Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability Model

In recent years, we have witnessed the presence of point cloud data in many aspects of our life, from immersive media, autonomous driving to healthcare, although at the cost of a tremendous amount of data. In this paper, we present an efficient lossless point cloud compression method that uses spars...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 8; pp. 4337 - 4348
Main Authors Nguyen, Dat Thanh, Kaup, Andre
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, we have witnessed the presence of point cloud data in many aspects of our life, from immersive media, autonomous driving to healthcare, although at the cost of a tremendous amount of data. In this paper, we present an efficient lossless point cloud compression method that uses sparse tensor-based deep neural networks to learn point cloud geometry and color probability distributions. Our method represents a point cloud with both occupancy feature and three attribute features at different bit depths in a unified sparse representation. This allows us to efficiently exploit feature-wise and point-wise dependencies within point clouds using a sparse tensor-based neural network and thus build an accurate auto-regressive context model for an arithmetic coder. To the best of our knowledge, this is the first learning-based lossless point cloud geometry and attribute compression approach. Compared with the-state-of-the-art lossless point cloud compression method from Moving Picture Experts Group (MPEG), our method achieves 22.6% reduction in total bitrate on a diverse set of test point clouds while having 49.0% and 18.3% rate reduction on geometry and color attribute component, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2023.3239321