ViT-MDHGR: Cross-Day Reliability and Agility in Dynamic Hand Gesture Prediction via HD-sEMG Signal Decoding
Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable an...
Saved in:
Published in | IEEE journal of selected topics in signal processing Vol. 18; no. 3; pp. 419 - 430 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable and non-invasive manner. High intraday (same-day) performance has been reported. However, the interday performance (separating training and testing days) is substantially degraded due to the poor generalizability of conventional approaches over time, hindering the application of such techniques in real-life practices. There are limited recent studies on the feasibility of multi-day hand gesture recognition. The existing studies face a major challenge: the need for long sEMG epochs makes the corresponding neural interfaces impractical due to the induced delay in myoelectric control. This paper proposes a compact ViT-based network for multi-day dynamic hand gesture prediction. We tackle the main challenge as the proposed model only relies on very short HD-sEMG signal windows (i.e., 50 ms, accounting for only one-sixth of the convention for real-time myoelectric implementation), boosting agility and responsiveness. Our proposed model can predict 11 dynamic gestures for 20 subjects with an average accuracy of over 71% on the testing day, 3-25 days after training. Moreover, when calibrated on just a small portion of data from the testing day, the proposed model can achieve over 92% accuracy by retraining less than 10% of the parameters for computational efficiency. |
---|---|
AbstractList | Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable and non-invasive manner. High intraday (same-day) performance has been reported. However, the interday performance (separating training and testing days) is substantially degraded due to the poor generalizability of conventional approaches over time, hindering the application of such techniques in real-life practices. There are limited recent studies on the feasibility of multi-day hand gesture recognition. The existing studies face a major challenge: the need for long sEMG epochs makes the corresponding neural interfaces impractical due to the induced delay in myoelectric control. This paper proposes a compact ViT-based network for multi-day dynamic hand gesture prediction. We tackle the main challenge as the proposed model only relies on very short HD-sEMG signal windows (i.e., 50 ms, accounting for only one-sixth of the convention for real-time myoelectric implementation), boosting agility and responsiveness. Our proposed model can predict 11 dynamic gestures for 20 subjects with an average accuracy of over 71% on the testing day, 3-25 days after training. Moreover, when calibrated on just a small portion of data from the testing day, the proposed model can achieve over 92% accuracy by retraining less than 10% of the parameters for computational efficiency. |
Author | Fletcher, Alyson Hu, Qin Azar, Golara Ahmadi Rangan, Sundeep Atashzar, S. Farokh |
Author_xml | – sequence: 1 givenname: Qin orcidid: 0000-0001-6741-3916 surname: Hu fullname: Hu, Qin organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA – sequence: 2 givenname: Golara Ahmadi orcidid: 0009-0000-2016-2822 surname: Azar fullname: Azar, Golara Ahmadi organization: Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA – sequence: 3 givenname: Alyson orcidid: 0000-0002-3756-6580 surname: Fletcher fullname: Fletcher, Alyson organization: Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA – sequence: 4 givenname: Sundeep orcidid: 0000-0002-0925-8169 surname: Rangan fullname: Rangan, Sundeep organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA – sequence: 5 givenname: S. Farokh orcidid: 0000-0001-8495-8440 surname: Atashzar fullname: Atashzar, S. Farokh email: f.atashzar@nyu.edu organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA |
BookMark | eNp9UE1Pg0AQ3Zia2Fb_gPGwieet-wUL3ppSQdPGpq1eybIszVYKdaEm_HtBejAePExmMnlv5r03AoOiLDQAtwRPCMH-w8tmu1lNKKZ8wjimbV2AIfE5QZh7fNDNjCLuOOwKjKpqj7EjXMKH4OPdbNEyiML1I5zZsqpQIBu41rmRiclN3UBZpHC662dTwKAp5MEoGHX7UFf1yWq4sjo1qjZlAb-MhFGAqvkyhBuzK2QOA63K1BS7a3CZybzSN-c-Bm9P8-0sQovX8Hk2XSBFfbdGHkkkVdhVfkZTwTKRSuakjhDUE6lPOfMIbj0TjQnDVIjM9xLs8ERIlbgeSdkY3Pd3j7b8PLUS4315sq2SKmYEY5d4nPEWRXuU6mxbncVHaw7SNjHBcRdq_BNq3IUan0NtSd4fkjK17IzXVpr8f-pdTzVa61-_HMZcx2XfWhyEgA |
CODEN | IJSTGY |
CitedBy_id | crossref_primary_10_3390_electronics13163285 |
Cites_doi | 10.48550/ARXIV.1706.03762 10.1142/S0219843620500255 10.1016/j.jelekin.2020.102426 10.1109/ISCAS.2018.8351613 10.1109/ICRA57147.2024.10610638 10.1109/TII.2017.2779814 10.1016/j.bspc.2019.02.011 10.3390/s130912431 10.1109/JBHI.2018.2864335 10.1251/bpo115 10.1007/s13246-021-00972-w 10.3390/s18082497 10.1109/IJCNN.2019.8852018 10.1109/TSP.2020.2985299 10.1109/LRA.2022.3142721 10.1109/TIM.2023.3273651 10.1109/MSP.2021.3057051 10.1109/ICCV48922.2021.00676 10.1088/1741-2552/ad017c 10.1109/TBME.2022.3150422 10.1038/s41598-023-36490-w 10.1109/THMS.2022.3175408 10.1093/nsr/nwad048 10.1109/JSEN.2022.3198882 10.1007/978-981-13-9097-5_1 10.1109/MSP.2021.3075931 10.1109/ACCESS.2020.3027497 10.1109/TNSRE.2015.2492619 10.1109/TNSRE.2015.2454240 10.3390/s17030458 10.3390/app8071126 10.1142/S0219843619410019 10.1109/EMBC.2014.6944635 10.1016/b978-0-12-382163-8.00029-3 10.1109/TIM.2022.3217868 10.1109/AICAS48895.2020.9073888 10.1109/JSEN.2022.3204121 10.1162/neco.1997.9.8.1735 10.1109/10.204774 10.3390/s20041196 10.1145/3550454.3555461 10.1109/TNSRE.2020.2986099 10.1109/TNSRE.2020.3043368 10.1109/TNSRE.2023.3295453 10.1109/ACCESS.2022.3225761 10.1109/TBME.2003.813539 10.1109/BHI.2018.8333395 10.1109/TBME.2016.2641584 10.1016/j.eswa.2017.11.049 10.1016/j.bspc.2018.07.010 10.1109/TNSRE.2021.3082551 10.1088/1742-6596/2327/1/012075 10.1109/IROS47612.2022.9981786 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
DOI | 10.1109/JSTSP.2024.3402340 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0484 |
EndPage | 430 |
ExternalDocumentID | 10_1109_JSTSP_2024_3402340 10533656 |
Genre | orig-research |
GrantInformation_xml | – fundername: NYUAD CAIR center – fundername: National Science Foundation; U.S. National Science Foundation grantid: 2229697; 2208189; 2121391 funderid: 10.13039/100000001 – fundername: Mathworks funderid: 10.13039/100014600 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG 7SP 8FD H8D L7M |
ID | FETCH-LOGICAL-c296t-81ba2c06c9f2d73f7da35d577287d92438101091e0130277f98b054b7acb681d3 |
IEDL.DBID | RIE |
ISSN | 1932-4553 |
IngestDate | Mon Jun 30 16:42:23 EDT 2025 Tue Jul 01 02:54:58 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 Wed Aug 27 01:53:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-81ba2c06c9f2d73f7da35d577287d92438101091e0130277f98b054b7acb681d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-2016-2822 0000-0002-3756-6580 0000-0001-6741-3916 0000-0002-0925-8169 0000-0001-8495-8440 |
PQID | 3100618434 |
PQPubID | 75721 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3100618434 ieee_primary_10533656 crossref_primary_10_1109_JSTSP_2024_3402340 crossref_citationtrail_10_1109_JSTSP_2024_3402340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of selected topics in signal processing |
PublicationTitleAbbrev | JSTSP |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref14 Chung (ref50) 2014 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Dosovitskiy (ref44) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref47 doi: 10.48550/ARXIV.1706.03762 – ident: ref18 doi: 10.1142/S0219843620500255 – ident: ref2 doi: 10.1016/j.jelekin.2020.102426 – ident: ref33 doi: 10.1109/ISCAS.2018.8351613 – ident: ref56 doi: 10.1109/ICRA57147.2024.10610638 – ident: ref39 doi: 10.1109/TII.2017.2779814 – ident: ref4 doi: 10.1016/j.bspc.2019.02.011 – volume-title: Proc. NIPS Workshop Deep Learn. year: 2014 ident: ref50 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref10 doi: 10.3390/s130912431 – ident: ref17 doi: 10.1109/JBHI.2018.2864335 – ident: ref3 doi: 10.1251/bpo115 – ident: ref36 doi: 10.1007/s13246-021-00972-w – ident: ref41 doi: 10.3390/s18082497 – ident: ref21 doi: 10.1109/IJCNN.2019.8852018 – ident: ref25 doi: 10.1109/TSP.2020.2985299 – ident: ref29 doi: 10.1109/LRA.2022.3142721 – ident: ref30 doi: 10.1109/TIM.2023.3273651 – ident: ref9 doi: 10.1109/MSP.2021.3057051 – ident: ref45 doi: 10.1109/ICCV48922.2021.00676 – ident: ref54 doi: 10.1088/1741-2552/ad017c – ident: ref53 doi: 10.1109/TBME.2022.3150422 – ident: ref46 doi: 10.1038/s41598-023-36490-w – ident: ref16 doi: 10.1109/THMS.2022.3175408 – ident: ref35 doi: 10.1093/nsr/nwad048 – ident: ref6 doi: 10.1109/JSEN.2022.3198882 – ident: ref34 doi: 10.1007/978-981-13-9097-5_1 – volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref44 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – ident: ref8 doi: 10.1109/MSP.2021.3075931 – ident: ref23 doi: 10.1109/ACCESS.2020.3027497 – ident: ref40 doi: 10.1109/TNSRE.2015.2492619 – ident: ref27 doi: 10.1109/TNSRE.2015.2454240 – ident: ref22 doi: 10.3390/s17030458 – ident: ref13 doi: 10.3390/app8071126 – ident: ref14 doi: 10.1142/S0219843619410019 – ident: ref32 doi: 10.1109/EMBC.2014.6944635 – ident: ref1 doi: 10.1016/b978-0-12-382163-8.00029-3 – ident: ref15 doi: 10.1109/TIM.2022.3217868 – ident: ref19 doi: 10.1109/AICAS48895.2020.9073888 – ident: ref20 doi: 10.1109/JSEN.2022.3204121 – ident: ref51 doi: 10.1162/neco.1997.9.8.1735 – ident: ref37 doi: 10.1109/10.204774 – ident: ref28 doi: 10.3390/s20041196 – ident: ref5 doi: 10.1145/3550454.3555461 – ident: ref31 doi: 10.1109/TNSRE.2020.2986099 – ident: ref52 doi: 10.1109/TNSRE.2020.3043368 – ident: ref42 doi: 10.1109/TNSRE.2023.3295453 – ident: ref11 doi: 10.1109/ACCESS.2022.3225761 – ident: ref12 doi: 10.1109/TBME.2003.813539 – ident: ref48 doi: 10.1109/BHI.2018.8333395 – ident: ref24 doi: 10.1109/TBME.2016.2641584 – ident: ref38 doi: 10.1016/j.eswa.2017.11.049 – ident: ref26 doi: 10.1016/j.bspc.2018.07.010 – ident: ref43 doi: 10.1109/TNSRE.2021.3082551 – ident: ref7 doi: 10.1088/1742-6596/2327/1/012075 – ident: ref55 doi: 10.1109/IROS47612.2022.9981786 – ident: ref49 doi: 10.1109/IROS47612.2022.9981786 |
SSID | ssj0057614 |
Score | 2.4180987 |
Snippet | Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 419 |
SubjectTerms | Accuracy Adaptation models Biomedical signal processing Calibration cross-day HGR Data models Decoding Electrodes Electromyography Feasibility studies Feature extraction Gesture recognition hand gesture recognition (HGR) Human-computer interface Human-robot interaction Human-robot interactions minimal calibration Myoelectric control Myoelectricity Performance degradation Prostheses Real time Solid modeling surface electromyography (sEMG) Testing Training vision transformer Vision transformers |
Title | ViT-MDHGR: Cross-Day Reliability and Agility in Dynamic Hand Gesture Prediction via HD-sEMG Signal Decoding |
URI | https://ieeexplore.ieee.org/document/10533656 https://www.proquest.com/docview/3100618434 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA46Jz24i-NGDt4kY5d08yZWpwgziBveStKkMox0ZBZh_PW-l7QyKIq3tiRtypfl-_Je3iPkJHRdKXweMaVKzngSSxZLx8ds7m4sQk-VpfHy7YfZI795Dp7rw-rmLIzW2jif6Q5eGlu-GhUz3CqDEQ7kBAjIMlkG5WYPazXTLvBmtzYhe4wHgd-ckHGSM-jj97egBT3e8UEv-bjTsbAKmbQqP-Zis8Bcr5N-0zTrVzLszKayU3x8i9r477ZvkLWaatIL2zc2yZKutsjqQgDCbTJ8GjywXpp1787pJbaUpWJO0U3Zhu-eU1EpevFirwcVTW0Ce5rh8y78xWys6e0YrT2IMH0fCJqlbHLV69L7wQt-PwWBiwvkDnm8vnq4zFidfoEVXhJOGRBa4RVOWCSlpyK_jJTwAxUAHY8jBbLNxAYDuqGt8TMqAWgggDIShQyBBvu7pFWNKr1HKNBOqSJQnkIoHntKOqHgeF-EIM1F2SZuA0de1LHJMUXGa240ipPkBsIcIcxrCNvk9KvOm43M8WfpHcRkoaSFo00OG9jzevROcjR6mEQ4fP-XagdkBd9uXXgOSWs6nukjYCdTeWx65Sdeetx5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5iOcAcYIZFU5bBh7mNXLI1CzdEoIGhFYKCuEV27KAKFFBpkeDX856doAoE4uYktuzo8_I9vw3gb-i6UvhBxJUqAx4kseSxdHzK5u7GIvRUWRor336YXQYn153r2lnd-MJorY3xmW5T0ejy1X0xoasyXOFITpCAzMI8Hvwd17prNRsvMme3ViJ7HD_7jY-Mk-ziLL84Q2nQC9o-Skw-3XVMnUMmscqH3dgcMUfL0G8GZy1LbtuTsWwXL-_iNn579D9hqSabbN_Ojl8wo6sV-DEVgnAVbq-GA95Ls-75HjugkfJUPDMyVLYBvJ-ZqBTbv7HlYcVSm8KeZfS-i38xGWl2NiJ9D2HMnoaCZSl_POx12cXwhvpPUcSlI3INLo8OBwcZrxMw8MJLwjFHSiu8wgmLpPRU5JeREn5HdZCQx5FCwc1EB0PCoa36MyoRaqSAMhKFDJEI--swV91X-jcwJJ5SRSh7CqGC2FPSCUVAz0WIwrkoW-A2cORFHZ2ckmTc5UZKcZLcQJgThHkNYQv-vbV5sLE5vqy9RphM1bRwtGCrgT2v1-9jTmoPkwon2Pik2Q4sZIPeaX563P-_CYvUkzXo2YK58Wiit5GrjOUfM0NfAQv238I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ViT-MDHGR%3A+Cross-Day+Reliability+and+Agility+in+Dynamic+Hand+Gesture+Prediction+via+HD-sEMG+Signal+Decoding&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Hu%2C+Qin&rft.au=Azar%2C+Golara+Ahmadi&rft.au=Fletcher%2C+Alyson&rft.au=Rangan%2C+Sundeep&rft.date=2024-04-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=18&rft.issue=3&rft.spage=419&rft.epage=430&rft_id=info:doi/10.1109%2FJSTSP.2024.3402340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2024_3402340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |