Exploring nitrogen-mediated effects on Fe and Cu cluster development in graphene: a DFT study
The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) cluste...
Saved in:
Published in | Nanoscale Vol. 16; no. 45; pp. 2955 - 2967 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu
n
-N
4
V
2
systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe
n
-N
4
V
2
case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.
The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. |
---|---|
AbstractList | The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cun–N4V2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fen–N4V2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu -N V systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe -N V case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu n –N 4 V 2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe n –N 4 V 2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cun-N4V2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fen-N4V2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cun-N4V2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fen-N4V2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu n -N 4 V 2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe n -N 4 V 2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. |
Author | Paez-Ornelas, J. I Guerrero-Sánchez, J Fernández-Escamilla, H. N Takeuchi, Noboru Alvarado-Leal, L. A Romo-Herrera, J. M Ruiz-Robles, M. A Perez-Tijerina, E. G |
AuthorAffiliation | Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México Universidad Autónoma de Nuevo León CICFIM Facultad de Ciencias Físico Matemáticas |
AuthorAffiliation_xml | – sequence: 0 name: CICFIM Facultad de Ciencias Físico Matemáticas – sequence: 0 name: Universidad Nacional Autónoma de México – sequence: 0 name: Universidad Autónoma de Nuevo León – sequence: 0 name: Centro de Nanociencias y Nanotecnología |
Author_xml | – sequence: 1 givenname: L. A surname: Alvarado-Leal fullname: Alvarado-Leal, L. A – sequence: 2 givenname: J. I surname: Paez-Ornelas fullname: Paez-Ornelas, J. I – sequence: 3 givenname: M. A surname: Ruiz-Robles fullname: Ruiz-Robles, M. A – sequence: 4 givenname: J surname: Guerrero-Sánchez fullname: Guerrero-Sánchez, J – sequence: 5 givenname: J. M surname: Romo-Herrera fullname: Romo-Herrera, J. M – sequence: 6 givenname: H. N surname: Fernández-Escamilla fullname: Fernández-Escamilla, H. N – sequence: 7 givenname: Noboru surname: Takeuchi fullname: Takeuchi, Noboru – sequence: 8 givenname: E. G surname: Perez-Tijerina fullname: Perez-Tijerina, E. G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39405191$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0VFLHDEQB_Agit6pL32vBPpSCmuTnezm4ps9PRWkQrGPsmST2esee8ma7Jbet2_s6RV8mmH4MQzzn5J95x0S8oGzc85AfbXCBZZLDvUemeRMsAxA5vu7vhRHZBrjirFSQQmH5AiUYAVXfEKerv_0nQ-tW1LXDsEv0WVrtK0e0FJsGjRDpN7RBVLtLJ2P1HRjHDBQi7-x8_0a3UBbR5dB97_Q4QXV9GrxSOMw2s0JOWh0F_H0tR6Tn4vrx_ltdv9wcze_vM9MrsohU6UuDZPpalWzGhpgRZl6VIxjI-0MTc3FrGgKKQB1bos0BClztLUpZqKAY_J5u7cP_nnEOFTrNhrsOu3Qj7ECziWTIp9Bop_e0ZUfg0vXJQWcSSXgRZ29qrFO76j60K512FRvj0vgyxaY4GMM2OwIZ9VLKtWV-P7jXyrfEv64xSGanfufGvwFQzSGgw |
Cites_doi | 10.1021/ja9922476 10.1088/2053-1591/aafabb 10.1016/j.jcat.2018.10.025 10.3390/catal10010053 10.1016/j.ssc.2006.12.023 10.1016/j.commatsci.2005.04.010 10.1103/PhysRevB.80.085417 10.1039/c2cp42484c 10.1021/jacs.5b06485 10.1103/PhysRevB.95.235422 10.1063/1.3553716 10.1038/nmat1077 10.1002/slct.201904529 10.1039/C7CY00723J 10.1103/PhysRevB.89.155438 10.1021/ar300361m 10.1007/s11671-009-9328-4 10.1007/s11671-009-9462-z 10.1021/acsanm.3c04535 10.1126/science.1185200 10.1063/1.448732 10.1039/D0RA01059F 10.1002/aenm.202002459 10.1063/1.4893328 10.1103/PhysRevB.83.205408 10.1039/D2NH00143H 10.1063/1.3382344 10.1021/nl900397t 10.1021/acs.chemrev.1c00158 10.1021/nn200942s 10.1103/PhysRevLett.124.096001 10.1103/PhysRev.136.B864 10.1021/ja983616l 10.1116/1.577853 10.1016/j.physe.2019.02.005 10.1103/PhysRevB.81.115418 10.1021/acsnano.8b04693 10.1016/j.carbon.2015.08.072 10.1103/PhysRevB.72.104417 10.1103/PhysRevB.13.5188 10.1126/science.1102896 10.1126/science.1180297 10.1103/PhysRevB.84.245411 10.1016/j.commatsci.2012.01.009 10.1063/1.3666849 10.1002/anie.201906079 10.1103/PhysRevB.73.155436 10.20517/jmi.2023.32 10.1039/B705913M 10.1021/ja105140e 10.1007/s11244-013-0163-6 10.1103/PhysRev.140.A1133 10.1039/C5CP02014J 10.1007/s11244-011-9677-y 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.63.205407 10.1016/j.catcom.2015.11.021 10.1016/j.susc.2009.11.001 10.1016/S0167-5729(00)00002-9 10.1155/2014/643967 10.1021/acs.langmuir.1c03187 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d4nr02713b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 2967 |
ExternalDocumentID | 39405191 10_1039_D4NR02713B d4nr02713b |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c296t-96a6c073379b0b3f3056379e901ef7d8ecb1485f5743ea2d5f7d3772edbc58453 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 23:00:50 EDT 2025 Mon Jun 30 14:20:19 EDT 2025 Wed Feb 19 02:03:01 EST 2025 Tue Jul 01 00:42:23 EDT 2025 Tue Dec 17 20:57:00 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-96a6c073379b0b3f3056379e901ef7d8ecb1485f5743ea2d5f7d3772edbc58453 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4nr02713b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4304-5279 0000-0003-1457-9677 0000-0002-3037-5386 |
PMID | 39405191 |
PQID | 3131079433 |
PQPubID | 2047485 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3117074283 crossref_primary_10_1039_D4NR02713B pubmed_primary_39405191 proquest_journals_3131079433 rsc_primary_d4nr02713b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-21 |
PublicationDateYYYYMMDD | 2024-11-21 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Monkhorst (D4NR02713B/cit64/1) 1976; 13 Martínez-Carreón (D4NR02713B/cit38/1) 2019; 6 Yam (D4NR02713B/cit57/1) 2020; 10 Ma (D4NR02713B/cit19/1) 2007; 142 Perdew (D4NR02713B/cit62/1) 1996; 77 Lyu (D4NR02713B/cit46/1) 2018; 368 Rêgo (D4NR02713B/cit5/1) 2017; 95 Chen (D4NR02713B/cit42/1) 2017; 7 Barth (D4NR02713B/cit54/1) 2000; 40 Hussain (D4NR02713B/cit8/1) 2020; 10 Yoo (D4NR02713B/cit6/1) 2009; 9 An (D4NR02713B/cit28/1) 2018; 12 An (D4NR02713B/cit47/1) 2018; 12 Grimme (D4NR02713B/cit63/1) 2010; 132 Dai (D4NR02713B/cit12/1) 2010; 22 Heiz (D4NR02713B/cit32/1) 1999; 121 Tang (D4NR02713B/cit1/1) 2011; 135 Alvarado-Leal (D4NR02713B/cit52/1) 2023; 7 Kaden (D4NR02713B/cit33/1) 2009; 326 Geusic (D4NR02713B/cit56/1) 1985; 82 Habenicht (D4NR02713B/cit53/1) 2013; 57 Zhang (D4NR02713B/cit3/1) 2012; 56 Lei (D4NR02713B/cit34/1) 2010; 328 Chai (D4NR02713B/cit2/1) 2012; 14 Acosta (D4NR02713B/cit11/1) 2014; 89 Silva (D4NR02713B/cit39/1) 2014; 2014 Chen (D4NR02713B/cit23/1) 2016; 75 Lyu (D4NR02713B/cit27/1) 2018; 368 Gracia-Pinilla (D4NR02713B/cit37/1) 2009; 5 Gracia-Pinilla (D4NR02713B/cit40/1) 2009; 4 Haberland (D4NR02713B/cit36/1) 1992; 10 Chen (D4NR02713B/cit31/1) 2017; 7 Han (D4NR02713B/cit55/1) 2023; 3 Thomas (D4NR02713B/cit25/1) 2011; 54 Henkelman (D4NR02713B/cit66/1) 2006; 36 Sahoo (D4NR02713B/cit14/1) 2014; 141 Shin (D4NR02713B/cit49/1) 2010; 132 Diéguez (D4NR02713B/cit17/1) 2001; 63 Hohenberg (D4NR02713B/cit60/1) 1964; 136 Pérez-Tijerina (D4NR02713B/cit41/1) 2008; 138 Longo (D4NR02713B/cit16/1) 2010; 81 Mpourmpakis (D4NR02713B/cit20/1) 2005; 72 Yang (D4NR02713B/cit30/1) 2013; 46 Wang (D4NR02713B/cit24/1) 2004; 3 Zhang (D4NR02713B/cit48/1) 2019; 58 Zhang (D4NR02713B/cit58/1) 2015; 17 Singh (D4NR02713B/cit43/1) 2021; 121 Yu (D4NR02713B/cit67/1) 2011; 134 Montejo-Alvaro (D4NR02713B/cit22/1) 2019; 110 Kohn (D4NR02713B/cit61/1) 1965; 140 Jin (D4NR02713B/cit68/1) 2022; 38 Manadé (D4NR02713B/cit9/1) 2015; 95 Abbet (D4NR02713B/cit35/1) 2000; 122 Zhu (D4NR02713B/cit45/1) 2020; 5 Takele Menisa (D4NR02713B/cit44/1) 2022; 7 Berwanger (D4NR02713B/cit18/1) 2020; 124 Zhang (D4NR02713B/cit29/1) 2019; 58 Yan (D4NR02713B/cit7/1) 2015; 137 Okazaki-Maeda (D4NR02713B/cit13/1) 2010; 604 Giannozzi (D4NR02713B/cit59/1) 2009; 21 Guvelioglu (D4NR02713B/cit21/1) 2006; 73 Fernandez-Escamilla (D4NR02713B/cit51/1) 2021; 11 Zhu (D4NR02713B/cit26/1) 2020; 5 Lima (D4NR02713B/cit10/1) 2011; 84 Novoselov (D4NR02713B/cit65/1) 2004; 306 Johll (D4NR02713B/cit15/1) 2011; 83 Üzengi Aktürk (D4NR02713B/cit4/1) 2009; 80 Kumar (D4NR02713B/cit50/1) 2011; 5 |
References_xml | – volume: 122 start-page: 3453 year: 2000 ident: D4NR02713B/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9922476 – volume: 6 start-page: 046515 year: 2019 ident: D4NR02713B/cit38/1 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aafabb – volume: 368 start-page: 279 year: 2018 ident: D4NR02713B/cit46/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.10.025 – volume: 10 start-page: 53 year: 2020 ident: D4NR02713B/cit57/1 publication-title: Catalysts doi: 10.3390/catal10010053 – volume: 142 start-page: 114 year: 2007 ident: D4NR02713B/cit19/1 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2006.12.023 – volume: 36 start-page: 354 year: 2006 ident: D4NR02713B/cit66/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 80 start-page: 085417 year: 2009 ident: D4NR02713B/cit4/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.80.085417 – volume: 14 start-page: 16745 year: 2012 ident: D4NR02713B/cit2/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42484c – volume: 137 start-page: 10484 year: 2015 ident: D4NR02713B/cit7/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06485 – volume: 95 start-page: 235422 year: 2017 ident: D4NR02713B/cit5/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.235422 – volume: 134 start-page: 064111 issue: 6 year: 2011 ident: D4NR02713B/cit67/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3553716 – volume: 3 start-page: 143 year: 2004 ident: D4NR02713B/cit24/1 publication-title: Nat. Mater. doi: 10.1038/nmat1077 – volume: 5 start-page: 1282 year: 2020 ident: D4NR02713B/cit26/1 publication-title: ChemistrySelect doi: 10.1002/slct.201904529 – volume: 7 start-page: 4250 year: 2017 ident: D4NR02713B/cit31/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00723J – volume: 89 start-page: 155438 year: 2014 ident: D4NR02713B/cit11/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.155438 – volume: 46 start-page: 1740 year: 2013 ident: D4NR02713B/cit30/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 4 start-page: 896 issue: 8 year: 2009 ident: D4NR02713B/cit40/1 publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-009-9328-4 – volume: 5 start-page: 180 issue: 1 year: 2009 ident: D4NR02713B/cit37/1 publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-009-9462-z – volume: 7 start-page: 338 year: 2023 ident: D4NR02713B/cit52/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c04535 – volume: 328 start-page: 224 year: 2010 ident: D4NR02713B/cit34/1 publication-title: Science doi: 10.1126/science.1185200 – volume: 7 start-page: 4250 year: 2017 ident: D4NR02713B/cit42/1 publication-title: Catal.: Sci. Technol. – volume: 82 start-page: 590 year: 1985 ident: D4NR02713B/cit56/1 publication-title: J. Chem. Phys. doi: 10.1063/1.448732 – volume: 10 start-page: 20595 year: 2020 ident: D4NR02713B/cit8/1 publication-title: RSC Adv. doi: 10.1039/D0RA01059F – volume: 11 start-page: 2002459 year: 2021 ident: D4NR02713B/cit51/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002459 – volume: 141 start-page: 074707 issue: 7 year: 2014 ident: D4NR02713B/cit14/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4893328 – volume: 83 start-page: 205408 issue: 20 year: 2011 ident: D4NR02713B/cit15/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.205408 – volume: 7 start-page: 916 year: 2022 ident: D4NR02713B/cit44/1 publication-title: Nanoscale Horiz. doi: 10.1039/D2NH00143H – volume: 132 start-page: 154104 year: 2010 ident: D4NR02713B/cit63/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 9 start-page: 2255 year: 2009 ident: D4NR02713B/cit6/1 publication-title: Nano Lett. doi: 10.1021/nl900397t – volume: 121 start-page: 13620 year: 2021 ident: D4NR02713B/cit43/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00158 – volume: 5 start-page: 4197 year: 2011 ident: D4NR02713B/cit50/1 publication-title: ACS Nano doi: 10.1021/nn200942s – volume: 124 start-page: 096001 issue: 9 year: 2020 ident: D4NR02713B/cit18/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.096001 – volume: 136 start-page: B864 year: 1964 ident: D4NR02713B/cit60/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 121 start-page: 3214 year: 1999 ident: D4NR02713B/cit32/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja983616l – volume: 10 start-page: 3266 year: 1992 ident: D4NR02713B/cit36/1 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.577853 – volume: 110 start-page: 52 year: 2019 ident: D4NR02713B/cit22/1 publication-title: Phys. E doi: 10.1016/j.physe.2019.02.005 – volume: 81 start-page: 115418 year: 2010 ident: D4NR02713B/cit16/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.115418 – volume: 12 start-page: 9441 year: 2018 ident: D4NR02713B/cit28/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b04693 – volume: 95 start-page: 525 year: 2015 ident: D4NR02713B/cit9/1 publication-title: Carbon doi: 10.1016/j.carbon.2015.08.072 – volume: 72 start-page: 104417 issue: 10 year: 2005 ident: D4NR02713B/cit20/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.72.104417 – volume: 22 start-page: 316005 year: 2010 ident: D4NR02713B/cit12/1 publication-title: J. Phys.: Condens. Matter – volume: 13 start-page: 5188 year: 1976 ident: D4NR02713B/cit64/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 – volume: 306 start-page: 666 year: 2004 ident: D4NR02713B/cit65/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 326 start-page: 826 year: 2009 ident: D4NR02713B/cit33/1 publication-title: Science doi: 10.1126/science.1180297 – volume: 84 start-page: 245411 year: 2011 ident: D4NR02713B/cit10/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.245411 – volume: 56 start-page: 95 year: 2012 ident: D4NR02713B/cit3/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.01.009 – volume: 135 start-page: 224704 year: 2011 ident: D4NR02713B/cit1/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3666849 – volume: 58 start-page: 14871 year: 2019 ident: D4NR02713B/cit48/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906079 – volume: 73 start-page: 155436 issue: 15 year: 2006 ident: D4NR02713B/cit21/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.73.155436 – volume: 3 start-page: 24 issue: 4 year: 2023 ident: D4NR02713B/cit55/1 publication-title: J. Mater. Inf. doi: 10.20517/jmi.2023.32 – volume: 138 start-page: 353 year: 2008 ident: D4NR02713B/cit41/1 publication-title: Faraday Discuss. doi: 10.1039/B705913M – volume: 132 start-page: 15603 year: 2010 ident: D4NR02713B/cit49/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105140e – volume: 57 start-page: 69 year: 2013 ident: D4NR02713B/cit53/1 publication-title: Top. Catal. doi: 10.1007/s11244-013-0163-6 – volume: 140 start-page: A1133 year: 1965 ident: D4NR02713B/cit61/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 17 start-page: 16733 year: 2015 ident: D4NR02713B/cit58/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02014J – volume: 58 start-page: 14871 year: 2019 ident: D4NR02713B/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906079 – volume: 54 start-page: 588 year: 2011 ident: D4NR02713B/cit25/1 publication-title: Top. Catal. doi: 10.1007/s11244-011-9677-y – volume: 77 start-page: 3865 year: 1996 ident: D4NR02713B/cit62/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 63 start-page: 205407 issue: 20 year: 2001 ident: D4NR02713B/cit17/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.205407 – volume: 75 start-page: 74 year: 2016 ident: D4NR02713B/cit23/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2015.11.021 – volume: 12 start-page: 9441 year: 2018 ident: D4NR02713B/cit47/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b04693 – volume: 604 start-page: 144 year: 2010 ident: D4NR02713B/cit13/1 publication-title: Surf. Sci. doi: 10.1016/j.susc.2009.11.001 – volume: 40 start-page: 75 year: 2000 ident: D4NR02713B/cit54/1 publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(00)00002-9 – volume: 21 start-page: 395502 year: 2009 ident: D4NR02713B/cit59/1 publication-title: J. Phys.: Condens. Matter – volume: 2014 start-page: 1 year: 2014 ident: D4NR02713B/cit39/1 publication-title: J. Nanomater. doi: 10.1155/2014/643967 – volume: 368 start-page: 279 year: 2018 ident: D4NR02713B/cit27/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.10.025 – volume: 5 start-page: 1282 year: 2020 ident: D4NR02713B/cit45/1 publication-title: ChemistrySelect doi: 10.1002/slct.201904529 – volume: 38 start-page: 3694 year: 2022 ident: D4NR02713B/cit68/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.1c03187 |
SSID | ssj0069363 |
Score | 2.4492507 |
Snippet | The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2955 |
SubjectTerms | Copper Graphene Iron Magnetic properties Metal clusters Monolayers Nitrogen Transition metals |
Title | Exploring nitrogen-mediated effects on Fe and Cu cluster development in graphene: a DFT study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39405191 https://www.proquest.com/docview/3131079433 https://www.proquest.com/docview/3117074283 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPaFwGZQMZwVuVkdi58rZ1yyYoHSqp6AuKYseVJlUOShse-jP4xRwnTpypCAEvUeo6F_l8OT73g9DbnDLu58pqQwQDBcUOrZBkwmI5j5SbC4RYZRr4NPOvF-6HpbccDH72opaqLTvlu9_mlfwPVWEM6KqyZP-Bst1NYQDOgb5wBArD8a9obALo4MMsC5hn1ZkgSorsAjXkOG5cBJNqzNfVpukJ3oUKKYNHXbUamF6T-XwRJ72qs1pwBS5cbICeBiHrH1mZ5YU1FXXPgPHUmEU_Z2Jn3ZRSrHW6mLHNzqvbnTVXTWwaM7e56KoSZSnKwvpSO-8dCXDaGceVtkwQV6XoEWOZaOwfbfBpHVyiW9gZHkdUQCOlTSHzU9EfC-4yab8HRtfrs1xVRK-3f8PvpsHH3uZgU1VbNXdlCbq4Q5nZAlu3_-wmjRfTaZpcLpN76ICA6kGG6ODs4_nV13Z_9yNa9-frXr0tekujd-bed8WcPd0FJJmy7TBTSzLJIXqoVRB81uDpERoI-Rg96BWmfIK-dcjCe8jCGlm4kDgWGJCFJxXWyMI9ZOFbiVtkvccZBlzhGldP0SK-TCbXlm7EYXES-Vsr8jOfq-6eQcRsRldK7YRzAbKkWAV5KDgDrdpbeSCOiozkHgxSWDuRMw4CrkeP0FAWUjxHeOUTlwc0h2szFdoc2j4HtgAMA_R2O7JH6E27bun3pt5KWsdJ0Ci9cGfzenXPR-ikXdJUf4-blDqgqqh6h3SEXnd_A-KUCyyToqjUHCdQ1qAQ5jxrSNE9hkau0mecEToC2nTDhqYv_vzUY3TffAUnaLgtK_ESJNYte6Uh9Av8i5R1 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+nitrogen-mediated+effects+on+Fe+and+Cu+cluster+development+in+graphene%3A+a+DFT+study&rft.jtitle=Nanoscale&rft.au=Alvarado-Leal%2C+L+A&rft.au=Paez-Ornelas%2C+J+I&rft.au=Ruiz-Robles%2C+M+A&rft.au=Guerrero-S%C3%A1nchez%2C+J&rft.date=2024-11-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=16&rft.issue=45&rft.spage=20955&rft.epage=20967&rft_id=info:doi/10.1039%2Fd4nr02713b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |