtue of the disturbance observer and state observer, an output-feedback ADP control approach then is developed, where only a critic network is employed to estimate the value function. Based on Lyapunov stability theory, stability of the closed-loop system is rigorously analyzed, and the effectiveness of the proposed control approach is verified by two simulation examples. |
Author | Yue, Wenbin Liu, Aaron Gao, Weinan Fan, Xin Geng, Shuocong Wu, Jinran Yang, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-8706-2831 surname: Yang fullname: Yang, Yang organization: College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 2 givenname: Xin surname: Fan fullname: Fan, Xin organization: College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 3 givenname: Weinan orcidid: 0000-0001-7921-018X surname: Gao fullname: Gao, Weinan organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 4 givenname: Wenbin orcidid: 0000-0003-2510-0190 surname: Yue fullname: Yue, Wenbin organization: China North Vehicle Research Institute, Beijing, China – sequence: 5 givenname: Aaron orcidid: 0000-0001-7690-6608 surname: Liu fullname: Liu, Aaron organization: School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia – sequence: 6 givenname: Shuocong surname: Geng fullname: Geng, Shuocong organization: College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 7 givenname: Jinran orcidid: 0000-0002-2388-3614 surname: Wu fullname: Wu, Jinran organization: Institute for Learning Sciences and Teacher Education, Australian Catholic University, Brisbane, QLD, Australia |
BookMark | eNp9kD1v2zAURYkiAZqvP1BkIJBZLklRlDgGTpwWMOoCcZYswpP0aDCRSIekDHjNL49cZyg6dLpvuOdd4JyTE-cdEvKNsxnnTH9fL56en2eCiXyWC1kILb-QM64lzxjL5cl0M5VnqmTqKzmP8YUxLgtenZH3-x26lK2D3WwwYEdXY9qOiS4QuwbaVzr3LgXfU-MDBTrvIUbqDf3lXW8dQqCP-5hwiHRngd7ZmMbQgGuRrpqIYYcT5Tp628E22R3Su72Dwbb0d_CbAMNg3eaSnBroI1595gV5Wtyv5z-y5erh5_x2mbVCq5TpygBvVNMxFNIIDSxnjSxRlC3XRjNeKIOlKVmhihYrqCRyxbsStFScVzK_IDfHv9vg30aMqX7xY3DTZC2qQpe8VLqaWtWx1QYfY0BTtzZBsgcNYPuas_pgvP5jvD4Yrz-NT6j4B90GO0DY_x-6PkIWEf8CmCwYV_kHC2yQKw |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101021 crossref_primary_10_1109_TFUZZ_2023_3267425 crossref_primary_10_1016_j_amc_2024_129149 crossref_primary_10_3390_jsan12050066 crossref_primary_10_3934_math_20241258 crossref_primary_10_1109_TR_2024_3407090 crossref_primary_10_1007_s00521_024_09451_1 crossref_primary_10_1002_rnc_7075 crossref_primary_10_1016_j_jfranklin_2024_107085 crossref_primary_10_1049_rpg2_13187 crossref_primary_10_1109_TFUZZ_2023_3343722 crossref_primary_10_23919_cje_2022_00_364 crossref_primary_10_1109_TCYB_2024_3411310 crossref_primary_10_1016_j_ins_2024_121701 crossref_primary_10_1109_TFUZZ_2024_3441714 |
Cites_doi | 10.1109/TNNLS.2019.2893643 10.1109/TFUZZ.2019.2917127 10.1109/JAS.2017.7510784 10.1109/TFUZZ.2014.2310238 10.1109/TIE.2017.2674633 10.1016/j.neucom.2015.08.120 10.1016/j.jfranklin.2018.01.005 10.1109/DDCLS.2017.8068070 10.1016/j.fss.2006.11.013 10.1109/TAC.2015.2414811 10.1109/TSMC.2018.2861470 10.1109/TFUZZ.2022.3146986 10.1109/TSMC.2019.2944259 10.1109/TSMC.2016.2592682 10.1109/TFUZZ.2017.2686373 10.1109/TNNLS.2017.2761718 10.1109/TCYB.2015.2417170 10.1109/72.159070 10.1109/TNNLS.2016.2614002 10.1109/TNNLS.2019.2899594 10.1016/j.automatica.2016.05.008 10.1109/TSMC.2018.2810117 10.1109/87.317980 10.1109/TIE.2016.2597763 10.1109/TCYB.2016.2523878 10.1109/JAS.2020.1003426 10.1109/TCYB.2020.3004493 10.1016/j.automatica.2011.03.005 10.1109/TNNLS.2016.2642128 10.1109/TNNLS.2018.2869896 10.1049/iet-cta.2014.0186 10.1016/j.automatica.2019.108515 10.1016/j.neucom.2019.09.088 10.1109/TFUZZ.2020.2983658 10.1109/TSTE.2018.2856802 10.1109/TSMC.2019.2958484 10.1109/TNNLS.2018.2806347 10.1109/TSMC.2018.2889377 10.1080/00207179.2015.1088967 10.1016/j.sysconle.2016.12.003 10.1109/TNNLS.2018.2810138 10.1016/j.jfranklin.2016.06.009 10.1109/TCYB.2020.3009128 10.1109/TSMC.2016.2623766 10.1109/TCYB.2020.3009992 10.1109/TCYB.2020.3003550 10.1109/TIE.2017.2653767 10.1109/TCYB.2019.2957406 10.1016/j.ins.2017.09.005 10.1109/TCYB.2018.2823199 10.1109/TNNLS.2019.2900510 10.1016/j.neucom.2017.03.064 10.1109/TIE.2015.2478397 10.1109/TNNLS.2021.3057438 10.1109/41.857974 10.1109/TSMC.2019.2900750 10.1109/TFUZZ.2020.2965890 10.1109/TFUZZ.2019.2896544 10.1109/TNNLS.2019.2958948 10.1016/j.neucom.2020.01.082 10.1016/j.ins.2019.05.071 10.1109/TCYB.2014.2384016 10.1016/j.jfranklin.2019.04.018 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2023.3245294 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TFUZZ_2023_3245294 10045016 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications grantid: NY220194; NY221082; NY222144 – fundername: Key projects of Natural Science Foundation of Hebei Province grantid: E2020203139 – fundername: National Natural Science Foundation of China grantid: 62103200; 61873130 – fundername: Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunications – fundername: foundation from Key Laboratory of Industrial Internet of Things, and Networked Control of the Ministry of Education of China grantid: 2021FF01 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 5VS AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG VH1 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-98fa1b6bd0e24f29a030b47e27c19f90156fe7f70565ce8a84e161d7a94611843 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Sun Jun 29 12:22:55 EDT 2025 Tue Jul 01 01:55:36 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Mon Aug 11 03:35:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-98fa1b6bd0e24f29a030b47e27c19f90156fe7f70565ce8a84e161d7a94611843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7921-018X 0000-0002-2388-3614 0000-0003-2510-0190 0000-0002-8706-2831 0000-0001-7690-6608 0000-0002-4104-6430 |
PQID | 2859717698 |
PQPubID | 85428 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10045016 proquest_journals_2859717698 crossref_citationtrail_10_1109_TFUZZ_2023_3245294 crossref_primary_10_1109_TFUZZ_2023_3245294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 khalil (ref60) 2002 ref6 ref40 zhang (ref16) 2018; 29 ref35 ref34 ref37 johnson (ref57) 2015; 26 ref36 ref31 ref30 ref33 zhang (ref5) 2021; 51 ref32 nguyen (ref27) 2020; 50 liu (ref4) 2019; 27 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref29 ref62 chen (ref56) 2020; 23 ref61 |
References_xml | – ident: ref29 doi: 10.1109/TNNLS.2019.2893643 – ident: ref26 doi: 10.1109/TFUZZ.2019.2917127 – ident: ref15 doi: 10.1109/JAS.2017.7510784 – ident: ref67 doi: 10.1109/TFUZZ.2014.2310238 – ident: ref48 doi: 10.1109/TIE.2017.2674633 – ident: ref59 doi: 10.1016/j.neucom.2015.08.120 – ident: ref32 doi: 10.1016/j.jfranklin.2018.01.005 – ident: ref25 doi: 10.1109/DDCLS.2017.8068070 – ident: ref54 doi: 10.1016/j.fss.2006.11.013 – ident: ref53 doi: 10.1109/TAC.2015.2414811 – volume: 50 start-page: 4719 year: 2020 ident: ref27 article-title: Distributed ${H}_{\infty }$ optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2018.2861470 – ident: ref3 doi: 10.1109/TFUZZ.2022.3146986 – ident: ref30 doi: 10.1109/TSMC.2019.2944259 – ident: ref2 doi: 10.1109/TSMC.2016.2592682 – ident: ref20 doi: 10.1109/TFUZZ.2017.2686373 – ident: ref52 doi: 10.1109/TNNLS.2017.2761718 – ident: ref22 doi: 10.1109/TCYB.2015.2417170 – ident: ref58 doi: 10.1109/72.159070 – ident: ref37 doi: 10.1109/TNNLS.2016.2614002 – year: 2002 ident: ref60 publication-title: Nonlinear Systems – volume: 29 start-page: 3339 year: 2018 ident: ref16 article-title: Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic publication-title: IEEE Trans Neural Netw – ident: ref1 doi: 10.1109/TNNLS.2019.2899594 – ident: ref19 doi: 10.1016/j.automatica.2016.05.008 – ident: ref23 doi: 10.1109/TSMC.2018.2810117 – ident: ref68 doi: 10.1109/87.317980 – ident: ref40 doi: 10.1109/TIE.2016.2597763 – ident: ref47 doi: 10.1109/TCYB.2016.2523878 – ident: ref8 doi: 10.1109/JAS.2020.1003426 – ident: ref36 doi: 10.1109/TCYB.2020.3004493 – ident: ref11 doi: 10.1016/j.automatica.2011.03.005 – ident: ref39 doi: 10.1109/TNNLS.2016.2642128 – ident: ref45 doi: 10.1109/TNNLS.2018.2869896 – ident: ref18 doi: 10.1049/iet-cta.2014.0186 – ident: ref31 doi: 10.1016/j.automatica.2019.108515 – ident: ref42 doi: 10.1016/j.neucom.2019.09.088 – ident: ref55 doi: 10.1109/TFUZZ.2020.2983658 – ident: ref6 doi: 10.1109/TSTE.2018.2856802 – volume: 51 start-page: 6293 year: 2021 ident: ref5 article-title: Echo state network-based decentralized control of continuous-time nonlinear large-scale interconnected systems publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2019.2958484 – ident: ref10 doi: 10.1109/TNNLS.2018.2806347 – ident: ref41 doi: 10.1109/TSMC.2018.2889377 – ident: ref35 doi: 10.1080/00207179.2015.1088967 – ident: ref64 doi: 10.1016/j.sysconle.2016.12.003 – ident: ref13 doi: 10.1109/TNNLS.2018.2810138 – ident: ref62 doi: 10.1016/j.jfranklin.2016.06.009 – ident: ref17 doi: 10.1109/TCYB.2020.3009128 – ident: ref7 doi: 10.1109/TSMC.2016.2623766 – ident: ref63 doi: 10.1109/TCYB.2020.3009992 – ident: ref9 doi: 10.1109/TCYB.2020.3003550 – ident: ref61 doi: 10.1109/TIE.2017.2653767 – ident: ref12 doi: 10.1109/TCYB.2019.2957406 – volume: 27 start-page: 447 year: 2019 ident: ref4 article-title: Distributed fuzzy adaptive backstepping optimal control for nonlinear multimissile guidance systems with input saturation publication-title: IEEE Trans Fuzzy Syst – ident: ref34 doi: 10.1016/j.ins.2017.09.005 – ident: ref38 doi: 10.1109/TCYB.2018.2823199 – ident: ref24 doi: 10.1109/TNNLS.2019.2900510 – ident: ref65 doi: 10.1016/j.neucom.2017.03.064 – ident: ref50 doi: 10.1109/TIE.2015.2478397 – ident: ref44 doi: 10.1109/TNNLS.2021.3057438 – ident: ref49 doi: 10.1109/41.857974 – ident: ref28 doi: 10.1109/TSMC.2019.2900750 – ident: ref66 doi: 10.1109/TFUZZ.2020.2965890 – ident: ref43 doi: 10.1109/TFUZZ.2019.2896544 – volume: 26 start-page: 1645 year: 2015 ident: ref57 article-title: Approximate N-player nonzero-sum game solution for an uncertain continuous nonlinear system publication-title: IEEE Trans Neural Netw – ident: ref14 doi: 10.1109/TNNLS.2019.2958948 – ident: ref33 doi: 10.1016/j.neucom.2020.01.082 – volume: 23 start-page: 28 year: 2020 ident: ref56 article-title: Modified evolved bat algorithm of fuzzy optimal control for complex nonlinear systems publication-title: Romanian J Inf Sci Technol – ident: ref46 doi: 10.1016/j.ins.2019.05.071 – ident: ref51 doi: 10.1109/TCYB.2014.2384016 – ident: ref21 doi: 10.1016/j.jfranklin.2019.04.018 |
SSID | ssj0014518 |
Score | 2.5145962 |
Snippet | An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from... An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive control Adaptive dynamic programming Closed loops disturbance observer Disturbance observers Dynamic programming event-triggered mechanism Feedback control Neural networks Nonlinear systems Optimal control Output feedback output-feedback control Stability analysis Stability criteria State observers System dynamics Telecommunications |
Title | Event-Triggered Output Feedback Control for a Class of Nonlinear Systems via Disturbance Observer and Adaptive Dynamic Programming |
URI | https://ieeexplore.ieee.org/document/10045016 https://www.proquest.com/docview/2859717698 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3CgUIpYWtAcuCGnm8TrxMeq7apCYsthV6p6ifyJqtJsVZJK5cgv74ydVAUE4paDx7E04_Ebe-YNYx-My12R65JXXjouXKm4QljAEb2WudW1C7EW5vNCnqzEp7PZ2VCsHmthvPcx-cxn9Bnf8t3a9nRVtk_sZjPEKBtsAyO3VKz18GQgZnmqe5Mll9VUjhUyU7W_nK_OzzNqFJ6V8aVR_HIKxbYqf_jieMDMt9hiXFrKK7nM-s5k9sdvrI3_vfYX7PkANeEg2cZL9sS322xrbOMAw67eZs8ecRK-Yj-PKQOSLzFq_0p9POG071AA5njMGW0v4TAltwOiXdAQm2rCOsAicW5onDiRoMPthYYjtKL-xpBpwamhG2D8s24dHDh9TZ4Wju5afXVh4UtKFLvCReyw1fx4eXjCh0YN3BZKdlzVQedGGjf1hQiF0ug5jKh8UdlcBUIcMvgqVAi2ZtbXuhYegaartBIyp4Yzr9lmu279GwYoZMvCOF-7WgShyetgUBWoWCIglpqwfFRcYwcWc2qm8a2J0cxUNVHZDSm7GZQ9YR8fZK4Th8c_R--Q9h6NTIqbsL3RQJphn39viP4PA2Kp6rd_EdtlT2n2lJa2xza7m96_QxzTmffRfu8BcXruZQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxUxEJ4oHtSDKGJ8AtqDN7PL6263uz0S4OWp8PDwXkK4bPqTEGQfgV0SPfqXO213CUg03vbQbpvMdOabduYbgI_KUJNRmSel5SZhJheJQFiQIHrNqZaVcaEW5nDGpwv25bg47ovVQy2MtTYkn9nUf4a3fLPUnb8q2_bsZgVilMfwBB1_QWO51u2jAStorHzjecLLMR9qZMZiez5ZnJykvlV4moe3RnbPD4XGKg-scXAxk1WYDZuLmSXnadeqVP_8g7fxv3f_El70YJPsRO14BY9sswarQyMH0p_rNXh-h5XwNfza9zmQyRzj9lPfyZMcdS1OIBN0dErqc7Ib09sJ4l0iSWirSZaOzCLrhsQfRxp0cnMmyR7qUXelvHKRI-XvgHFl2RiyY-Slt7Vk70cjL840-RZTxS5wE-uwmOzPd6dJ36oh0ZngbSIqJ6niyoxtxlwmJNoOxUqblZoK5zEHd7Z0JcKtQttKVswi1DSlFIxT33LmDaw0y8a-BYKTdJ4pYytTMcektzsYVjlfLuEQTY2ADoKrdc9j7ttpfK9DPDMWdRB27YVd98IewafbOZeRxeOfo9e99O6MjIIbweagIHV_0q9rTwCIITEX1bu_TPsAT6fzw4P64PPs6wY88yvFJLVNWGmvOruFqKZV74Mu_wYFU_Gu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Output+Feedback+Control+for+a+Class+of+Nonlinear+Systems+via+Disturbance+Observer+and+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yang%2C+Yang&rft.au=Fan%2C+Xin&rft.au=Gao%2C+Weinan&rft.au=Yue%2C+Wenbin&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1063-6706&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTFUZZ.2023.3245294&rft.externalDocID=10045016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |