Maxwell-Schrödinger Modeling of a Superconducting Qubit Coupled to a Transmission Line Network
In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the...
Saved in:
Published in | IEEE journal on multiscale and multiphysics computational techniques Vol. 9; pp. 61 - 74 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2379-8815 2379-8815 |
DOI | 10.1109/JMMCT.2024.3349433 |
Cover
Loading…
Abstract | In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrödinger method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits. |
---|---|
AbstractList | In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrödinger method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits. |
Author | Elkin, Samuel T. Roth, Thomas E. |
Author_xml | – sequence: 1 givenname: Thomas E. orcidid: 0000-0001-5771-4205 surname: Roth fullname: Roth, Thomas E. email: rothte@purdue.edu organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Samuel T. surname: Elkin fullname: Elkin, Samuel T. email: selkin@purdue.edu organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA |
BookMark | eNp9kctKxDAUhoMoqKMvIC4Krjvm0kuylOKVqSKO65CmpxqtTU1SRl_MF_DFbB0X4sLV-Tn8XxK-7KLNznaA0AHBc0KwOL4qy2I5p5gmc8YSkTC2gXYoy0XMOUk3f-VttO_9E8aY5JRiTHeQLNXbCto2vtOP7vOjNt0DuKi0NbRjjGwTqehu6MFp29WDDtPydqhMiAo79C3UUbBjZelU51-M98Z20cJ0EF1DWFn3vIe2GtV62P-ZM3R_drosLuLFzfllcbKINRVZiEXKGQcBtaI6zYEoqnhCdCpEBkrpKlW8SvNKZY3KeJ2LtCFVlbCEJ3XVJIqzGTpan9s7-zqAD_LJDq4br5RUkDSfvEwtvm5pZ7130Ehtggrjo4NTppUEy8mo_DYqJ6Pyx-iI0j9o78yLcu__Q4dryADAL2D8jyzP2Bc4AIXO |
CODEN | IJMMOP |
CitedBy_id | crossref_primary_10_1109_JMMCT_2024_3428344 crossref_primary_10_1103_PhysRevApplied_22_064084 crossref_primary_10_1109_TAP_2024_3427362 |
Cites_doi | 10.1063/1.5005855 10.1093/acprof:oso/9780199681181.003.0003 10.1103/PhysRevLett.129.010502 10.1109/JMMCT.2021.3112808 10.1109/TMTT.2019.2893639 10.1002/9780470290996 10.1109/TQE.2021.3054041 10.1088/1367-2630/15/3/035009 10.1038/s41586-019-1666-5 10.1109/TPS.2021.3117607 10.1093/oso/9780198566724.001.0001 10.1103/PhysRevLett.127.180501 10.1103/physreva.91.033401 10.1088/2058-9565/aab1ba 10.23919/EuCAP57121.2023.10133765 10.1109/TEMC.2016.2597311 10.1016/j.physrep.2017.10.002 10.1109/MAP.2020.3036098 10.1109/AP-S/USNC-URSI47032.2022.9886800 10.1109/MAP.2022.3176593 10.1103/PhysRevApplied.16.054039 10.1063/5.0050173 10.1109/JQE.2017.2782839 10.1109/TMTT.2023.3308198 10.1038/s41586-022-05434-1 10.1109/NEMO56117.2023.10202378 10.1126/science.1175552 10.1038/nature06126 10.1038/s41534-017-0044-0 10.1038/s41563-021-01187-w 10.1109/MAP.2019.2895623 10.1103/PhysRevB.87.024510 10.1103/physreva.81.033833 10.1109/JMMCT.2022.3198750 10.1063/5.0028951 10.1103/PhysRevB.36.3548 10.1109/TAP.2002.803965 10.1103/PhysRevA.107.022612 10.1103/RevModPhys.93.025005 10.1109/ACCESS.2019.2907137 10.1038/s41534-021-00461-8 10.1002/0471224758 10.1049/iet-cta.2009.0508 10.1038/s41586-021-03588-y 10.1109/JMMCT.2016.2605378 10.1109/JMMCT.2016.2617018 10.1002/9783527618422 10.1088/2058-9565/abe519 10.1109/TPWRS.2003.821452 10.1063/1.3010859 10.1063/1.5089550 10.1103/PhysRevA.84.063834 10.1063/1.1753661 10.1088/2058-9565/ac734b 10.1103/PhysRevA.76.042319 10.1103/PhysRevA.99.022313 10.1016/j.cpc.2012.02.021 10.1103/PhysRevLett.108.240502 10.1016/j.cpc.2017.02.006 10.1103/PhysRevB.60.15398 10.1109/JMMCT.2022.3169460 10.1109/JMMCT.2016.2614800 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/JMMCT.2024.3349433 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2379-8815 |
EndPage | 74 |
ExternalDocumentID | 10_1109_JMMCT_2024_3349433 10379676 |
Genre | orig-research |
GrantInformation_xml | – fundername: Purdue University funderid: 10.13039/100006377 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION RIG 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-95838e9eda2c57e1a2a841c5996eaacb5a8b57ba6fa68d795f1bb43484dbf4a83 |
IEDL.DBID | RIE |
ISSN | 2379-8815 |
IngestDate | Mon Jun 30 04:01:33 EDT 2025 Tue Jul 01 01:32:47 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Wed Aug 27 01:55:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-95838e9eda2c57e1a2a841c5996eaacb5a8b57ba6fa68d795f1bb43484dbf4a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5771-4205 |
PQID | 2915734948 |
PQPubID | 4437231 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10379676 proquest_journals_2915734948 crossref_citationtrail_10_1109_JMMCT_2024_3349433 crossref_primary_10_1109_JMMCT_2024_3349433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal on multiscale and multiphysics computational techniques |
PublicationTitleAbbrev | JMMCT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Jin (ref47) 2015 ref17 ref16 ref19 ref50 ref46 ref45 Scully (ref20) 2001 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Roth (ref18) 2021 ref35 ref34 ref37 ref31 Tinkham (ref48) 2004 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Roth (ref36) 2023 Haken (ref51) 1976 ref60 ref62 ref61 |
References_xml | – volume-title: Proc. URSI Int. Symp. Electromagn. Theory year: 2023 ident: ref36 article-title: Hybrid 1D Maxwell-Schrdinger modeling of dispersive regime effects of a transmon qubit – volume-title: Quantum Field Theory of Solids: An Introduction year: 1976 ident: ref51 – ident: ref63 doi: 10.1063/1.5005855 – start-page: 1 volume-title: Proc. IEEE Int. Appl. Comput. Electromagn. Soc. Symp. year: 2021 ident: ref18 article-title: Full-wave modeling of the emission of a microwave frequency single photon source – ident: ref41 doi: 10.1093/acprof:oso/9780199681181.003.0003 – ident: ref53 doi: 10.1103/PhysRevLett.129.010502 – ident: ref16 doi: 10.1109/JMMCT.2021.3112808 – ident: ref15 doi: 10.1109/TMTT.2019.2893639 – ident: ref43 doi: 10.1002/9780470290996 – ident: ref42 doi: 10.1109/TQE.2021.3054041 – ident: ref32 doi: 10.1088/1367-2630/15/3/035009 – ident: ref1 doi: 10.1038/s41586-019-1666-5 – ident: ref26 doi: 10.1109/TPS.2021.3117607 – ident: ref67 doi: 10.1093/oso/9780198566724.001.0001 – ident: ref2 doi: 10.1103/PhysRevLett.127.180501 – ident: ref21 doi: 10.1103/physreva.91.033401 – ident: ref54 doi: 10.1088/2058-9565/aab1ba – ident: ref35 doi: 10.23919/EuCAP57121.2023.10133765 – ident: ref61 doi: 10.1109/TEMC.2016.2597311 – ident: ref3 doi: 10.1016/j.physrep.2017.10.002 – ident: ref38 doi: 10.1109/MAP.2020.3036098 – ident: ref34 doi: 10.1109/AP-S/USNC-URSI47032.2022.9886800 – ident: ref29 doi: 10.1109/MAP.2022.3176593 – ident: ref57 doi: 10.1103/PhysRevApplied.16.054039 – ident: ref10 doi: 10.1063/5.0050173 – ident: ref23 doi: 10.1109/JQE.2017.2782839 – volume-title: Introduction to Superconductivity year: 2004 ident: ref48 – ident: ref60 doi: 10.1109/TMTT.2023.3308198 – ident: ref8 doi: 10.1038/s41586-022-05434-1 – ident: ref37 doi: 10.1109/NEMO56117.2023.10202378 – ident: ref30 doi: 10.1126/science.1175552 – ident: ref66 doi: 10.1038/nature06126 – ident: ref11 doi: 10.1038/s41534-017-0044-0 – ident: ref12 doi: 10.1038/s41563-021-01187-w – ident: ref62 doi: 10.1109/MAP.2019.2895623 – ident: ref56 doi: 10.1103/PhysRevB.87.024510 – ident: ref55 doi: 10.1103/physreva.81.033833 – ident: ref27 doi: 10.1109/JMMCT.2022.3198750 – ident: ref45 doi: 10.1063/5.0028951 – ident: ref49 doi: 10.1103/PhysRevB.36.3548 – ident: ref58 doi: 10.1109/TAP.2002.803965 – ident: ref46 doi: 10.1103/PhysRevA.107.022612 – ident: ref5 doi: 10.1103/RevModPhys.93.025005 – ident: ref25 doi: 10.1109/ACCESS.2019.2907137 – ident: ref17 doi: 10.1038/s41534-021-00461-8 – ident: ref65 doi: 10.1002/0471224758 – ident: ref68 doi: 10.1049/iet-cta.2009.0508 – ident: ref7 doi: 10.1038/s41586-021-03588-y – ident: ref22 doi: 10.1109/JMMCT.2016.2605378 – ident: ref39 doi: 10.1109/JMMCT.2016.2617018 – ident: ref52 doi: 10.1002/9783527618422 – ident: ref6 doi: 10.1088/2058-9565/abe519 – ident: ref64 doi: 10.1109/TPWRS.2003.821452 – volume-title: The Finite Element Method in Electromagnetics year: 2015 ident: ref47 – ident: ref44 doi: 10.1063/1.3010859 – ident: ref4 doi: 10.1063/1.5089550 – ident: ref31 doi: 10.1103/PhysRevA.84.063834 – ident: ref59 doi: 10.1063/1.1753661 – ident: ref9 doi: 10.1088/2058-9565/ac734b – ident: ref28 doi: 10.1103/PhysRevA.76.042319 – ident: ref13 doi: 10.1103/PhysRevA.99.022313 – ident: ref33 doi: 10.1016/j.cpc.2012.02.021 – ident: ref14 doi: 10.1103/PhysRevLett.108.240502 – ident: ref24 doi: 10.1016/j.cpc.2017.02.006 – ident: ref50 doi: 10.1103/PhysRevB.60.15398 – ident: ref19 doi: 10.1109/JMMCT.2022.3169460 – ident: ref40 doi: 10.1109/JMMCT.2016.2614800 – volume-title: Quantum Optics year: 2001 ident: ref20 |
SSID | ssj0001722002 |
Score | 2.2833521 |
Snippet | In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 61 |
SubjectTerms | circuit quantum electrodynamics Circuits Computational electromagnetics Electrodynamics Hybrid modeling Mathematical models Microwave circuits Microwave measurement Microwaves Numerical models Power transmission lines Quantum phenomena Quantum statistics Qubit Qubits (quantum computing) Superconducting microwave devices superconducting qubits Superconducting transmission lines Superconductivity Transmission line measurements Transmission lines |
Title | Maxwell-Schrödinger Modeling of a Superconducting Qubit Coupled to a Transmission Line Network |
URI | https://ieeexplore.ieee.org/document/10379676 https://www.proquest.com/docview/2915734948 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT744rzhv5ME3abde0jaPMhwibCAq-FZyOUFxrGO2IP4w_4B_zJy09YriWylJCHxJz6Xn-w4hx6n1UY0KlGcMZDZA0drjQ41cGQUqjKXOEiQnT6bJ-U18cctuG7K648IAgCs-Ax8f3b98XagKU2UD5LTxJE06pGMjt5qs9ZFQSUMsOGiJMUM-uJhMRtc2BAxjP0IVlij6YnxcN5Ufn2BnV8Y9Mm13VJeTPPhVKX31_E2s8d9bXidrjYdJT-sjsUFWYL5Jeo23SZu7_LhF8ol4wsydd6Xulq8v2uX3KPZGQ4Y6LQwV9KpawNJGzCgKiy8vK3lf0lFRLWZ2rbKwQ5yxs4cFs27URrZAp3Vl-Ta5GZ9dj869pt2Cp0KelB7HP6jAQYtQsRQCEYosDhTqt4AQSjKRSZZKkRiRZDrlzARSxlGcxVqaWGTRDunOiznsEjq0FsAkKF1v_RtmIs409jg2RgAwrUyfBC0OuWq0yLElxix3McmQ5w67HLHLG-z65OR9zqJW4vhz9DaC8WlkjUOfHLR4581tfcxDHrAU52V7v0zbJ6u4ep17OSDdclnBofVGSnnkTuEbnqLe3w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL0qdAEbaHmoQ2nrRXcow-ThJF5Wo6IpJSNVDBI7y49rgYomoyGREB_WH-iP1dfJtKUI1F0U2UmkY-c-fM-5AB8L76M6E5vIOSx9gGJtJEaWuDIGTZJpW-ZETq6m-eQiO73klz1ZPXBhEDEUn-GQLsNZvq1NS6myY-K0ibzI1-ClN_w87uhaf1IqRUIlBytqzEgcn1bVeOaDwCQbpqTDkqYPzE_op_LoJxwsy8k2TFff1BWUfB-2jR6a-3_kGv_7o1_BVu9jsk_dongNL3C-A9u9v8n63Xy7C7JSd5S7i87N1fLnDxsyfIy6oxFHndWOKXbeLnDpY2aShaWb31p93bBx3S5u_LOa2g8J5s4vF8q7MR_bIpt2teV7cHHyeTaeRH3DhcgkIm8iQWeoKNCqxPACY5WoMosNKbigUkZzVWpeaJU7lZe2ENzFWmdpVmZWu0yV6T6sz-s5vgE28jbA5SRe7z0c7lLBLXU5dk4hcmvcAOIVDtL0auTUFONGhqhkJGTAThJ2ssduAEe_5yw6LY5nR-8RGH-N7HAYwOEKb9nv11uZiJgXNK88eGLaB9iYzKozefZl-vUtbNKbukzMIaw3yxbfed-k0e_DivwFZMDiKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maxwell-Schr%C3%B6dinger+Modeling+of+a+Superconducting+Qubit+Coupled+to+a+Transmission+Line+Network&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=Roth%2C+Thomas+E.&rft.au=Elkin%2C+Samuel+T.&rft.date=2024&rft.pub=IEEE&rft.eissn=2379-8815&rft.volume=9&rft.spage=61&rft.epage=74&rft_id=info:doi/10.1109%2FJMMCT.2024.3349433&rft.externalDocID=10379676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon |