Maxwell-Schrödinger Modeling of a Superconducting Qubit Coupled to a Transmission Line Network

In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on multiscale and multiphysics computational techniques Vol. 9; pp. 61 - 74
Main Authors Roth, Thomas E., Elkin, Samuel T.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8815
2379-8815
DOI10.1109/JMMCT.2024.3349433

Cover

Loading…
Abstract In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrödinger method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.
AbstractList In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrödinger method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.
Author Elkin, Samuel T.
Roth, Thomas E.
Author_xml – sequence: 1
  givenname: Thomas E.
  orcidid: 0000-0001-5771-4205
  surname: Roth
  fullname: Roth, Thomas E.
  email: rothte@purdue.edu
  organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Samuel T.
  surname: Elkin
  fullname: Elkin, Samuel T.
  email: selkin@purdue.edu
  organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNp9kctKxDAUhoMoqKMvIC4Krjvm0kuylOKVqSKO65CmpxqtTU1SRl_MF_DFbB0X4sLV-Tn8XxK-7KLNznaA0AHBc0KwOL4qy2I5p5gmc8YSkTC2gXYoy0XMOUk3f-VttO_9E8aY5JRiTHeQLNXbCto2vtOP7vOjNt0DuKi0NbRjjGwTqehu6MFp29WDDtPydqhMiAo79C3UUbBjZelU51-M98Z20cJ0EF1DWFn3vIe2GtV62P-ZM3R_drosLuLFzfllcbKINRVZiEXKGQcBtaI6zYEoqnhCdCpEBkrpKlW8SvNKZY3KeJ2LtCFVlbCEJ3XVJIqzGTpan9s7-zqAD_LJDq4br5RUkDSfvEwtvm5pZ7130Ehtggrjo4NTppUEy8mo_DYqJ6Pyx-iI0j9o78yLcu__Q4dryADAL2D8jyzP2Bc4AIXO
CODEN IJMMOP
CitedBy_id crossref_primary_10_1109_JMMCT_2024_3428344
crossref_primary_10_1103_PhysRevApplied_22_064084
crossref_primary_10_1109_TAP_2024_3427362
Cites_doi 10.1063/1.5005855
10.1093/acprof:oso/9780199681181.003.0003
10.1103/PhysRevLett.129.010502
10.1109/JMMCT.2021.3112808
10.1109/TMTT.2019.2893639
10.1002/9780470290996
10.1109/TQE.2021.3054041
10.1088/1367-2630/15/3/035009
10.1038/s41586-019-1666-5
10.1109/TPS.2021.3117607
10.1093/oso/9780198566724.001.0001
10.1103/PhysRevLett.127.180501
10.1103/physreva.91.033401
10.1088/2058-9565/aab1ba
10.23919/EuCAP57121.2023.10133765
10.1109/TEMC.2016.2597311
10.1016/j.physrep.2017.10.002
10.1109/MAP.2020.3036098
10.1109/AP-S/USNC-URSI47032.2022.9886800
10.1109/MAP.2022.3176593
10.1103/PhysRevApplied.16.054039
10.1063/5.0050173
10.1109/JQE.2017.2782839
10.1109/TMTT.2023.3308198
10.1038/s41586-022-05434-1
10.1109/NEMO56117.2023.10202378
10.1126/science.1175552
10.1038/nature06126
10.1038/s41534-017-0044-0
10.1038/s41563-021-01187-w
10.1109/MAP.2019.2895623
10.1103/PhysRevB.87.024510
10.1103/physreva.81.033833
10.1109/JMMCT.2022.3198750
10.1063/5.0028951
10.1103/PhysRevB.36.3548
10.1109/TAP.2002.803965
10.1103/PhysRevA.107.022612
10.1103/RevModPhys.93.025005
10.1109/ACCESS.2019.2907137
10.1038/s41534-021-00461-8
10.1002/0471224758
10.1049/iet-cta.2009.0508
10.1038/s41586-021-03588-y
10.1109/JMMCT.2016.2605378
10.1109/JMMCT.2016.2617018
10.1002/9783527618422
10.1088/2058-9565/abe519
10.1109/TPWRS.2003.821452
10.1063/1.3010859
10.1063/1.5089550
10.1103/PhysRevA.84.063834
10.1063/1.1753661
10.1088/2058-9565/ac734b
10.1103/PhysRevA.76.042319
10.1103/PhysRevA.99.022313
10.1016/j.cpc.2012.02.021
10.1103/PhysRevLett.108.240502
10.1016/j.cpc.2017.02.006
10.1103/PhysRevB.60.15398
10.1109/JMMCT.2022.3169460
10.1109/JMMCT.2016.2614800
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/JMMCT.2024.3349433
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2379-8815
EndPage 74
ExternalDocumentID 10_1109_JMMCT_2024_3349433
10379676
Genre orig-research
GrantInformation_xml – fundername: Purdue University
  funderid: 10.13039/100006377
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-95838e9eda2c57e1a2a841c5996eaacb5a8b57ba6fa68d795f1bb43484dbf4a83
IEDL.DBID RIE
ISSN 2379-8815
IngestDate Mon Jun 30 04:01:33 EDT 2025
Tue Jul 01 01:32:47 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Wed Aug 27 01:55:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-95838e9eda2c57e1a2a841c5996eaacb5a8b57ba6fa68d795f1bb43484dbf4a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5771-4205
PQID 2915734948
PQPubID 4437231
PageCount 14
ParticipantIDs ieee_primary_10379676
proquest_journals_2915734948
crossref_citationtrail_10_1109_JMMCT_2024_3349433
crossref_primary_10_1109_JMMCT_2024_3349433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal on multiscale and multiphysics computational techniques
PublicationTitleAbbrev JMMCT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Jin (ref47) 2015
ref17
ref16
ref19
ref50
ref46
ref45
Scully (ref20) 2001
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Roth (ref18) 2021
ref35
ref34
ref37
ref31
Tinkham (ref48) 2004
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref67
ref26
ref25
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Roth (ref36) 2023
Haken (ref51) 1976
ref60
ref62
ref61
References_xml – volume-title: Proc. URSI Int. Symp. Electromagn. Theory
  year: 2023
  ident: ref36
  article-title: Hybrid 1D Maxwell-Schrdinger modeling of dispersive regime effects of a transmon qubit
– volume-title: Quantum Field Theory of Solids: An Introduction
  year: 1976
  ident: ref51
– ident: ref63
  doi: 10.1063/1.5005855
– start-page: 1
  volume-title: Proc. IEEE Int. Appl. Comput. Electromagn. Soc. Symp.
  year: 2021
  ident: ref18
  article-title: Full-wave modeling of the emission of a microwave frequency single photon source
– ident: ref41
  doi: 10.1093/acprof:oso/9780199681181.003.0003
– ident: ref53
  doi: 10.1103/PhysRevLett.129.010502
– ident: ref16
  doi: 10.1109/JMMCT.2021.3112808
– ident: ref15
  doi: 10.1109/TMTT.2019.2893639
– ident: ref43
  doi: 10.1002/9780470290996
– ident: ref42
  doi: 10.1109/TQE.2021.3054041
– ident: ref32
  doi: 10.1088/1367-2630/15/3/035009
– ident: ref1
  doi: 10.1038/s41586-019-1666-5
– ident: ref26
  doi: 10.1109/TPS.2021.3117607
– ident: ref67
  doi: 10.1093/oso/9780198566724.001.0001
– ident: ref2
  doi: 10.1103/PhysRevLett.127.180501
– ident: ref21
  doi: 10.1103/physreva.91.033401
– ident: ref54
  doi: 10.1088/2058-9565/aab1ba
– ident: ref35
  doi: 10.23919/EuCAP57121.2023.10133765
– ident: ref61
  doi: 10.1109/TEMC.2016.2597311
– ident: ref3
  doi: 10.1016/j.physrep.2017.10.002
– ident: ref38
  doi: 10.1109/MAP.2020.3036098
– ident: ref34
  doi: 10.1109/AP-S/USNC-URSI47032.2022.9886800
– ident: ref29
  doi: 10.1109/MAP.2022.3176593
– ident: ref57
  doi: 10.1103/PhysRevApplied.16.054039
– ident: ref10
  doi: 10.1063/5.0050173
– ident: ref23
  doi: 10.1109/JQE.2017.2782839
– volume-title: Introduction to Superconductivity
  year: 2004
  ident: ref48
– ident: ref60
  doi: 10.1109/TMTT.2023.3308198
– ident: ref8
  doi: 10.1038/s41586-022-05434-1
– ident: ref37
  doi: 10.1109/NEMO56117.2023.10202378
– ident: ref30
  doi: 10.1126/science.1175552
– ident: ref66
  doi: 10.1038/nature06126
– ident: ref11
  doi: 10.1038/s41534-017-0044-0
– ident: ref12
  doi: 10.1038/s41563-021-01187-w
– ident: ref62
  doi: 10.1109/MAP.2019.2895623
– ident: ref56
  doi: 10.1103/PhysRevB.87.024510
– ident: ref55
  doi: 10.1103/physreva.81.033833
– ident: ref27
  doi: 10.1109/JMMCT.2022.3198750
– ident: ref45
  doi: 10.1063/5.0028951
– ident: ref49
  doi: 10.1103/PhysRevB.36.3548
– ident: ref58
  doi: 10.1109/TAP.2002.803965
– ident: ref46
  doi: 10.1103/PhysRevA.107.022612
– ident: ref5
  doi: 10.1103/RevModPhys.93.025005
– ident: ref25
  doi: 10.1109/ACCESS.2019.2907137
– ident: ref17
  doi: 10.1038/s41534-021-00461-8
– ident: ref65
  doi: 10.1002/0471224758
– ident: ref68
  doi: 10.1049/iet-cta.2009.0508
– ident: ref7
  doi: 10.1038/s41586-021-03588-y
– ident: ref22
  doi: 10.1109/JMMCT.2016.2605378
– ident: ref39
  doi: 10.1109/JMMCT.2016.2617018
– ident: ref52
  doi: 10.1002/9783527618422
– ident: ref6
  doi: 10.1088/2058-9565/abe519
– ident: ref64
  doi: 10.1109/TPWRS.2003.821452
– volume-title: The Finite Element Method in Electromagnetics
  year: 2015
  ident: ref47
– ident: ref44
  doi: 10.1063/1.3010859
– ident: ref4
  doi: 10.1063/1.5089550
– ident: ref31
  doi: 10.1103/PhysRevA.84.063834
– ident: ref59
  doi: 10.1063/1.1753661
– ident: ref9
  doi: 10.1088/2058-9565/ac734b
– ident: ref28
  doi: 10.1103/PhysRevA.76.042319
– ident: ref13
  doi: 10.1103/PhysRevA.99.022313
– ident: ref33
  doi: 10.1016/j.cpc.2012.02.021
– ident: ref14
  doi: 10.1103/PhysRevLett.108.240502
– ident: ref24
  doi: 10.1016/j.cpc.2017.02.006
– ident: ref50
  doi: 10.1103/PhysRevB.60.15398
– ident: ref19
  doi: 10.1109/JMMCT.2022.3169460
– ident: ref40
  doi: 10.1109/JMMCT.2016.2614800
– volume-title: Quantum Optics
  year: 2001
  ident: ref20
SSID ssj0001722002
Score 2.2833521
Snippet In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms circuit quantum electrodynamics
Circuits
Computational electromagnetics
Electrodynamics
Hybrid modeling
Mathematical models
Microwave circuits
Microwave measurement
Microwaves
Numerical models
Power transmission lines
Quantum phenomena
Quantum statistics
Qubit
Qubits (quantum computing)
Superconducting microwave devices
superconducting qubits
Superconducting transmission lines
Superconductivity
Transmission line measurements
Transmission lines
Title Maxwell-Schrödinger Modeling of a Superconducting Qubit Coupled to a Transmission Line Network
URI https://ieeexplore.ieee.org/document/10379676
https://www.proquest.com/docview/2915734948
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT744rzhv5ME3abde0jaPMhwibCAq-FZyOUFxrGO2IP4w_4B_zJy09YriWylJCHxJz6Xn-w4hx6n1UY0KlGcMZDZA0drjQ41cGQUqjKXOEiQnT6bJ-U18cctuG7K648IAgCs-Ax8f3b98XagKU2UD5LTxJE06pGMjt5qs9ZFQSUMsOGiJMUM-uJhMRtc2BAxjP0IVlij6YnxcN5Ufn2BnV8Y9Mm13VJeTPPhVKX31_E2s8d9bXidrjYdJT-sjsUFWYL5Jeo23SZu7_LhF8ol4wsydd6Xulq8v2uX3KPZGQ4Y6LQwV9KpawNJGzCgKiy8vK3lf0lFRLWZ2rbKwQ5yxs4cFs27URrZAp3Vl-Ta5GZ9dj869pt2Cp0KelB7HP6jAQYtQsRQCEYosDhTqt4AQSjKRSZZKkRiRZDrlzARSxlGcxVqaWGTRDunOiznsEjq0FsAkKF1v_RtmIs409jg2RgAwrUyfBC0OuWq0yLElxix3McmQ5w67HLHLG-z65OR9zqJW4vhz9DaC8WlkjUOfHLR4581tfcxDHrAU52V7v0zbJ6u4ep17OSDdclnBofVGSnnkTuEbnqLe3w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL0qdAEbaHmoQ2nrRXcow-ThJF5Wo6IpJSNVDBI7y49rgYomoyGREB_WH-iP1dfJtKUI1F0U2UmkY-c-fM-5AB8L76M6E5vIOSx9gGJtJEaWuDIGTZJpW-ZETq6m-eQiO73klz1ZPXBhEDEUn-GQLsNZvq1NS6myY-K0ibzI1-ClN_w87uhaf1IqRUIlBytqzEgcn1bVeOaDwCQbpqTDkqYPzE_op_LoJxwsy8k2TFff1BWUfB-2jR6a-3_kGv_7o1_BVu9jsk_dongNL3C-A9u9v8n63Xy7C7JSd5S7i87N1fLnDxsyfIy6oxFHndWOKXbeLnDpY2aShaWb31p93bBx3S5u_LOa2g8J5s4vF8q7MR_bIpt2teV7cHHyeTaeRH3DhcgkIm8iQWeoKNCqxPACY5WoMosNKbigUkZzVWpeaJU7lZe2ENzFWmdpVmZWu0yV6T6sz-s5vgE28jbA5SRe7z0c7lLBLXU5dk4hcmvcAOIVDtL0auTUFONGhqhkJGTAThJ2ssduAEe_5yw6LY5nR-8RGH-N7HAYwOEKb9nv11uZiJgXNK88eGLaB9iYzKozefZl-vUtbNKbukzMIaw3yxbfed-k0e_DivwFZMDiKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maxwell-Schr%C3%B6dinger+Modeling+of+a+Superconducting+Qubit+Coupled+to+a+Transmission+Line+Network&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=Roth%2C+Thomas+E.&rft.au=Elkin%2C+Samuel+T.&rft.date=2024&rft.pub=IEEE&rft.eissn=2379-8815&rft.volume=9&rft.spage=61&rft.epage=74&rft_id=info:doi/10.1109%2FJMMCT.2024.3349433&rft.externalDocID=10379676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon