VSS-Net: Visual Semantic Self-Mining Network for Video Summarization
Video summarization, with the target to detect valuable segments given untrimmed videos, is a meaningful yet understudied topic. Previous methods primarily consider inter-frame and inter-shot temporal dependencies, which might be insufficient to pinpoint important content due to limited valuable inf...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 34; no. 4; pp. 2775 - 2788 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Video summarization, with the target to detect valuable segments given untrimmed videos, is a meaningful yet understudied topic. Previous methods primarily consider inter-frame and inter-shot temporal dependencies, which might be insufficient to pinpoint important content due to limited valuable information that can be learned. To address this limitation, we elaborate on a Visual Semantic Self-mining Network (VSS-Net), a novel summarization framework motivated by the widespread success of cross-modality learning tasks. VSS-Net initially adopts a two-stream structure consisting of a Context Representation Graph (CRG) and a Video Semantics Encoder (VSE). They are jointly exploited to establish the groundwork for further boosting the capability of content awareness. Specifically, CRG is constructed using an edge-set strategy tailored to the hierarchical structure of videos, enriching visual features with local and non-local temporal cues from temporal order and visual relationship perspectives. Meanwhile, by learning visual similarity across features, VSE adaptively acquires an instructive video-level semantic representation of the input video from coarse to fine. Subsequently, the two streams converge in a Context-Semantics Interaction Layer (CSIL) to achieve sophisticated information exchange across frame-level temporal cues and video-level semantic representation, guaranteeing informative representations and boosting the sensitivity to important segments. Eventually, importance scores are predicted utilizing a prediction head, followed by key shot selection. We evaluate the proposed framework and demonstrate its effectiveness and superiority against state-of-the-art methods on the widely used benchmarks. |
---|---|
AbstractList | Video summarization, with the target to detect valuable segments given untrimmed videos, is a meaningful yet understudied topic. Previous methods primarily consider inter-frame and inter-shot temporal dependencies, which might be insufficient to pinpoint important content due to limited valuable information that can be learned. To address this limitation, we elaborate on a Visual Semantic Self-mining Network (VSS-Net), a novel summarization framework motivated by the widespread success of cross-modality learning tasks. VSS-Net initially adopts a two-stream structure consisting of a Context Representation Graph (CRG) and a Video Semantics Encoder (VSE). They are jointly exploited to establish the groundwork for further boosting the capability of content awareness. Specifically, CRG is constructed using an edge-set strategy tailored to the hierarchical structure of videos, enriching visual features with local and non-local temporal cues from temporal order and visual relationship perspectives. Meanwhile, by learning visual similarity across features, VSE adaptively acquires an instructive video-level semantic representation of the input video from coarse to fine. Subsequently, the two streams converge in a Context-Semantics Interaction Layer (CSIL) to achieve sophisticated information exchange across frame-level temporal cues and video-level semantic representation, guaranteeing informative representations and boosting the sensitivity to important segments. Eventually, importance scores are predicted utilizing a prediction head, followed by key shot selection. We evaluate the proposed framework and demonstrate its effectiveness and superiority against state-of-the-art methods on the widely used benchmarks. |
Author | Liu, Yameng Zhang, Yunzuo Tao, Ran Kang, Weili |
Author_xml | – sequence: 1 givenname: Yunzuo orcidid: 0000-0001-7499-4835 surname: Zhang fullname: Zhang, Yunzuo email: zhangyunzuo888@sina.com organization: School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, China – sequence: 2 givenname: Yameng orcidid: 0000-0002-5991-3889 surname: Liu fullname: Liu, Yameng email: liuym4647@sina.com organization: School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, China – sequence: 3 givenname: Weili orcidid: 0000-0002-0062-7351 surname: Kang fullname: Kang, Weili email: wayleek@sina.com organization: School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, China – sequence: 4 givenname: Ran orcidid: 0000-0002-5243-7189 surname: Tao fullname: Tao, Ran email: rantao@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kDtPwzAUhS1UJNrCH0AMkZhTbN84sdlQKQ-pwJDS1XISB7mkcXEcIfj1uI8BMTDdo6vz3ccZoUFrW43QOcETQrC4Wkzz5WJCMYUJAKFA2REaEsZ4TClmg6AxIzGnhJ2gUdetMCYJT7Ihul3mefys_XW0NF2vmijXa9V6UwbR1PGTaU37FgXDp3XvUW1d8FXaRnm_XitnvpU3tj1Fx7VqOn12qGP0ejdbTB_i-cv94_RmHpdUpD7mKU-LWmVUcSAFw5oXvBKgSlpqnFUqyyARoS2qkukqLZjgDEiW1ARzRWkBY3S5n7tx9qPXnZcr27s2rJSAAVIiME-Di-9dpbNd53QtS-N3d3qnTCMJltvM5C4zuc1MHjILKP2DbpwJf379D13sIaO1_gVQEAwS-AFvKnjI |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1117_1_JEI_34_1_013005 crossref_primary_10_32604_cmc_2024_053488 crossref_primary_10_1007_s00371_025_03865_1 crossref_primary_10_1016_j_bspc_2025_107724 crossref_primary_10_3390_ai6020040 crossref_primary_10_1117_1_JEI_33_3_033009 crossref_primary_10_1007_s11760_025_03999_8 crossref_primary_10_1016_j_measurement_2025_117193 crossref_primary_10_1109_ACCESS_2024_3503276 crossref_primary_10_1038_s41598_024_80830_3 crossref_primary_10_1016_j_dsp_2024_104938 crossref_primary_10_1016_j_engappai_2025_110428 crossref_primary_10_1016_j_eswa_2025_126594 crossref_primary_10_1038_s41598_025_85961_9 crossref_primary_10_1109_ACCESS_2024_3517639 crossref_primary_10_1145_3715098 |
Cites_doi | 10.1109/CVPR.2019.01054 10.1109/TIP.2023.3286254 10.1007/978-3-030-01264-9_12 10.1145/3343031.3351056 10.1109/LSP.2022.3192753 10.1007/978-3-030-01258-8_22 10.1109/CVPR.2015.7298594 10.1109/TCSVT.2020.3044600 10.1109/ICCV.2017.563 10.1109/CVPR.2018.00773 10.1109/TIP.2020.2985868 10.1609/aaai.v32i1.11297 10.1016/j.image.2023.116943 10.1145/3512527.3531404 10.1109/TCSVT.2022.3197819 10.1007/978-3-319-10599-4_35 10.1145/3326362 10.1109/TIP.2017.2708902 10.1145/3123266.3123328 10.1109/ISM52913.2021.00045 10.1109/CVPR.2016.120 10.1016/j.neucom.2021.10.039 10.1109/TIP.2022.3143699 10.1609/aaai.v36i3.20216 10.1007/978-3-030-21074-8_4 10.1109/TCSVT.2017.2771247 10.1016/j.patcog.2020.107567 10.1007/978-3-319-10584-0_33 10.1016/j.ins.2017.12.020 10.1109/ICME51207.2021.9428318 10.1109/WACV56688.2023.00554 10.1109/CVPR.2015.7299154 10.1109/TCSVT.2016.2539638 10.1109/TIP.2020.3039886 10.1609/aaai.v32i1.12255 10.1109/iccvw54120.2021.00361 10.1109/CVPR.2012.6247852 10.1109/CVPR42600.2020.01082 10.1016/j.eswa.2022.119467 10.1609/aaai.v33i01.33019143 10.1109/TCSVT.2018.2883305 10.1109/CVPR52688.2022.01025 10.1109/CVPR.2019.00778 10.1109/LSP.2022.3227525 10.1007/s11042-016-3569-x 10.1109/TCSVT.2023.3240464 10.1109/TCSVT.2022.3202531 10.1109/TCSVT.2020.3037883 10.48550/ARXIV.1706.03762 10.1016/j.patcog.2022.108840 10.1109/TCSVT.2021.3076097 10.1109/TIP.2016.2601493 10.1109/CVPR.2019.00135 10.1016/j.compeleceng.2021.107618 10.1109/CVPR.2014.322 10.1109/TCSVT.2019.2890899 10.1109/ICCVW.2017.144 10.1016/j.patcog.2021.108312 10.1109/TPAMI.2022.3186506 10.1109/CVPR52688.2022.00522 10.1007/978-3-319-46478-7_47 10.1109/CVPR.2017.318 10.1109/TCSVT.2018.2830102 10.1109/LSP.2022.3219361 10.1162/neco.1997.9.8.1735 10.1109/CVPR52688.2022.00098 10.1109/TBIOM.2021.3065735 10.1109/TCSVT.2019.2904996 10.1016/j.patrec.2010.08.004 10.1109/TIP.2017.2695887 10.1109/TPAMI.2021.3072117 10.1016/j.patrec.2020.12.016 10.1109/TCSVT.2021.3085907 10.1109/TNNLS.2021.3119969 10.1609/aaai.v33i01.33018537 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2023.3312325 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 2788 |
ExternalDocumentID | 10_1109_TCSVT_2023_3312325 10239534 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Project of Hebei Education Department grantid: ZD2022100; QN2017132 – fundername: Central Guidance on Local Science and Technology Development Fund grantid: 226Z0501G – fundername: Natural Science Foundation of Hebei Province grantid: F2022210007; F2017210161 funderid: 10.13039/501100003787 – fundername: National Natural Science Foundation of China grantid: 61702347; 62027801 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-8686bfa72a831b50e8b8d93ac2ce07da7734950e9dc5ed6b59853174f108a22b3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 11:50:42 EDT 2025 Tue Jul 01 00:41:23 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Wed Aug 27 02:17:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-8686bfa72a831b50e8b8d93ac2ce07da7734950e9dc5ed6b59853174f108a22b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5991-3889 0000-0001-7499-4835 0000-0002-0062-7351 0000-0002-5243-7189 |
PQID | 3033619086 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3033619086 ieee_primary_10239534 crossref_citationtrail_10_1109_TCSVT_2023_3312325 crossref_primary_10_1109_TCSVT_2023_3312325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Wu (ref47) 2021 ref51 ref50 Li (ref12) ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref35 ref79 ref34 ref78 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Nagrani (ref71); 34 ref70 ref73 ref72 Simonyan (ref58); 27 ref24 ref68 ref23 ref67 ref26 ref25 Lei (ref37); 34 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref52 doi: 10.1109/CVPR.2019.01054 – ident: ref28 doi: 10.1109/TIP.2023.3286254 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref58 article-title: Two-stream convolutional networks for action recognition in videos – ident: ref22 doi: 10.1007/978-3-030-01264-9_12 – ident: ref76 doi: 10.1145/3343031.3351056 – ident: ref70 doi: 10.1109/LSP.2022.3192753 – ident: ref32 doi: 10.1007/978-3-030-01258-8_22 – ident: ref80 doi: 10.1109/CVPR.2015.7298594 – ident: ref6 doi: 10.1109/TCSVT.2020.3044600 – ident: ref68 doi: 10.1109/ICCV.2017.563 – ident: ref25 doi: 10.1109/CVPR.2018.00773 – ident: ref66 doi: 10.1109/TIP.2020.2985868 – ident: ref29 doi: 10.1609/aaai.v32i1.11297 – ident: ref17 doi: 10.1016/j.image.2023.116943 – ident: ref65 doi: 10.1145/3512527.3531404 – ident: ref21 doi: 10.1109/TCSVT.2022.3197819 – volume: 34 start-page: 14200 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref71 article-title: Attention bottlenecks for multimodal fusion – ident: ref72 doi: 10.1007/978-3-319-10599-4_35 – ident: ref54 doi: 10.1145/3326362 – ident: ref19 doi: 10.1109/TIP.2017.2708902 – ident: ref24 doi: 10.1145/3123266.3123328 – ident: ref40 doi: 10.1109/ISM52913.2021.00045 – ident: ref74 doi: 10.1109/CVPR.2016.120 – ident: ref78 doi: 10.1016/j.neucom.2021.10.039 – ident: ref48 doi: 10.1109/TIP.2022.3143699 – volume: 34 start-page: 11846 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref37 article-title: Detecting moments and highlights in videos via natural language queries – ident: ref55 doi: 10.1609/aaai.v36i3.20216 – ident: ref34 doi: 10.1007/978-3-030-21074-8_4 – ident: ref5 doi: 10.1109/TCSVT.2017.2771247 – ident: ref2 doi: 10.1016/j.patcog.2020.107567 – ident: ref39 doi: 10.1007/978-3-319-10584-0_33 – ident: ref44 doi: 10.1016/j.ins.2017.12.020 – ident: ref42 doi: 10.1109/ICME51207.2021.9428318 – ident: ref63 doi: 10.1109/WACV56688.2023.00554 – ident: ref10 doi: 10.1109/CVPR.2015.7299154 – ident: ref4 doi: 10.1109/TCSVT.2016.2539638 – ident: ref41 doi: 10.1109/TIP.2020.3039886 – ident: ref30 doi: 10.1609/aaai.v32i1.12255 – ident: ref51 doi: 10.1109/iccvw54120.2021.00361 – ident: ref45 doi: 10.1109/CVPR.2012.6247852 – ident: ref67 doi: 10.1109/CVPR42600.2020.01082 – ident: ref9 doi: 10.1016/j.eswa.2022.119467 – year: 2021 ident: ref47 article-title: ERA: Entity relationship aware video summarization with Wasserstein GAN publication-title: arXiv:2109.02625 – ident: ref14 doi: 10.1609/aaai.v33i01.33019143 – ident: ref60 doi: 10.1109/TCSVT.2018.2883305 – ident: ref38 doi: 10.1109/CVPR52688.2022.01025 – ident: ref73 doi: 10.1109/CVPR.2019.00778 – ident: ref57 doi: 10.1109/LSP.2022.3227525 – ident: ref43 doi: 10.1007/s11042-016-3569-x – ident: ref20 doi: 10.1109/TCSVT.2023.3240464 – ident: ref62 doi: 10.1109/TCSVT.2022.3202531 – ident: ref8 doi: 10.1109/TCSVT.2020.3037883 – ident: ref33 doi: 10.48550/ARXIV.1706.03762 – ident: ref64 doi: 10.1016/j.patcog.2022.108840 – ident: ref27 doi: 10.1109/TCSVT.2021.3076097 – start-page: 1 volume-title: Proc. 11th Int. Workshop Image Anal. Multimedia Interact. Services (WIAMIS) ident: ref12 article-title: Multi-video summarization based on video-MMR – ident: ref3 doi: 10.1109/TIP.2016.2601493 – ident: ref23 doi: 10.1109/CVPR.2019.00135 – ident: ref49 doi: 10.1016/j.compeleceng.2021.107618 – ident: ref13 doi: 10.1109/CVPR.2014.322 – ident: ref15 doi: 10.1109/TCSVT.2019.2890899 – ident: ref18 doi: 10.1109/ICCVW.2017.144 – ident: ref35 doi: 10.1016/j.patcog.2021.108312 – ident: ref79 doi: 10.1109/TPAMI.2022.3186506 – ident: ref53 doi: 10.1109/CVPR52688.2022.00522 – ident: ref50 doi: 10.1007/978-3-319-46478-7_47 – ident: ref46 doi: 10.1109/CVPR.2017.318 – ident: ref59 doi: 10.1109/TCSVT.2018.2830102 – ident: ref1 doi: 10.1109/LSP.2022.3219361 – ident: ref31 doi: 10.1162/neco.1997.9.8.1735 – ident: ref69 doi: 10.1109/CVPR52688.2022.00098 – ident: ref61 doi: 10.1109/TBIOM.2021.3065735 – ident: ref26 doi: 10.1109/TCSVT.2019.2904996 – ident: ref11 doi: 10.1016/j.patrec.2010.08.004 – ident: ref75 doi: 10.1109/TIP.2017.2695887 – ident: ref56 doi: 10.1109/TPAMI.2021.3072117 – ident: ref16 doi: 10.1016/j.patrec.2020.12.016 – ident: ref36 doi: 10.1109/TCSVT.2021.3085907 – ident: ref77 doi: 10.1109/TNNLS.2021.3119969 – ident: ref7 doi: 10.1609/aaai.v33i01.33018537 |
SSID | ssj0014847 |
Score | 2.60237 |
Snippet | Video summarization, with the target to detect valuable segments given untrimmed videos, is a meaningful yet understudied topic. Previous methods primarily... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2775 |
SubjectTerms | Cognitive tasks Computational modeling Context Context modeling Feature extraction Graphical representations information exchange Learning Predictions Segments self-mining semantic representation Semantics Streaming media Target detection Task analysis temporal cues Video data Video summarization Visualization |
Title | VSS-Net: Visual Semantic Self-Mining Network for Video Summarization |
URI | https://ieeexplore.ieee.org/document/10239534 https://www.proquest.com/docview/3033619086 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EeWlDGwoaRLHic2GClWFRJeUqltkO2cJAS2iycKv5-ykqIBAbB7OkXVn--6L77sj5IJlQiKuwNtPg7aUnNhXUgq_jAy678yAciXz70fp8CG5m7JpS1Z3XBgAcMlnENihe8sv57q2v8p6tsyAYDRZJ-uI3Bqy1ueTQcJdNzGMFyKfoyNbMmRC0Rv388k4sI3CA0ptDMG-eCHXVuXHXewczGCbjJZLa_JKnoK6UoF-_1a18d9r3yFbbajpXTd7Y5eswWyPbK4UINwnN5M890dQXXmTx0WNwjm8oKofNQ6ejX_vukd4oyZV3MP4FuVKmHu5o7y1FM4D8jC4HfeHfttXwdexSCufpzxVRmax5DRSLASueCmo1LGGMCtlllGETSGIUjMoU8UE-nRELiYKuYxjRQ9JZzafwRHxTCiZZJFWYSmS1CTC0CgxKYBGXMcz0yXRUs-FbouO294Xz4UDH6EonG0Ka5uitU2XXH7OeW1KbvwpfWCVvSLZ6LlLTpf2LNpjuSjQX1NEjAjjjn-ZdkI28Ottbs4p6VRvNZxh2FGpc7fdPgAy2dFZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAe-G3FQoEc4ISSJnac2EgcUEu1pd29ZLvqLdjOWKpodxGbFYJ34VV4NsZOdlVAcKvEzYdxong-zXwTzw_AC1EqTXEFWT-L1pfksNhoreImc-S-S4cmtMwfjYvhaf7-TJxtwPd1LQwihuQzTPwy3OU3c7v0v8r2fJsBJXje51Ae49cvFKEt3hwdkDpfMnb4brI_jPshArFlqmhjWcjCOF0yLXlmRIrSyEZxbZnFtGx0WXKKEVJUjRXYFEYocmBE012WSs2Y4fTcG3CTiIZgXXnY-pIil2F-GTGULJbkOlc1Oanam-xX00niR5MnnHvWIn7xe2GQyx_WP7i0w7vwY3UYXSbLx2TZmsR--61P5H97WvfgTk-mo7cd-u_DBs4ewNaVFosP4WBaVfEY29fR9HyxJOEKLwlM55YWFy4ehfkY0bhLho-IwZNcg_OoCkV9fZHqNpxey2fswOZsPsNHELlUCy0ya9JG5YXLleNZ7gpES5GrLN0AspVea9u3VffTPS7qEF6lqg5YqD0W6h4LA3i13vOpayryT-ltr9wrkp1eB7C7wk_dG55FTYyEU0xMgerjv2x7DreGk9FJfXI0Pn4Ct-lNfSbSLmy2n5f4lEhWa54FqEfw4brR8hM5vS42 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VSS-Net%3A+Visual+Semantic+Self-Mining+Network+for+Video+Summarization&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Yunzuo&rft.au=Liu%2C+Yameng&rft.au=Kang%2C+Weili&rft.au=Tao%2C+Ran&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=34&rft.issue=4&rft.spage=2775&rft.epage=2788&rft_id=info:doi/10.1109%2FTCSVT.2023.3312325&rft.externalDocID=10239534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |