Exploring nitrogen-mediated effects on Fe and Cu cluster development in graphene: a DFT study

The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) cluste...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 16; no. 45; pp. 2955 - 2967
Main Authors Alvarado-Leal, L. A, Paez-Ornelas, J. I, Ruiz-Robles, M. A, Guerrero-Sánchez, J, Romo-Herrera, J. M, Fernández-Escamilla, H. N, Takeuchi, Noboru, Perez-Tijerina, E. G
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu n -N 4 V 2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe n -N 4 V 2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution.
AbstractList The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cun–N4V2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fen–N4V2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.
The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu -N V systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe -N V case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.
The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu n –N 4 V 2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe n –N 4 V 2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.
The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cun-N4V2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fen-N4V2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cun-N4V2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fen-N4V2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials.
The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution. In this study, we investigated the growth mechanisms of non-magnetic (copper) and magnetic (iron) clusters on graphene with two atomic vacancies, with and without pyridinic nitrogen (N). Our results determine the role of pyridinic N in the growth and physicochemical properties of the mentioned metal clusters. In an N environment, Cu grows perpendicularly, whereas under N-deficient conditions, the clusters agglomerate. Fe cumulate-type clusters are formed regardless of the presence of N. However, N causes the Fe clusters to rise over one side of the surface without deforming the monolayer; meanwhile, in the absence of N, the Fe clusters protrude from both sides of the monolayer. Remarkably, the presence of N makes it feasible to induce magnetization in the Cu n -N 4 V 2 systems and aid in focalizing the magnetic properties on the Fe clusters for the Fe n -N 4 V 2 case. These findings offer insights into the role of N in cluster growth, with potential implications for diverse applications, including magnetic and electrocatalytic materials. The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling comprehension on the cluster growth evolution.
Author Paez-Ornelas, J. I
Guerrero-Sánchez, J
Fernández-Escamilla, H. N
Takeuchi, Noboru
Alvarado-Leal, L. A
Romo-Herrera, J. M
Ruiz-Robles, M. A
Perez-Tijerina, E. G
AuthorAffiliation Centro de Nanociencias y Nanotecnología
Universidad Nacional Autónoma de México
Universidad Autónoma de Nuevo León
CICFIM Facultad de Ciencias Físico Matemáticas
AuthorAffiliation_xml – sequence: 0
  name: CICFIM Facultad de Ciencias Físico Matemáticas
– sequence: 0
  name: Universidad Nacional Autónoma de México
– sequence: 0
  name: Universidad Autónoma de Nuevo León
– sequence: 0
  name: Centro de Nanociencias y Nanotecnología
Author_xml – sequence: 1
  givenname: L. A
  surname: Alvarado-Leal
  fullname: Alvarado-Leal, L. A
– sequence: 2
  givenname: J. I
  surname: Paez-Ornelas
  fullname: Paez-Ornelas, J. I
– sequence: 3
  givenname: M. A
  surname: Ruiz-Robles
  fullname: Ruiz-Robles, M. A
– sequence: 4
  givenname: J
  surname: Guerrero-Sánchez
  fullname: Guerrero-Sánchez, J
– sequence: 5
  givenname: J. M
  surname: Romo-Herrera
  fullname: Romo-Herrera, J. M
– sequence: 6
  givenname: H. N
  surname: Fernández-Escamilla
  fullname: Fernández-Escamilla, H. N
– sequence: 7
  givenname: Noboru
  surname: Takeuchi
  fullname: Takeuchi, Noboru
– sequence: 8
  givenname: E. G
  surname: Perez-Tijerina
  fullname: Perez-Tijerina, E. G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39405191$$D View this record in MEDLINE/PubMed
BookMark eNpd0VFLHDEQB_Agit6pL32vBPpSCmuTnezm4ps9PRWkQrGPsmST2esee8ma7Jbet2_s6RV8mmH4MQzzn5J95x0S8oGzc85AfbXCBZZLDvUemeRMsAxA5vu7vhRHZBrjirFSQQmH5AiUYAVXfEKerv_0nQ-tW1LXDsEv0WVrtK0e0FJsGjRDpN7RBVLtLJ2P1HRjHDBQi7-x8_0a3UBbR5dB97_Q4QXV9GrxSOMw2s0JOWh0F_H0tR6Tn4vrx_ltdv9wcze_vM9MrsohU6UuDZPpalWzGhpgRZl6VIxjI-0MTc3FrGgKKQB1bos0BClztLUpZqKAY_J5u7cP_nnEOFTrNhrsOu3Qj7ECziWTIp9Bop_e0ZUfg0vXJQWcSSXgRZ29qrFO76j60K512FRvj0vgyxaY4GMM2OwIZ9VLKtWV-P7jXyrfEv64xSGanfufGvwFQzSGgw
Cites_doi 10.1021/ja9922476
10.1088/2053-1591/aafabb
10.1016/j.jcat.2018.10.025
10.3390/catal10010053
10.1016/j.ssc.2006.12.023
10.1016/j.commatsci.2005.04.010
10.1103/PhysRevB.80.085417
10.1039/c2cp42484c
10.1021/jacs.5b06485
10.1103/PhysRevB.95.235422
10.1063/1.3553716
10.1038/nmat1077
10.1002/slct.201904529
10.1039/C7CY00723J
10.1103/PhysRevB.89.155438
10.1021/ar300361m
10.1007/s11671-009-9328-4
10.1007/s11671-009-9462-z
10.1021/acsanm.3c04535
10.1126/science.1185200
10.1063/1.448732
10.1039/D0RA01059F
10.1002/aenm.202002459
10.1063/1.4893328
10.1103/PhysRevB.83.205408
10.1039/D2NH00143H
10.1063/1.3382344
10.1021/nl900397t
10.1021/acs.chemrev.1c00158
10.1021/nn200942s
10.1103/PhysRevLett.124.096001
10.1103/PhysRev.136.B864
10.1021/ja983616l
10.1116/1.577853
10.1016/j.physe.2019.02.005
10.1103/PhysRevB.81.115418
10.1021/acsnano.8b04693
10.1016/j.carbon.2015.08.072
10.1103/PhysRevB.72.104417
10.1103/PhysRevB.13.5188
10.1126/science.1102896
10.1126/science.1180297
10.1103/PhysRevB.84.245411
10.1016/j.commatsci.2012.01.009
10.1063/1.3666849
10.1002/anie.201906079
10.1103/PhysRevB.73.155436
10.20517/jmi.2023.32
10.1039/B705913M
10.1021/ja105140e
10.1007/s11244-013-0163-6
10.1103/PhysRev.140.A1133
10.1039/C5CP02014J
10.1007/s11244-011-9677-y
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.63.205407
10.1016/j.catcom.2015.11.021
10.1016/j.susc.2009.11.001
10.1016/S0167-5729(00)00002-9
10.1155/2014/643967
10.1021/acs.langmuir.1c03187
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d4nr02713b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 2967
ExternalDocumentID 39405191
10_1039_D4NR02713B
d4nr02713b
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c296t-96a6c073379b0b3f3056379e901ef7d8ecb1485f5743ea2d5f7d3772edbc58453
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 23:00:50 EDT 2025
Mon Jun 30 14:20:19 EDT 2025
Wed Feb 19 02:03:01 EST 2025
Tue Jul 01 00:42:23 EDT 2025
Tue Dec 17 20:57:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-96a6c073379b0b3f3056379e901ef7d8ecb1485f5743ea2d5f7d3772edbc58453
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4nr02713b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4304-5279
0000-0003-1457-9677
0000-0002-3037-5386
PMID 39405191
PQID 3131079433
PQPubID 2047485
PageCount 13
ParticipantIDs proquest_miscellaneous_3117074283
crossref_primary_10_1039_D4NR02713B
pubmed_primary_39405191
proquest_journals_3131079433
rsc_primary_d4nr02713b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-21
PublicationDateYYYYMMDD 2024-11-21
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Monkhorst (D4NR02713B/cit64/1) 1976; 13
Martínez-Carreón (D4NR02713B/cit38/1) 2019; 6
Yam (D4NR02713B/cit57/1) 2020; 10
Ma (D4NR02713B/cit19/1) 2007; 142
Perdew (D4NR02713B/cit62/1) 1996; 77
Lyu (D4NR02713B/cit46/1) 2018; 368
Rêgo (D4NR02713B/cit5/1) 2017; 95
Chen (D4NR02713B/cit42/1) 2017; 7
Barth (D4NR02713B/cit54/1) 2000; 40
Hussain (D4NR02713B/cit8/1) 2020; 10
Yoo (D4NR02713B/cit6/1) 2009; 9
An (D4NR02713B/cit28/1) 2018; 12
An (D4NR02713B/cit47/1) 2018; 12
Grimme (D4NR02713B/cit63/1) 2010; 132
Dai (D4NR02713B/cit12/1) 2010; 22
Heiz (D4NR02713B/cit32/1) 1999; 121
Tang (D4NR02713B/cit1/1) 2011; 135
Alvarado-Leal (D4NR02713B/cit52/1) 2023; 7
Kaden (D4NR02713B/cit33/1) 2009; 326
Geusic (D4NR02713B/cit56/1) 1985; 82
Habenicht (D4NR02713B/cit53/1) 2013; 57
Zhang (D4NR02713B/cit3/1) 2012; 56
Lei (D4NR02713B/cit34/1) 2010; 328
Chai (D4NR02713B/cit2/1) 2012; 14
Acosta (D4NR02713B/cit11/1) 2014; 89
Silva (D4NR02713B/cit39/1) 2014; 2014
Chen (D4NR02713B/cit23/1) 2016; 75
Lyu (D4NR02713B/cit27/1) 2018; 368
Gracia-Pinilla (D4NR02713B/cit37/1) 2009; 5
Gracia-Pinilla (D4NR02713B/cit40/1) 2009; 4
Haberland (D4NR02713B/cit36/1) 1992; 10
Chen (D4NR02713B/cit31/1) 2017; 7
Han (D4NR02713B/cit55/1) 2023; 3
Thomas (D4NR02713B/cit25/1) 2011; 54
Henkelman (D4NR02713B/cit66/1) 2006; 36
Sahoo (D4NR02713B/cit14/1) 2014; 141
Shin (D4NR02713B/cit49/1) 2010; 132
Diéguez (D4NR02713B/cit17/1) 2001; 63
Hohenberg (D4NR02713B/cit60/1) 1964; 136
Pérez-Tijerina (D4NR02713B/cit41/1) 2008; 138
Longo (D4NR02713B/cit16/1) 2010; 81
Mpourmpakis (D4NR02713B/cit20/1) 2005; 72
Yang (D4NR02713B/cit30/1) 2013; 46
Wang (D4NR02713B/cit24/1) 2004; 3
Zhang (D4NR02713B/cit48/1) 2019; 58
Zhang (D4NR02713B/cit58/1) 2015; 17
Singh (D4NR02713B/cit43/1) 2021; 121
Yu (D4NR02713B/cit67/1) 2011; 134
Montejo-Alvaro (D4NR02713B/cit22/1) 2019; 110
Kohn (D4NR02713B/cit61/1) 1965; 140
Jin (D4NR02713B/cit68/1) 2022; 38
Manadé (D4NR02713B/cit9/1) 2015; 95
Abbet (D4NR02713B/cit35/1) 2000; 122
Zhu (D4NR02713B/cit45/1) 2020; 5
Takele Menisa (D4NR02713B/cit44/1) 2022; 7
Berwanger (D4NR02713B/cit18/1) 2020; 124
Zhang (D4NR02713B/cit29/1) 2019; 58
Yan (D4NR02713B/cit7/1) 2015; 137
Okazaki-Maeda (D4NR02713B/cit13/1) 2010; 604
Giannozzi (D4NR02713B/cit59/1) 2009; 21
Guvelioglu (D4NR02713B/cit21/1) 2006; 73
Fernandez-Escamilla (D4NR02713B/cit51/1) 2021; 11
Zhu (D4NR02713B/cit26/1) 2020; 5
Lima (D4NR02713B/cit10/1) 2011; 84
Novoselov (D4NR02713B/cit65/1) 2004; 306
Johll (D4NR02713B/cit15/1) 2011; 83
Üzengi Aktürk (D4NR02713B/cit4/1) 2009; 80
Kumar (D4NR02713B/cit50/1) 2011; 5
References_xml – volume: 122
  start-page: 3453
  year: 2000
  ident: D4NR02713B/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9922476
– volume: 6
  start-page: 046515
  year: 2019
  ident: D4NR02713B/cit38/1
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aafabb
– volume: 368
  start-page: 279
  year: 2018
  ident: D4NR02713B/cit46/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.10.025
– volume: 10
  start-page: 53
  year: 2020
  ident: D4NR02713B/cit57/1
  publication-title: Catalysts
  doi: 10.3390/catal10010053
– volume: 142
  start-page: 114
  year: 2007
  ident: D4NR02713B/cit19/1
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2006.12.023
– volume: 36
  start-page: 354
  year: 2006
  ident: D4NR02713B/cit66/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 80
  start-page: 085417
  year: 2009
  ident: D4NR02713B/cit4/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.085417
– volume: 14
  start-page: 16745
  year: 2012
  ident: D4NR02713B/cit2/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42484c
– volume: 137
  start-page: 10484
  year: 2015
  ident: D4NR02713B/cit7/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06485
– volume: 95
  start-page: 235422
  year: 2017
  ident: D4NR02713B/cit5/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.235422
– volume: 134
  start-page: 064111
  issue: 6
  year: 2011
  ident: D4NR02713B/cit67/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553716
– volume: 3
  start-page: 143
  year: 2004
  ident: D4NR02713B/cit24/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1077
– volume: 5
  start-page: 1282
  year: 2020
  ident: D4NR02713B/cit26/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201904529
– volume: 7
  start-page: 4250
  year: 2017
  ident: D4NR02713B/cit31/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00723J
– volume: 89
  start-page: 155438
  year: 2014
  ident: D4NR02713B/cit11/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.155438
– volume: 46
  start-page: 1740
  year: 2013
  ident: D4NR02713B/cit30/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 4
  start-page: 896
  issue: 8
  year: 2009
  ident: D4NR02713B/cit40/1
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-009-9328-4
– volume: 5
  start-page: 180
  issue: 1
  year: 2009
  ident: D4NR02713B/cit37/1
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-009-9462-z
– volume: 7
  start-page: 338
  year: 2023
  ident: D4NR02713B/cit52/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c04535
– volume: 328
  start-page: 224
  year: 2010
  ident: D4NR02713B/cit34/1
  publication-title: Science
  doi: 10.1126/science.1185200
– volume: 7
  start-page: 4250
  year: 2017
  ident: D4NR02713B/cit42/1
  publication-title: Catal.: Sci. Technol.
– volume: 82
  start-page: 590
  year: 1985
  ident: D4NR02713B/cit56/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448732
– volume: 10
  start-page: 20595
  year: 2020
  ident: D4NR02713B/cit8/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA01059F
– volume: 11
  start-page: 2002459
  year: 2021
  ident: D4NR02713B/cit51/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002459
– volume: 141
  start-page: 074707
  issue: 7
  year: 2014
  ident: D4NR02713B/cit14/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4893328
– volume: 83
  start-page: 205408
  issue: 20
  year: 2011
  ident: D4NR02713B/cit15/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.205408
– volume: 7
  start-page: 916
  year: 2022
  ident: D4NR02713B/cit44/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D2NH00143H
– volume: 132
  start-page: 154104
  year: 2010
  ident: D4NR02713B/cit63/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 9
  start-page: 2255
  year: 2009
  ident: D4NR02713B/cit6/1
  publication-title: Nano Lett.
  doi: 10.1021/nl900397t
– volume: 121
  start-page: 13620
  year: 2021
  ident: D4NR02713B/cit43/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00158
– volume: 5
  start-page: 4197
  year: 2011
  ident: D4NR02713B/cit50/1
  publication-title: ACS Nano
  doi: 10.1021/nn200942s
– volume: 124
  start-page: 096001
  issue: 9
  year: 2020
  ident: D4NR02713B/cit18/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.096001
– volume: 136
  start-page: B864
  year: 1964
  ident: D4NR02713B/cit60/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 121
  start-page: 3214
  year: 1999
  ident: D4NR02713B/cit32/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983616l
– volume: 10
  start-page: 3266
  year: 1992
  ident: D4NR02713B/cit36/1
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.577853
– volume: 110
  start-page: 52
  year: 2019
  ident: D4NR02713B/cit22/1
  publication-title: Phys. E
  doi: 10.1016/j.physe.2019.02.005
– volume: 81
  start-page: 115418
  year: 2010
  ident: D4NR02713B/cit16/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.115418
– volume: 12
  start-page: 9441
  year: 2018
  ident: D4NR02713B/cit28/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04693
– volume: 95
  start-page: 525
  year: 2015
  ident: D4NR02713B/cit9/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.08.072
– volume: 72
  start-page: 104417
  issue: 10
  year: 2005
  ident: D4NR02713B/cit20/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.72.104417
– volume: 22
  start-page: 316005
  year: 2010
  ident: D4NR02713B/cit12/1
  publication-title: J. Phys.: Condens. Matter
– volume: 13
  start-page: 5188
  year: 1976
  ident: D4NR02713B/cit64/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 306
  start-page: 666
  year: 2004
  ident: D4NR02713B/cit65/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 326
  start-page: 826
  year: 2009
  ident: D4NR02713B/cit33/1
  publication-title: Science
  doi: 10.1126/science.1180297
– volume: 84
  start-page: 245411
  year: 2011
  ident: D4NR02713B/cit10/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.245411
– volume: 56
  start-page: 95
  year: 2012
  ident: D4NR02713B/cit3/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.01.009
– volume: 135
  start-page: 224704
  year: 2011
  ident: D4NR02713B/cit1/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3666849
– volume: 58
  start-page: 14871
  year: 2019
  ident: D4NR02713B/cit48/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906079
– volume: 73
  start-page: 155436
  issue: 15
  year: 2006
  ident: D4NR02713B/cit21/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.155436
– volume: 3
  start-page: 24
  issue: 4
  year: 2023
  ident: D4NR02713B/cit55/1
  publication-title: J. Mater. Inf.
  doi: 10.20517/jmi.2023.32
– volume: 138
  start-page: 353
  year: 2008
  ident: D4NR02713B/cit41/1
  publication-title: Faraday Discuss.
  doi: 10.1039/B705913M
– volume: 132
  start-page: 15603
  year: 2010
  ident: D4NR02713B/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105140e
– volume: 57
  start-page: 69
  year: 2013
  ident: D4NR02713B/cit53/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-013-0163-6
– volume: 140
  start-page: A1133
  year: 1965
  ident: D4NR02713B/cit61/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 17
  start-page: 16733
  year: 2015
  ident: D4NR02713B/cit58/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02014J
– volume: 58
  start-page: 14871
  year: 2019
  ident: D4NR02713B/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906079
– volume: 54
  start-page: 588
  year: 2011
  ident: D4NR02713B/cit25/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-011-9677-y
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4NR02713B/cit62/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 63
  start-page: 205407
  issue: 20
  year: 2001
  ident: D4NR02713B/cit17/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.205407
– volume: 75
  start-page: 74
  year: 2016
  ident: D4NR02713B/cit23/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2015.11.021
– volume: 12
  start-page: 9441
  year: 2018
  ident: D4NR02713B/cit47/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04693
– volume: 604
  start-page: 144
  year: 2010
  ident: D4NR02713B/cit13/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2009.11.001
– volume: 40
  start-page: 75
  year: 2000
  ident: D4NR02713B/cit54/1
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(00)00002-9
– volume: 21
  start-page: 395502
  year: 2009
  ident: D4NR02713B/cit59/1
  publication-title: J. Phys.: Condens. Matter
– volume: 2014
  start-page: 1
  year: 2014
  ident: D4NR02713B/cit39/1
  publication-title: J. Nanomater.
  doi: 10.1155/2014/643967
– volume: 368
  start-page: 279
  year: 2018
  ident: D4NR02713B/cit27/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.10.025
– volume: 5
  start-page: 1282
  year: 2020
  ident: D4NR02713B/cit45/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201904529
– volume: 38
  start-page: 3694
  year: 2022
  ident: D4NR02713B/cit68/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c03187
SSID ssj0069363
Score 2.4492507
Snippet The controlled growth and stability of transition metal clusters on N-doped materials have become the subject of intense investigation for unveiling...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 2955
SubjectTerms Copper
Graphene
Iron
Magnetic properties
Metal clusters
Monolayers
Nitrogen
Transition metals
Title Exploring nitrogen-mediated effects on Fe and Cu cluster development in graphene: a DFT study
URI https://www.ncbi.nlm.nih.gov/pubmed/39405191
https://www.proquest.com/docview/3131079433
https://www.proquest.com/docview/3117074283
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPaFwGZQMZwVuVkdi58rZ1yyYoHSqp6AuKYseVJlUOShse-jP4xRwnTpypCAEvUeo6F_l8OT73g9DbnDLu58pqQwQDBcUOrZBkwmI5j5SbC4RYZRr4NPOvF-6HpbccDH72opaqLTvlu9_mlfwPVWEM6KqyZP-Bst1NYQDOgb5wBArD8a9obALo4MMsC5hn1ZkgSorsAjXkOG5cBJNqzNfVpukJ3oUKKYNHXbUamF6T-XwRJ72qs1pwBS5cbICeBiHrH1mZ5YU1FXXPgPHUmEU_Z2Jn3ZRSrHW6mLHNzqvbnTVXTWwaM7e56KoSZSnKwvpSO-8dCXDaGceVtkwQV6XoEWOZaOwfbfBpHVyiW9gZHkdUQCOlTSHzU9EfC-4yab8HRtfrs1xVRK-3f8PvpsHH3uZgU1VbNXdlCbq4Q5nZAlu3_-wmjRfTaZpcLpN76ICA6kGG6ODs4_nV13Z_9yNa9-frXr0tekujd-bed8WcPd0FJJmy7TBTSzLJIXqoVRB81uDpERoI-Rg96BWmfIK-dcjCe8jCGlm4kDgWGJCFJxXWyMI9ZOFbiVtkvccZBlzhGldP0SK-TCbXlm7EYXES-Vsr8jOfq-6eQcRsRldK7YRzAbKkWAV5KDgDrdpbeSCOiozkHgxSWDuRMw4CrkeP0FAWUjxHeOUTlwc0h2szFdoc2j4HtgAMA_R2O7JH6E27bun3pt5KWsdJ0Ci9cGfzenXPR-ikXdJUf4-blDqgqqh6h3SEXnd_A-KUCyyToqjUHCdQ1qAQ5jxrSNE9hkau0mecEToC2nTDhqYv_vzUY3TffAUnaLgtK_ESJNYte6Uh9Av8i5R1
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+nitrogen-mediated+effects+on+Fe+and+Cu+cluster+development+in+graphene%3A+a+DFT+study&rft.jtitle=Nanoscale&rft.au=Alvarado-Leal%2C+L+A&rft.au=Paez-Ornelas%2C+J+I&rft.au=Ruiz-Robles%2C+M+A&rft.au=Guerrero-S%C3%A1nchez%2C+J&rft.date=2024-11-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=16&rft.issue=45&rft.spage=20955&rft.epage=20967&rft_id=info:doi/10.1039%2Fd4nr02713b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon