ViT-MDHGR: Cross-Day Reliability and Agility in Dynamic Hand Gesture Prediction via HD-sEMG Signal Decoding

Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable an...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 18; no. 3; pp. 419 - 430
Main Authors Hu, Qin, Azar, Golara Ahmadi, Fletcher, Alyson, Rangan, Sundeep, Atashzar, S. Farokh
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable and non-invasive manner. High intraday (same-day) performance has been reported. However, the interday performance (separating training and testing days) is substantially degraded due to the poor generalizability of conventional approaches over time, hindering the application of such techniques in real-life practices. There are limited recent studies on the feasibility of multi-day hand gesture recognition. The existing studies face a major challenge: the need for long sEMG epochs makes the corresponding neural interfaces impractical due to the induced delay in myoelectric control. This paper proposes a compact ViT-based network for multi-day dynamic hand gesture prediction. We tackle the main challenge as the proposed model only relies on very short HD-sEMG signal windows (i.e., 50 ms, accounting for only one-sixth of the convention for real-time myoelectric implementation), boosting agility and responsiveness. Our proposed model can predict 11 dynamic gestures for 20 subjects with an average accuracy of over 71% on the testing day, 3-25 days after training. Moreover, when calibrated on just a small portion of data from the testing day, the proposed model can achieve over 92% accuracy by retraining less than 10% of the parameters for computational efficiency.
AbstractList Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable and non-invasive manner. High intraday (same-day) performance has been reported. However, the interday performance (separating training and testing days) is substantially degraded due to the poor generalizability of conventional approaches over time, hindering the application of such techniques in real-life practices. There are limited recent studies on the feasibility of multi-day hand gesture recognition. The existing studies face a major challenge: the need for long sEMG epochs makes the corresponding neural interfaces impractical due to the induced delay in myoelectric control. This paper proposes a compact ViT-based network for multi-day dynamic hand gesture prediction. We tackle the main challenge as the proposed model only relies on very short HD-sEMG signal windows (i.e., 50 ms, accounting for only one-sixth of the convention for real-time myoelectric implementation), boosting agility and responsiveness. Our proposed model can predict 11 dynamic gestures for 20 subjects with an average accuracy of over 71% on the testing day, 3-25 days after training. Moreover, when calibrated on just a small portion of data from the testing day, the proposed model can achieve over 92% accuracy by retraining less than 10% of the parameters for computational efficiency.
Author Fletcher, Alyson
Hu, Qin
Azar, Golara Ahmadi
Rangan, Sundeep
Atashzar, S. Farokh
Author_xml – sequence: 1
  givenname: Qin
  orcidid: 0000-0001-6741-3916
  surname: Hu
  fullname: Hu, Qin
  organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA
– sequence: 2
  givenname: Golara Ahmadi
  orcidid: 0009-0000-2016-2822
  surname: Azar
  fullname: Azar, Golara Ahmadi
  organization: Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA
– sequence: 3
  givenname: Alyson
  orcidid: 0000-0002-3756-6580
  surname: Fletcher
  fullname: Fletcher, Alyson
  organization: Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA
– sequence: 4
  givenname: Sundeep
  orcidid: 0000-0002-0925-8169
  surname: Rangan
  fullname: Rangan, Sundeep
  organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA
– sequence: 5
  givenname: S. Farokh
  orcidid: 0000-0001-8495-8440
  surname: Atashzar
  fullname: Atashzar, S. Farokh
  email: f.atashzar@nyu.edu
  organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA
BookMark eNp9UE1Pg0AQ3Zia2Fb_gPGwieet-wUL3ppSQdPGpq1eybIszVYKdaEm_HtBejAePExmMnlv5r03AoOiLDQAtwRPCMH-w8tmu1lNKKZ8wjimbV2AIfE5QZh7fNDNjCLuOOwKjKpqj7EjXMKH4OPdbNEyiML1I5zZsqpQIBu41rmRiclN3UBZpHC662dTwKAp5MEoGHX7UFf1yWq4sjo1qjZlAb-MhFGAqvkyhBuzK2QOA63K1BS7a3CZybzSN-c-Bm9P8-0sQovX8Hk2XSBFfbdGHkkkVdhVfkZTwTKRSuakjhDUE6lPOfMIbj0TjQnDVIjM9xLs8ERIlbgeSdkY3Pd3j7b8PLUS4315sq2SKmYEY5d4nPEWRXuU6mxbncVHaw7SNjHBcRdq_BNq3IUan0NtSd4fkjK17IzXVpr8f-pdTzVa61-_HMZcx2XfWhyEgA
CODEN IJSTGY
CitedBy_id crossref_primary_10_3390_electronics13163285
Cites_doi 10.48550/ARXIV.1706.03762
10.1142/S0219843620500255
10.1016/j.jelekin.2020.102426
10.1109/ISCAS.2018.8351613
10.1109/ICRA57147.2024.10610638
10.1109/TII.2017.2779814
10.1016/j.bspc.2019.02.011
10.3390/s130912431
10.1109/JBHI.2018.2864335
10.1251/bpo115
10.1007/s13246-021-00972-w
10.3390/s18082497
10.1109/IJCNN.2019.8852018
10.1109/TSP.2020.2985299
10.1109/LRA.2022.3142721
10.1109/TIM.2023.3273651
10.1109/MSP.2021.3057051
10.1109/ICCV48922.2021.00676
10.1088/1741-2552/ad017c
10.1109/TBME.2022.3150422
10.1038/s41598-023-36490-w
10.1109/THMS.2022.3175408
10.1093/nsr/nwad048
10.1109/JSEN.2022.3198882
10.1007/978-981-13-9097-5_1
10.1109/MSP.2021.3075931
10.1109/ACCESS.2020.3027497
10.1109/TNSRE.2015.2492619
10.1109/TNSRE.2015.2454240
10.3390/s17030458
10.3390/app8071126
10.1142/S0219843619410019
10.1109/EMBC.2014.6944635
10.1016/b978-0-12-382163-8.00029-3
10.1109/TIM.2022.3217868
10.1109/AICAS48895.2020.9073888
10.1109/JSEN.2022.3204121
10.1162/neco.1997.9.8.1735
10.1109/10.204774
10.3390/s20041196
10.1145/3550454.3555461
10.1109/TNSRE.2020.2986099
10.1109/TNSRE.2020.3043368
10.1109/TNSRE.2023.3295453
10.1109/ACCESS.2022.3225761
10.1109/TBME.2003.813539
10.1109/BHI.2018.8333395
10.1109/TBME.2016.2641584
10.1016/j.eswa.2017.11.049
10.1016/j.bspc.2018.07.010
10.1109/TNSRE.2021.3082551
10.1088/1742-6596/2327/1/012075
10.1109/IROS47612.2022.9981786
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2024.3402340
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 430
ExternalDocumentID 10_1109_JSTSP_2024_3402340
10533656
Genre orig-research
GrantInformation_xml – fundername: NYUAD CAIR center
– fundername: National Science Foundation; U.S. National Science Foundation
  grantid: 2229697; 2208189; 2121391
  funderid: 10.13039/100000001
– fundername: Mathworks
  funderid: 10.13039/100014600
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c296t-81ba2c06c9f2d73f7da35d577287d92438101091e0130277f98b054b7acb681d3
IEDL.DBID RIE
ISSN 1932-4553
IngestDate Mon Jun 30 16:42:23 EDT 2025
Tue Jul 01 02:54:58 EDT 2025
Thu Apr 24 22:52:46 EDT 2025
Wed Aug 27 01:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-81ba2c06c9f2d73f7da35d577287d92438101091e0130277f98b054b7acb681d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-2016-2822
0000-0002-3756-6580
0000-0001-6741-3916
0000-0002-0925-8169
0000-0001-8495-8440
PQID 3100618434
PQPubID 75721
PageCount 12
ParticipantIDs proquest_journals_3100618434
ieee_primary_10533656
crossref_primary_10_1109_JSTSP_2024_3402340
crossref_citationtrail_10_1109_JSTSP_2024_3402340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
Chung (ref50) 2014
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Dosovitskiy (ref44) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref47
  doi: 10.48550/ARXIV.1706.03762
– ident: ref18
  doi: 10.1142/S0219843620500255
– ident: ref2
  doi: 10.1016/j.jelekin.2020.102426
– ident: ref33
  doi: 10.1109/ISCAS.2018.8351613
– ident: ref56
  doi: 10.1109/ICRA57147.2024.10610638
– ident: ref39
  doi: 10.1109/TII.2017.2779814
– ident: ref4
  doi: 10.1016/j.bspc.2019.02.011
– volume-title: Proc. NIPS Workshop Deep Learn.
  year: 2014
  ident: ref50
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref10
  doi: 10.3390/s130912431
– ident: ref17
  doi: 10.1109/JBHI.2018.2864335
– ident: ref3
  doi: 10.1251/bpo115
– ident: ref36
  doi: 10.1007/s13246-021-00972-w
– ident: ref41
  doi: 10.3390/s18082497
– ident: ref21
  doi: 10.1109/IJCNN.2019.8852018
– ident: ref25
  doi: 10.1109/TSP.2020.2985299
– ident: ref29
  doi: 10.1109/LRA.2022.3142721
– ident: ref30
  doi: 10.1109/TIM.2023.3273651
– ident: ref9
  doi: 10.1109/MSP.2021.3057051
– ident: ref45
  doi: 10.1109/ICCV48922.2021.00676
– ident: ref54
  doi: 10.1088/1741-2552/ad017c
– ident: ref53
  doi: 10.1109/TBME.2022.3150422
– ident: ref46
  doi: 10.1038/s41598-023-36490-w
– ident: ref16
  doi: 10.1109/THMS.2022.3175408
– ident: ref35
  doi: 10.1093/nsr/nwad048
– ident: ref6
  doi: 10.1109/JSEN.2022.3198882
– ident: ref34
  doi: 10.1007/978-981-13-9097-5_1
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref44
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref8
  doi: 10.1109/MSP.2021.3075931
– ident: ref23
  doi: 10.1109/ACCESS.2020.3027497
– ident: ref40
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref27
  doi: 10.1109/TNSRE.2015.2454240
– ident: ref22
  doi: 10.3390/s17030458
– ident: ref13
  doi: 10.3390/app8071126
– ident: ref14
  doi: 10.1142/S0219843619410019
– ident: ref32
  doi: 10.1109/EMBC.2014.6944635
– ident: ref1
  doi: 10.1016/b978-0-12-382163-8.00029-3
– ident: ref15
  doi: 10.1109/TIM.2022.3217868
– ident: ref19
  doi: 10.1109/AICAS48895.2020.9073888
– ident: ref20
  doi: 10.1109/JSEN.2022.3204121
– ident: ref51
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref37
  doi: 10.1109/10.204774
– ident: ref28
  doi: 10.3390/s20041196
– ident: ref5
  doi: 10.1145/3550454.3555461
– ident: ref31
  doi: 10.1109/TNSRE.2020.2986099
– ident: ref52
  doi: 10.1109/TNSRE.2020.3043368
– ident: ref42
  doi: 10.1109/TNSRE.2023.3295453
– ident: ref11
  doi: 10.1109/ACCESS.2022.3225761
– ident: ref12
  doi: 10.1109/TBME.2003.813539
– ident: ref48
  doi: 10.1109/BHI.2018.8333395
– ident: ref24
  doi: 10.1109/TBME.2016.2641584
– ident: ref38
  doi: 10.1016/j.eswa.2017.11.049
– ident: ref26
  doi: 10.1016/j.bspc.2018.07.010
– ident: ref43
  doi: 10.1109/TNSRE.2021.3082551
– ident: ref7
  doi: 10.1088/1742-6596/2327/1/012075
– ident: ref55
  doi: 10.1109/IROS47612.2022.9981786
– ident: ref49
  doi: 10.1109/IROS47612.2022.9981786
SSID ssj0057614
Score 2.4180987
Snippet Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 419
SubjectTerms Accuracy
Adaptation models
Biomedical signal processing
Calibration
cross-day HGR
Data models
Decoding
Electrodes
Electromyography
Feasibility studies
Feature extraction
Gesture recognition
hand gesture recognition (HGR)
Human-computer interface
Human-robot interaction
Human-robot interactions
minimal calibration
Myoelectric control
Myoelectricity
Performance degradation
Prostheses
Real time
Solid modeling
surface electromyography (sEMG)
Testing
Training
vision transformer
Vision transformers
Title ViT-MDHGR: Cross-Day Reliability and Agility in Dynamic Hand Gesture Prediction via HD-sEMG Signal Decoding
URI https://ieeexplore.ieee.org/document/10533656
https://www.proquest.com/docview/3100618434
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA46Jz24i-NGDt4kY5d08yZWpwgziBveStKkMox0ZBZh_PW-l7QyKIq3tiRtypfl-_Je3iPkJHRdKXweMaVKzngSSxZLx8ds7m4sQk-VpfHy7YfZI795Dp7rw-rmLIzW2jif6Q5eGlu-GhUz3CqDEQ7kBAjIMlkG5WYPazXTLvBmtzYhe4wHgd-ckHGSM-jj97egBT3e8UEv-bjTsbAKmbQqP-Zis8Bcr5N-0zTrVzLszKayU3x8i9r477ZvkLWaatIL2zc2yZKutsjqQgDCbTJ8GjywXpp1787pJbaUpWJO0U3Zhu-eU1EpevFirwcVTW0Ce5rh8y78xWys6e0YrT2IMH0fCJqlbHLV69L7wQt-PwWBiwvkDnm8vnq4zFidfoEVXhJOGRBa4RVOWCSlpyK_jJTwAxUAHY8jBbLNxAYDuqGt8TMqAWgggDIShQyBBvu7pFWNKr1HKNBOqSJQnkIoHntKOqHgeF-EIM1F2SZuA0de1LHJMUXGa240ipPkBsIcIcxrCNvk9KvOm43M8WfpHcRkoaSFo00OG9jzevROcjR6mEQ4fP-XagdkBd9uXXgOSWs6nukjYCdTeWx65Sdeetx5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5iOcAcYIZFU5bBh7mNXLI1CzdEoIGhFYKCuEV27KAKFFBpkeDX856doAoE4uYktuzo8_I9vw3gb-i6UvhBxJUqAx4kseSxdHzK5u7GIvRUWRor336YXQYn153r2lnd-MJorY3xmW5T0ejy1X0xoasyXOFITpCAzMI8Hvwd17prNRsvMme3ViJ7HD_7jY-Mk-ziLL84Q2nQC9o-Skw-3XVMnUMmscqH3dgcMUfL0G8GZy1LbtuTsWwXL-_iNn579D9hqSabbN_Ojl8wo6sV-DEVgnAVbq-GA95Ls-75HjugkfJUPDMyVLYBvJ-ZqBTbv7HlYcVSm8KeZfS-i38xGWl2NiJ9D2HMnoaCZSl_POx12cXwhvpPUcSlI3INLo8OBwcZrxMw8MJLwjFHSiu8wgmLpPRU5JeREn5HdZCQx5FCwc1EB0PCoa36MyoRaqSAMhKFDJEI--swV91X-jcwJJ5SRSh7CqGC2FPSCUVAz0WIwrkoW-A2cORFHZ2ckmTc5UZKcZLcQJgThHkNYQv-vbV5sLE5vqy9RphM1bRwtGCrgT2v1-9jTmoPkwon2Pik2Q4sZIPeaX563P-_CYvUkzXo2YK58Wiit5GrjOUfM0NfAQv238I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ViT-MDHGR%3A+Cross-Day+Reliability+and+Agility+in+Dynamic+Hand+Gesture+Prediction+via+HD-sEMG+Signal+Decoding&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Hu%2C+Qin&rft.au=Azar%2C+Golara+Ahmadi&rft.au=Fletcher%2C+Alyson&rft.au=Rangan%2C+Sundeep&rft.date=2024-04-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=18&rft.issue=3&rft.spage=419&rft.epage=430&rft_id=info:doi/10.1109%2FJSTSP.2024.3402340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2024_3402340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon