Event-Triggered Output Feedback Control for a Class of Nonlinear Systems via Disturbance Observer and Adaptive Dynamic Programming

An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from constructing a nonlinear disturbance observer which only depends on the measurement of system output. A state observer is then developed based o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 31; no. 9; pp. 1 - 13
Main Authors Yang, Yang, Fan, Xin, Gao, Weinan, Yue, Wenbin, Liu, Aaron, Geng, Shuocong, Wu, Jinran
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from constructing a nonlinear disturbance observer which only depends on the measurement of system output. A state observer is then developed based on approximation information of system dynamics via neural networks. In order to avoid continuous transmission and reduce communication burden in the closed-loop system, an event-triggered mechanism is introduced such that the control signal is updated only at specific instant that a triggered condition is violated. By virtue of the disturbance observer and state observer, an output-feedback ADP control approach then is developed, where only a critic network is employed to estimate the value function. Based on Lyapunov stability theory, stability of the closed-loop system is rigorously analyzed, and the effectiveness of the proposed control approach is verified by two simulation examples.
AbstractList An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts by constructing a nonlinear disturbance observer, which only depends on the measurement of system output. A state observer is then developed based on approximation information of system dynamics via neural networks. In order to avoid continuous transmission and reduce the communication burden in the closed-loop system, an event-triggered mechanism is introduced such that the control signal is updated only at a specific instant when a triggered condition is violated. By virtue of the disturbance observer and state observer, an output-feedback ADP control approach then is developed, where only a critic network is employed to estimate the value function. Based on the Lyapunov stability theory, the stability of the closed-loop system is rigorously analyzed, and the effectiveness of the proposed control approach is verified by two simulation examples.
An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from constructing a nonlinear disturbance observer which only depends on the measurement of system output. A state observer is then developed based on approximation information of system dynamics via neural networks. In order to avoid continuous transmission and reduce communication burden in the closed-loop system, an event-triggered mechanism is introduced such that the control signal is updated only at specific instant that a triggered condition is violated. By virtue of the disturbance observer and state observer, an output-feedback ADP control approach then is developed, where only a critic network is employed to estimate the value function. Based on Lyapunov stability theory, stability of the closed-loop system is rigorously analyzed, and the effectiveness of the proposed control approach is verified by two simulation examples.
Author Yue, Wenbin
Liu, Aaron
Gao, Weinan
Fan, Xin
Geng, Shuocong
Wu, Jinran
Yang, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-8706-2831
  surname: Yang
  fullname: Yang, Yang
  organization: College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Xin
  surname: Fan
  fullname: Fan, Xin
  organization: College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Weinan
  orcidid: 0000-0001-7921-018X
  surname: Gao
  fullname: Gao, Weinan
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Wenbin
  orcidid: 0000-0003-2510-0190
  surname: Yue
  fullname: Yue, Wenbin
  organization: China North Vehicle Research Institute, Beijing, China
– sequence: 5
  givenname: Aaron
  orcidid: 0000-0001-7690-6608
  surname: Liu
  fullname: Liu, Aaron
  organization: School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia
– sequence: 6
  givenname: Shuocong
  surname: Geng
  fullname: Geng, Shuocong
  organization: College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 7
  givenname: Jinran
  orcidid: 0000-0002-2388-3614
  surname: Wu
  fullname: Wu, Jinran
  organization: Institute for Learning Sciences and Teacher Education, Australian Catholic University, Brisbane, QLD, Australia
BookMark eNp9kD1v2zAURYkiAZqvP1BkIJBZLklRlDgGTpwWMOoCcZYswpP0aDCRSIekDHjNL49cZyg6dLpvuOdd4JyTE-cdEvKNsxnnTH9fL56en2eCiXyWC1kILb-QM64lzxjL5cl0M5VnqmTqKzmP8YUxLgtenZH3-x26lK2D3WwwYEdXY9qOiS4QuwbaVzr3LgXfU-MDBTrvIUbqDf3lXW8dQqCP-5hwiHRngd7ZmMbQgGuRrpqIYYcT5Tp628E22R3Su72Dwbb0d_CbAMNg3eaSnBroI1595gV5Wtyv5z-y5erh5_x2mbVCq5TpygBvVNMxFNIIDSxnjSxRlC3XRjNeKIOlKVmhihYrqCRyxbsStFScVzK_IDfHv9vg30aMqX7xY3DTZC2qQpe8VLqaWtWx1QYfY0BTtzZBsgcNYPuas_pgvP5jvD4Yrz-NT6j4B90GO0DY_x-6PkIWEf8CmCwYV_kHC2yQKw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_ejcon_2024_101021
crossref_primary_10_1109_TFUZZ_2023_3267425
crossref_primary_10_1016_j_amc_2024_129149
crossref_primary_10_3390_jsan12050066
crossref_primary_10_3934_math_20241258
crossref_primary_10_1109_TR_2024_3407090
crossref_primary_10_1007_s00521_024_09451_1
crossref_primary_10_1002_rnc_7075
crossref_primary_10_1016_j_jfranklin_2024_107085
crossref_primary_10_1049_rpg2_13187
crossref_primary_10_1109_TFUZZ_2023_3343722
crossref_primary_10_23919_cje_2022_00_364
crossref_primary_10_1109_TCYB_2024_3411310
crossref_primary_10_1016_j_ins_2024_121701
crossref_primary_10_1109_TFUZZ_2024_3441714
Cites_doi 10.1109/TNNLS.2019.2893643
10.1109/TFUZZ.2019.2917127
10.1109/JAS.2017.7510784
10.1109/TFUZZ.2014.2310238
10.1109/TIE.2017.2674633
10.1016/j.neucom.2015.08.120
10.1016/j.jfranklin.2018.01.005
10.1109/DDCLS.2017.8068070
10.1016/j.fss.2006.11.013
10.1109/TAC.2015.2414811
10.1109/TSMC.2018.2861470
10.1109/TFUZZ.2022.3146986
10.1109/TSMC.2019.2944259
10.1109/TSMC.2016.2592682
10.1109/TFUZZ.2017.2686373
10.1109/TNNLS.2017.2761718
10.1109/TCYB.2015.2417170
10.1109/72.159070
10.1109/TNNLS.2016.2614002
10.1109/TNNLS.2019.2899594
10.1016/j.automatica.2016.05.008
10.1109/TSMC.2018.2810117
10.1109/87.317980
10.1109/TIE.2016.2597763
10.1109/TCYB.2016.2523878
10.1109/JAS.2020.1003426
10.1109/TCYB.2020.3004493
10.1016/j.automatica.2011.03.005
10.1109/TNNLS.2016.2642128
10.1109/TNNLS.2018.2869896
10.1049/iet-cta.2014.0186
10.1016/j.automatica.2019.108515
10.1016/j.neucom.2019.09.088
10.1109/TFUZZ.2020.2983658
10.1109/TSTE.2018.2856802
10.1109/TSMC.2019.2958484
10.1109/TNNLS.2018.2806347
10.1109/TSMC.2018.2889377
10.1080/00207179.2015.1088967
10.1016/j.sysconle.2016.12.003
10.1109/TNNLS.2018.2810138
10.1016/j.jfranklin.2016.06.009
10.1109/TCYB.2020.3009128
10.1109/TSMC.2016.2623766
10.1109/TCYB.2020.3009992
10.1109/TCYB.2020.3003550
10.1109/TIE.2017.2653767
10.1109/TCYB.2019.2957406
10.1016/j.ins.2017.09.005
10.1109/TCYB.2018.2823199
10.1109/TNNLS.2019.2900510
10.1016/j.neucom.2017.03.064
10.1109/TIE.2015.2478397
10.1109/TNNLS.2021.3057438
10.1109/41.857974
10.1109/TSMC.2019.2900750
10.1109/TFUZZ.2020.2965890
10.1109/TFUZZ.2019.2896544
10.1109/TNNLS.2019.2958948
10.1016/j.neucom.2020.01.082
10.1016/j.ins.2019.05.071
10.1109/TCYB.2014.2384016
10.1016/j.jfranklin.2019.04.018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2023.3245294
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 13
ExternalDocumentID 10_1109_TFUZZ_2023_3245294
10045016
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications
  grantid: NY220194; NY221082; NY222144
– fundername: Key projects of Natural Science Foundation of Hebei Province
  grantid: E2020203139
– fundername: National Natural Science Foundation of China
  grantid: 62103200; 61873130
– fundername: Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunications
– fundername: foundation from Key Laboratory of Industrial Internet of Things, and Networked Control of the Ministry of Education of China
  grantid: 2021FF01
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
5VS
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-98fa1b6bd0e24f29a030b47e27c19f90156fe7f70565ce8a84e161d7a94611843
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Jun 29 12:22:55 EDT 2025
Tue Jul 01 01:55:36 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Mon Aug 11 03:35:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-98fa1b6bd0e24f29a030b47e27c19f90156fe7f70565ce8a84e161d7a94611843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7921-018X
0000-0002-2388-3614
0000-0003-2510-0190
0000-0002-8706-2831
0000-0001-7690-6608
0000-0002-4104-6430
PQID 2859717698
PQPubID 85428
PageCount 13
ParticipantIDs ieee_primary_10045016
proquest_journals_2859717698
crossref_citationtrail_10_1109_TFUZZ_2023_3245294
crossref_primary_10_1109_TFUZZ_2023_3245294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
khalil (ref60) 2002
ref6
ref40
zhang (ref16) 2018; 29
ref35
ref34
ref37
johnson (ref57) 2015; 26
ref36
ref31
ref30
ref33
zhang (ref5) 2021; 51
ref32
nguyen (ref27) 2020; 50
liu (ref4) 2019; 27
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref29
ref62
chen (ref56) 2020; 23
ref61
References_xml – ident: ref29
  doi: 10.1109/TNNLS.2019.2893643
– ident: ref26
  doi: 10.1109/TFUZZ.2019.2917127
– ident: ref15
  doi: 10.1109/JAS.2017.7510784
– ident: ref67
  doi: 10.1109/TFUZZ.2014.2310238
– ident: ref48
  doi: 10.1109/TIE.2017.2674633
– ident: ref59
  doi: 10.1016/j.neucom.2015.08.120
– ident: ref32
  doi: 10.1016/j.jfranklin.2018.01.005
– ident: ref25
  doi: 10.1109/DDCLS.2017.8068070
– ident: ref54
  doi: 10.1016/j.fss.2006.11.013
– ident: ref53
  doi: 10.1109/TAC.2015.2414811
– volume: 50
  start-page: 4719
  year: 2020
  ident: ref27
  article-title: Distributed ${H}_{\infty }$ optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2018.2861470
– ident: ref3
  doi: 10.1109/TFUZZ.2022.3146986
– ident: ref30
  doi: 10.1109/TSMC.2019.2944259
– ident: ref2
  doi: 10.1109/TSMC.2016.2592682
– ident: ref20
  doi: 10.1109/TFUZZ.2017.2686373
– ident: ref52
  doi: 10.1109/TNNLS.2017.2761718
– ident: ref22
  doi: 10.1109/TCYB.2015.2417170
– ident: ref58
  doi: 10.1109/72.159070
– ident: ref37
  doi: 10.1109/TNNLS.2016.2614002
– year: 2002
  ident: ref60
  publication-title: Nonlinear Systems
– volume: 29
  start-page: 3339
  year: 2018
  ident: ref16
  article-title: Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic
  publication-title: IEEE Trans Neural Netw
– ident: ref1
  doi: 10.1109/TNNLS.2019.2899594
– ident: ref19
  doi: 10.1016/j.automatica.2016.05.008
– ident: ref23
  doi: 10.1109/TSMC.2018.2810117
– ident: ref68
  doi: 10.1109/87.317980
– ident: ref40
  doi: 10.1109/TIE.2016.2597763
– ident: ref47
  doi: 10.1109/TCYB.2016.2523878
– ident: ref8
  doi: 10.1109/JAS.2020.1003426
– ident: ref36
  doi: 10.1109/TCYB.2020.3004493
– ident: ref11
  doi: 10.1016/j.automatica.2011.03.005
– ident: ref39
  doi: 10.1109/TNNLS.2016.2642128
– ident: ref45
  doi: 10.1109/TNNLS.2018.2869896
– ident: ref18
  doi: 10.1049/iet-cta.2014.0186
– ident: ref31
  doi: 10.1016/j.automatica.2019.108515
– ident: ref42
  doi: 10.1016/j.neucom.2019.09.088
– ident: ref55
  doi: 10.1109/TFUZZ.2020.2983658
– ident: ref6
  doi: 10.1109/TSTE.2018.2856802
– volume: 51
  start-page: 6293
  year: 2021
  ident: ref5
  article-title: Echo state network-based decentralized control of continuous-time nonlinear large-scale interconnected systems
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2019.2958484
– ident: ref10
  doi: 10.1109/TNNLS.2018.2806347
– ident: ref41
  doi: 10.1109/TSMC.2018.2889377
– ident: ref35
  doi: 10.1080/00207179.2015.1088967
– ident: ref64
  doi: 10.1016/j.sysconle.2016.12.003
– ident: ref13
  doi: 10.1109/TNNLS.2018.2810138
– ident: ref62
  doi: 10.1016/j.jfranklin.2016.06.009
– ident: ref17
  doi: 10.1109/TCYB.2020.3009128
– ident: ref7
  doi: 10.1109/TSMC.2016.2623766
– ident: ref63
  doi: 10.1109/TCYB.2020.3009992
– ident: ref9
  doi: 10.1109/TCYB.2020.3003550
– ident: ref61
  doi: 10.1109/TIE.2017.2653767
– ident: ref12
  doi: 10.1109/TCYB.2019.2957406
– volume: 27
  start-page: 447
  year: 2019
  ident: ref4
  article-title: Distributed fuzzy adaptive backstepping optimal control for nonlinear multimissile guidance systems with input saturation
  publication-title: IEEE Trans Fuzzy Syst
– ident: ref34
  doi: 10.1016/j.ins.2017.09.005
– ident: ref38
  doi: 10.1109/TCYB.2018.2823199
– ident: ref24
  doi: 10.1109/TNNLS.2019.2900510
– ident: ref65
  doi: 10.1016/j.neucom.2017.03.064
– ident: ref50
  doi: 10.1109/TIE.2015.2478397
– ident: ref44
  doi: 10.1109/TNNLS.2021.3057438
– ident: ref49
  doi: 10.1109/41.857974
– ident: ref28
  doi: 10.1109/TSMC.2019.2900750
– ident: ref66
  doi: 10.1109/TFUZZ.2020.2965890
– ident: ref43
  doi: 10.1109/TFUZZ.2019.2896544
– volume: 26
  start-page: 1645
  year: 2015
  ident: ref57
  article-title: Approximate N-player nonzero-sum game solution for an uncertain continuous nonlinear system
  publication-title: IEEE Trans Neural Netw
– ident: ref14
  doi: 10.1109/TNNLS.2019.2958948
– ident: ref33
  doi: 10.1016/j.neucom.2020.01.082
– volume: 23
  start-page: 28
  year: 2020
  ident: ref56
  article-title: Modified evolved bat algorithm of fuzzy optimal control for complex nonlinear systems
  publication-title: Romanian J Inf Sci Technol
– ident: ref46
  doi: 10.1016/j.ins.2019.05.071
– ident: ref51
  doi: 10.1109/TCYB.2014.2384016
– ident: ref21
  doi: 10.1016/j.jfranklin.2019.04.018
SSID ssj0014518
Score 2.5145962
Snippet An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts from...
An event-triggered output feedback control approach is proposed via a disturbance observer and adaptive dynamic programming (ADP). The solution starts by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive control
Adaptive dynamic programming
Closed loops
disturbance observer
Disturbance observers
Dynamic programming
event-triggered mechanism
Feedback control
Neural networks
Nonlinear systems
Optimal control
Output feedback
output-feedback control
Stability analysis
Stability criteria
State observers
System dynamics
Telecommunications
Title Event-Triggered Output Feedback Control for a Class of Nonlinear Systems via Disturbance Observer and Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/10045016
https://www.proquest.com/docview/2859717698
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3CgUIpYWtAcuCGnm8TrxMeq7apCYsthV6p6ifyJqtJsVZJK5cgv74ydVAUE4paDx7E04_Ebe-YNYx-My12R65JXXjouXKm4QljAEb2WudW1C7EW5vNCnqzEp7PZ2VCsHmthvPcx-cxn9Bnf8t3a9nRVtk_sZjPEKBtsAyO3VKz18GQgZnmqe5Mll9VUjhUyU7W_nK_OzzNqFJ6V8aVR_HIKxbYqf_jieMDMt9hiXFrKK7nM-s5k9sdvrI3_vfYX7PkANeEg2cZL9sS322xrbOMAw67eZs8ecRK-Yj-PKQOSLzFq_0p9POG071AA5njMGW0v4TAltwOiXdAQm2rCOsAicW5onDiRoMPthYYjtKL-xpBpwamhG2D8s24dHDh9TZ4Wju5afXVh4UtKFLvCReyw1fx4eXjCh0YN3BZKdlzVQedGGjf1hQiF0ug5jKh8UdlcBUIcMvgqVAi2ZtbXuhYegaartBIyp4Yzr9lmu279GwYoZMvCOF-7WgShyetgUBWoWCIglpqwfFRcYwcWc2qm8a2J0cxUNVHZDSm7GZQ9YR8fZK4Th8c_R--Q9h6NTIqbsL3RQJphn39viP4PA2Kp6rd_EdtlT2n2lJa2xza7m96_QxzTmffRfu8BcXruZQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxUxEJ4oHtSDKGJ8AtqDN7PL6263uz0S4OWp8PDwXkK4bPqTEGQfgV0SPfqXO213CUg03vbQbpvMdOabduYbgI_KUJNRmSel5SZhJheJQFiQIHrNqZaVcaEW5nDGpwv25bg47ovVQy2MtTYkn9nUf4a3fLPUnb8q2_bsZgVilMfwBB1_QWO51u2jAStorHzjecLLMR9qZMZiez5ZnJykvlV4moe3RnbPD4XGKg-scXAxk1WYDZuLmSXnadeqVP_8g7fxv3f_El70YJPsRO14BY9sswarQyMH0p_rNXh-h5XwNfza9zmQyRzj9lPfyZMcdS1OIBN0dErqc7Ib09sJ4l0iSWirSZaOzCLrhsQfRxp0cnMmyR7qUXelvHKRI-XvgHFl2RiyY-Slt7Vk70cjL840-RZTxS5wE-uwmOzPd6dJ36oh0ZngbSIqJ6niyoxtxlwmJNoOxUqblZoK5zEHd7Z0JcKtQttKVswi1DSlFIxT33LmDaw0y8a-BYKTdJ4pYytTMcektzsYVjlfLuEQTY2ADoKrdc9j7ttpfK9DPDMWdRB27YVd98IewafbOZeRxeOfo9e99O6MjIIbweagIHV_0q9rTwCIITEX1bu_TPsAT6fzw4P64PPs6wY88yvFJLVNWGmvOruFqKZV74Mu_wYFU_Gu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Output+Feedback+Control+for+a+Class+of+Nonlinear+Systems+via+Disturbance+Observer+and+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yang%2C+Yang&rft.au=Fan%2C+Xin&rft.au=Gao%2C+Weinan&rft.au=Yue%2C+Wenbin&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1063-6706&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTFUZZ.2023.3245294&rft.externalDocID=10045016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon