Unsupervised Cross-modal Hashing with Modality-interaction
Recently, numerous unsupervised cross-modal hashing methods have been proposed to deal the image-text retrieval tasks for the unlabeled cross-modal data. However, when these methods learn to generate hash codes, almost all of them lack modality-interaction in the following two aspects: (1) The insta...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 33; no. 9; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, numerous unsupervised cross-modal hashing methods have been proposed to deal the image-text retrieval tasks for the unlabeled cross-modal data. However, when these methods learn to generate hash codes, almost all of them lack modality-interaction in the following two aspects: (1) The instance similarity matrix used to guide the hashing networks training is constructed without image-text interaction, which fails to capture the fine-grained cross-modal cues to elaborately characterize the intrinsic semantic similarity among the datapoints. (2) The binary codes used for quantization loss are inferior because they are generated by directly quantizing a simple combination of continuous hash codes from different modalities without the interaction among these continuous hash codes. Such problems will cause the generated hash codes to be of poor quality and degrade the retrieval performance. Hence, in this paper, we propose a novel Unsupervised Cross-modal Hashing with Modality-interaction, termed UCHM. Specifically, by optimizing a novel hash-similarity-friendly loss, a modality-interaction-enabled (MIE) similarity generator is first trained to generate a superior MIE similarity matrix for the training set. Then, the generated MIE similarity matrix is utilized as guiding information to train the deep hashing networks. Furthermore, during the process of training the hashing networks, a novel bit-selection module is proposed to generate high-quality unified binary codes for the quantization loss with the interaction among continuous codes from different modalities, thereby further enhancing the retrieval performance. Extensive experiments on two widely used datasets show that the proposed UCHM outperforms state-of-the-art techniques on cross-modal retrieval tasks. |
---|---|
AbstractList | Recently, numerous unsupervised cross-modal hashing methods have been proposed to deal the image-text retrieval tasks for the unlabeled cross-modal data. However, when these methods learn to generate hash codes, almost all of them lack modality-interaction in the following two aspects: (1) The instance similarity matrix used to guide the hashing networks training is constructed without image-text interaction, which fails to capture the fine-grained cross-modal cues to elaborately characterize the intrinsic semantic similarity among the datapoints. (2) The binary codes used for quantization loss are inferior because they are generated by directly quantizing a simple combination of continuous hash codes from different modalities without the interaction among these continuous hash codes. Such problems will cause the generated hash codes to be of poor quality and degrade the retrieval performance. Hence, in this paper, we propose a novel Unsupervised Cross-modal Hashing with Modality-interaction, termed UCHM. Specifically, by optimizing a novel hash-similarity-friendly loss, a modality-interaction-enabled (MIE) similarity generator is first trained to generate a superior MIE similarity matrix for the training set. Then, the generated MIE similarity matrix is utilized as guiding information to train the deep hashing networks. Furthermore, during the process of training the hashing networks, a novel bit-selection module is proposed to generate high-quality unified binary codes for the quantization loss with the interaction among continuous codes from different modalities, thereby further enhancing the retrieval performance. Extensive experiments on two widely used datasets show that the proposed UCHM outperforms state-of-the-art techniques on cross-modal retrieval tasks. |
Author | Tu, Rong-Cheng Cai, Chengfei Tian, Shangxuan Lin, Qinghong Liu, Wei Wang, Hongfa Jiang, Jie |
Author_xml | – sequence: 1 givenname: Rong-Cheng orcidid: 0000-0002-9567-159X surname: Tu fullname: Tu, Rong-Cheng organization: Tencent, China – sequence: 2 givenname: Jie orcidid: 0000-0001-9658-5127 surname: Jiang fullname: Jiang, Jie organization: Tencent Data Platform, Shenzhen, Guangdong, China – sequence: 3 givenname: Qinghong surname: Lin fullname: Lin, Qinghong – sequence: 4 givenname: Chengfei surname: Cai fullname: Cai, Chengfei organization: Tencent Data Platform, Shenzhen, Guangdong, China – sequence: 5 givenname: Shangxuan surname: Tian fullname: Tian, Shangxuan organization: Tencent Data Platform, Shenzhen, Guangdong, China – sequence: 6 givenname: Hongfa surname: Wang fullname: Wang, Hongfa organization: Tencent Data Platform, Shenzhen, Guangdong, China – sequence: 7 givenname: Wei orcidid: 0000-0002-3865-8145 surname: Liu fullname: Liu, Wei organization: Tencent Data Platform, Shenzhen, Guangdong, China |
BookMark | eNp9kMFOwzAMhiM0JLbBCyAOlTh3OGnTJNxQBQxpiAMb1yhtXZZpa0eSgfb2tGwHxIGTLcufrf8bkUHTNkjIJYUJpaBu5vnr23zCgCWThHGaKH5ChpRzGTMGfND1wGksGeVnZOT9CoCmMhVDcrto_G6L7tN6rKLctd7Hm7Yy62hq_NI279GXDcvouR_ZsI9tE9CZMti2OSentVl7vDjWMVk83M_zaTx7eXzK72ZxyVQWYqmQAy9EYQBlWoIRCRjOqgKxQGWKskJRUybSVCmZ1VhlzDBIeVEZagrAZEyuD3e3rv3YoQ961e5c073UTGY0zYToco8JO2yVfQaHtd46uzFuryno3pH-caR7R_roqIPkH6i0wfThgjN2_T96dUAtIv76BVwwrpJvY-x3qw |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1007_s11042_024_19371_w crossref_primary_10_3390_e26110911 crossref_primary_10_1016_j_engappai_2024_108969 crossref_primary_10_1109_TCSVT_2024_3350695 crossref_primary_10_1016_j_neucom_2024_128844 crossref_primary_10_1109_JPROC_2024_3525147 crossref_primary_10_1109_TKDE_2024_3396492 crossref_primary_10_1016_j_neucom_2024_127911 crossref_primary_10_1016_j_engappai_2023_106473 crossref_primary_10_1007_s13042_024_02477_w crossref_primary_10_1016_j_eswa_2024_125592 crossref_primary_10_1016_j_ins_2023_119222 crossref_primary_10_1007_s13735_024_00326_8 crossref_primary_10_1016_j_ipm_2024_104037 crossref_primary_10_1007_s11227_024_06643_3 crossref_primary_10_1007_s00530_024_01539_x crossref_primary_10_1007_s11042_023_18048_0 crossref_primary_10_1016_j_ins_2023_120064 crossref_primary_10_1145_3674507 crossref_primary_10_1109_TCSVT_2024_3430904 crossref_primary_10_1109_TCSVT_2024_3491865 crossref_primary_10_1109_TGRS_2024_3406606 crossref_primary_10_1109_TIFS_2025_3534585 crossref_primary_10_1109_TIFS_2023_3346176 crossref_primary_10_1016_j_knosys_2024_112111 crossref_primary_10_1109_TCSVT_2024_3472122 |
Cites_doi | 10.1109/TCSVT.2021.3070129 10.1109/CVPR.2017.672 10.1109/TCYB.2016.2608906 10.1109/TPAMI.2019.2940446 10.1007/s11263-016-0981-7 10.1109/TCSVT.2022.3172716 10.1109/TIE.2018.2873547 10.1109/ICASSP43922.2022.9746965 10.24963/ijcai.2019/662 10.24963/ijcai.2019/138 10.1109/CVPR42600.2020.01267 10.1214/aoms/1177729586 10.1109/CVPR.2017.348 10.1145/3397271.3401086 10.1109/TCSVT.2020.2974877 10.1109/TIP.2019.2897944 10.1109/CVPR.2018.00446 10.3115/v1/D14-1179 10.1145/2463676.2465274 10.1145/3343031.3350869 10.1145/3123266.3123326 10.1109/TNNLS.2020.2967597 10.1007/978-3-030-01246-5_13 10.1109/TMM.2020.2984081 10.1145/3512527.3531381 10.24963/ijcai.2020/479 10.1016/j.neucom.2020.02.043 10.1109/CVPR.2014.267 10.1609/aaai.v28i1.8995 10.1145/2911996.2912000 10.1109/TIP.2017.2676345 10.24963/ijcai.2018/396 10.1609/aaai.v32i1.11263 10.1109/ICASSP43922.2022.9746251 10.1109/ICCV.2019.00312 10.1109/TCSVT.2019.2911359 10.1145/3372278.3390673 10.1109/CVPR.2018.00636 10.1109/TCSVT.2020.2991171 10.1109/TKDE.2022.3187023 10.1109/TKDE.2020.2987312 10.1016/j.cviu.2009.03.008 10.1109/CVPR42600.2020.00319 10.1109/ICCV.2017.439 10.1609/aaai.v35i5.16592 10.1109/TCSVT.2017.2723302 10.1109/TCSVT.2022.3182549 10.24963/ijcai.2018/349 10.1109/TPAMI.2016.2577031 10.1145/2600428.2609610 10.18653/v1/2021.findings-acl.66 10.1109/CVPR.2009.5206848 10.1145/3442381.3449825 10.1109/TPAMI.2021.3088863 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2023.3251395 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCSVT_2023_3251395 10057259 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-89e505b7ba0e84c0a730a52dbeebe9abcde7f127449986fed62a2045bda1ab0e3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 10:17:10 EDT 2025 Tue Jul 01 00:41:20 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Mon Aug 11 03:35:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-89e505b7ba0e84c0a730a52dbeebe9abcde7f127449986fed62a2045bda1ab0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9567-159X 0000-0001-9658-5127 0000-0002-3865-8145 |
PQID | 2861467702 |
PQPubID | 85433 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10057259 crossref_primary_10_1109_TCSVT_2023_3251395 proquest_journals_2861467702 crossref_citationtrail_10_1109_TCSVT_2023_3251395 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 radford (ref43) 2021 ref17 ref16 ref19 ref18 ref51 ref50 glorot (ref46) 2011 faghri (ref56) 2017 ref48 ref47 ref42 wang (ref24) 2015 ref41 ref44 simonyan (ref45) 2014 lin (ref58) 2014 ref49 ref8 ref7 tu (ref62) 2022 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 kumar (ref37) 2011 ref2 ref1 ref38 zhao (ref21) 2022 ref23 ref26 ref25 kingma (ref63) 2014 ref20 ref64 ref22 ref65 ref28 ref27 ref29 hu (ref39) 2023; 45 ref60 ref61 |
References_xml | – ident: ref13 doi: 10.1109/TCSVT.2021.3070129 – ident: ref14 doi: 10.1109/CVPR.2017.672 – ident: ref41 doi: 10.1109/TCYB.2016.2608906 – ident: ref34 doi: 10.1109/TPAMI.2019.2940446 – year: 2014 ident: ref45 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – year: 2022 ident: ref62 article-title: Unsupervised hashing with semantic concept mining publication-title: arXiv 2209 11475 – start-page: 349 year: 2022 ident: ref21 article-title: Class concentration with twin variational autoencoders for unsupervised cross-modal hashing publication-title: Proc Asian Conf Comput Vis – ident: ref53 doi: 10.1007/s11263-016-0981-7 – ident: ref17 doi: 10.1109/TCSVT.2022.3172716 – ident: ref23 doi: 10.1109/TIE.2018.2873547 – ident: ref32 doi: 10.1109/ICASSP43922.2022.9746965 – ident: ref30 doi: 10.24963/ijcai.2019/662 – ident: ref28 doi: 10.24963/ijcai.2019/138 – ident: ref51 doi: 10.1109/CVPR42600.2020.01267 – ident: ref65 doi: 10.1214/aoms/1177729586 – ident: ref35 doi: 10.1109/CVPR.2017.348 – ident: ref20 doi: 10.1145/3397271.3401086 – ident: ref4 doi: 10.1109/TCSVT.2020.2974877 – ident: ref10 doi: 10.1109/TIP.2019.2897944 – ident: ref36 doi: 10.1109/CVPR.2018.00446 – ident: ref55 doi: 10.3115/v1/D14-1179 – ident: ref16 doi: 10.1145/2463676.2465274 – ident: ref44 doi: 10.1145/3343031.3350869 – ident: ref31 doi: 10.1145/3123266.3123326 – ident: ref49 doi: 10.1109/TNNLS.2020.2967597 – start-page: 740 year: 2014 ident: ref58 article-title: Microsoft COCO: Common objects in context publication-title: Proc Eur Conf Comput Vis – ident: ref11 doi: 10.1007/978-3-030-01246-5_13 – ident: ref2 doi: 10.1109/TMM.2020.2984081 – ident: ref42 doi: 10.1145/3512527.3531381 – ident: ref60 doi: 10.24963/ijcai.2020/479 – year: 2017 ident: ref56 article-title: VSE++: Improving visual-semantic embeddings with hard negatives publication-title: arXiv 1707 05612 – ident: ref27 doi: 10.1016/j.neucom.2020.02.043 – ident: ref9 doi: 10.1109/CVPR.2014.267 – ident: ref25 doi: 10.1609/aaai.v28i1.8995 – ident: ref3 doi: 10.1145/2911996.2912000 – ident: ref33 doi: 10.1109/TIP.2017.2676345 – start-page: 3890 year: 2015 ident: ref24 article-title: Semantic topic multimodal hashing for cross-media retrieval publication-title: Proc 24th Int Joint Conf Artif Intell – ident: ref22 doi: 10.24963/ijcai.2018/396 – start-page: 8748 year: 2021 ident: ref43 article-title: Learning transferable visual models from natural language supervision publication-title: Proc 38th Int Conf Mach Learn – ident: ref57 doi: 10.1609/aaai.v32i1.11263 – ident: ref40 doi: 10.1109/ICASSP43922.2022.9746251 – ident: ref18 doi: 10.1109/ICCV.2019.00312 – ident: ref6 doi: 10.1109/TCSVT.2019.2911359 – ident: ref19 doi: 10.1145/3372278.3390673 – volume: 45 start-page: 3877 year: 2023 ident: ref39 article-title: Unsupervised contrastive cross-modal hashing publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref54 doi: 10.1109/CVPR.2018.00636 – ident: ref12 doi: 10.1109/TCSVT.2020.2991171 – ident: ref8 doi: 10.1109/TKDE.2022.3187023 – start-page: 1 year: 2011 ident: ref37 article-title: Learning hash functions for cross-view similarity search publication-title: Proc 22nd Int Joint Conf Artif Intell – ident: ref7 doi: 10.1109/TKDE.2020.2987312 – ident: ref59 doi: 10.1016/j.cviu.2009.03.008 – ident: ref1 doi: 10.1109/CVPR42600.2020.00319 – start-page: 315 year: 2011 ident: ref46 article-title: Deep sparse rectifier neural networks publication-title: Proc 14th Int Conf Artif Intell Statist – ident: ref26 doi: 10.1109/ICCV.2017.439 – ident: ref15 doi: 10.1609/aaai.v35i5.16592 – ident: ref5 doi: 10.1109/TCSVT.2017.2723302 – ident: ref50 doi: 10.1109/TCSVT.2022.3182549 – ident: ref29 doi: 10.24963/ijcai.2018/349 – ident: ref52 doi: 10.1109/TPAMI.2016.2577031 – ident: ref38 doi: 10.1145/2600428.2609610 – year: 2014 ident: ref63 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref48 doi: 10.18653/v1/2021.findings-acl.66 – ident: ref64 doi: 10.1109/CVPR.2009.5206848 – ident: ref61 doi: 10.1145/3442381.3449825 – ident: ref47 doi: 10.1109/TPAMI.2021.3088863 |
SSID | ssj0014847 |
Score | 2.6096253 |
Snippet | Recently, numerous unsupervised cross-modal hashing methods have been proposed to deal the image-text retrieval tasks for the unlabeled cross-modal data.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Binary codes Bit-selection Cross-modal Retrieval Generators Hash functions Hashing Modal data Modality-interaction Networks Quantization (signal) Retrieval Semantics Similarity Task analysis Training |
Title | Unsupervised Cross-modal Hashing with Modality-interaction |
URI | https://ieeexplore.ieee.org/document/10057259 https://www.proquest.com/docview/2861467702 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ekx58YkTR7MGb6bovdltvhkiICVwEw23Tx3BRgcBy8dc7090lRKPxttm0TdNpO1_bme9j7Nai14klAMfpBDyBSHCRKs3FLOxmUkiTWXrRHY7SwSR5nnanVbK6y4UBABd8Bj59urd8uzAbuirDFY7oAvF6gzXw5FYma22fDBLh1MQQL4RcoCOrM2QCeT_uvbyOfRIK92P05zGJSex4ISer8mMvdg6mf8RGddfKuJI3f1No33x-Y238d9-P2WEFNb3Hcm6csD2Yn7KDHQLCM_Ywma83S9ou1mC9HvWVfyws1hqUIkse3dN6Q_qFcJ0TucSqTIVosUn_adwb8EpNgZtIpgUXEhDt6EyrAERiAoVrW3UjqwHtKJU2FrJZSISBeAJLZ2DTSBFXvbYqVDqA-Jw154s5XDBPaJFFaRYmIGcI6IyIjVYSoSIWlSDjNgvr0c1NRTVOihfvuTtyBDJ3FsnJInllkTa729ZZlkQbf5Zu0RDvlCxHt806tRXzajGu80ik5A-yILr8pdoV26fWy9ixDmsWqw1cI9go9I2bZF8qOs-G |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB1BOSwcWFiKKJQlB27IId-xuaGKKgttL7Sr3iJ_TC9AuurHZX_9zjhpVS1axC2KbMXy2H7Psec9gI-OUCdViIKGE4oMEylkoY2QqzgvlVS2dHyiO50V1SL7vsyXXbK6z4VBRH_5DEN-9Gf5bm33_KuMZjixC-Lrj-EJAX8et-lax0ODTHo_MWIMsZAEZYccmUh9no9-Xs9DtgoPU0L0lO0kTnDIG6v8tRp7iBmfw-zQuPZmya9wvzOhvb2n2_jfrX8BzzuyGXxtR8dLeITNBTw7kSB8BV8WzXZ_wwvGFl0w4raKP2tHtarWZingP7XBlF8RYRcsL7FpkyH6sBh_m48q0fkpCJuoYiekQuI7pjQ6QpnZSNPs1nniDFIklTbWYbmKWTKQ9mDFCl2RaFarN07H2kSYvoZes27wDQTSyDIpyjhDtSJKZ2VqjVZEFqmoQpUOID70bm07sXH2vPhd-01HpGofkZojUncRGcCnY52bVmrjn6X73MUnJdveHcDwEMW6m47bOpEFI0IZJW8fqPYBzqr5dFJPrmY_3sFT_lJ7k2wIvd1mj--JeuzMpR9wdym-0s8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Cross-modal+Hashing+with+Modality-interaction&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Tu%2C+Rong-Cheng&rft.au=Jiang%2C+Jie&rft.au=Lin%2C+Qinghong&rft.au=Cai%2C+Chengfei&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2023.3251395&rft.externalDocID=10057259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |