Investigation of alternative window materials for GaAs solar cells

The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap energy and thickness. A simplified expression is developed to calculate the effective surface recombination velocity in terms of lattice mismatch...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 40; no. 4; pp. 705 - 711
Main Authors DeSalvo, G.C., Barnett, A.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.1993
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap energy and thickness. A simplified expression is developed to calculate the effective surface recombination velocity in terms of lattice mismatch between the window layer and GaAs, which suggests using a window material with and indirect bandgap energy greater than 2.0 eV, a thickness of less than 0.05 mu m, and a lattice mismatch of less than 0.05%. Experimental GaAs solar cells were fabricated and quantum efficiency measurements were made using no window (bare GaAs), Al/sub 0.7/Ga/sub 0.3/As, Na/sub 2/S, and ZnSe/Na/sub 2/S windows. The Al/sub 0.7/Ga/sub 0.3/As and Na/sub 2/S windows are shown to passivate the GaAs surface and reduce the surface recombination velocity to less than 10/sup 5/ cm/s, while the ZnSe encapsulating layer was used to permanently maintain the temporary surface passivation effects from Na/sub 2/S.< >
AbstractList The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap energy and thickness. A simplified expression is developed to calculate the effective surface recombination velocity in terms of lattice mismatch between the window layer and GaAs, which suggests using a window material with and indirect bandgap energy greater than 2.0 eV, a thickness of less than 0.05 mu m, and a lattice mismatch of less than 0.05%. Experimental GaAs solar cells were fabricated and quantum efficiency measurements were made using no window (bare GaAs), Al/sub 0.7/Ga/sub 0.3/As, Na/sub 2/S, and ZnSe/Na/sub 2/S windows. The Al/sub 0.7/Ga/sub 0.3/As and Na/sub 2/S windows are shown to passivate the GaAs surface and reduce the surface recombination velocity to less than 10/sup 5/ cm/s, while the ZnSe encapsulating layer was used to permanently maintain the temporary surface passivation effects from Na/sub 2/S.< >
The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap energy and thickness. A simplified expression is developed to calculate the effective surface recombination velocity in terms of lattice mismatch between the window layer and GaAs, which suggests using a window material with and indirect bandgap energy greater than 2.0 eV, a thickness of less than 0.05 mum, and a lattice mismatch of less than 0.05%. Experimental GaAs solar cells were fabricated and quantum efficiency measurements were made using no window (bare GaAs), Al(0.7)Ga(0.3)As, Na(2)S, and ZnSe/Na(2)S windows. The Al(0.7)Ga(0.3)As and Na(2)S windows are shown to passivate the GaAs surface and reduce the surface recombination velocity to less than 10(5) cm/s, while the ZnSe encapsulating layer was used to permanently maintain the temporary surface passivation effects from Na(2)S
The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap energy and thickness. A simplified expression is developed to calculate the effective surface recombination velocity in terms of lattice mismatch between the window layer and GaAs, which suggest using a window material with an indirect bandgap energy greater than 2.0 eV, a 1 of less than 0.05 [mu]m, and a lattice mismatch less than 0.05%. Experimental GaAs solar cells were fabricated and quantum efficiency measurements were made using no window (bare GaAs), Al[sub 0.7]Ga[sub 0.3]As and Na[sub 2]S, and ZnSe/Na[sub 2]S windows. The Al[sub 0.7]Ga[sub 0.3]As and Na[sub 2]S windows are shown to passivate the GaAs surface and reduce the surface recombination velocity to less than 10[sup 5] cm/s, while the ZnSe encapsulating layer was used to permanently maintain the temporary surface passivation effects from Na[sub 2]S.
The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap energy and thickness. A simplified expression is developed to calculate the effective surface recombination velocity in terms of lattice mismatch between the window layer and GaAs, which suggest using a window material with an indirect bandgap energy greater than 2.0 eV, a thickness of less than 0.05 mu m, and a lattice mismatch less than 0.05%. Experimental GaAs solar cells were fabricated and quantum efficiency measurements were made using no window (bare GaAs), Al sub(0.7)Ga sub(0.3)As, Na sub(2)S, and ZnSe/Na sub(2)S windows. The Al sub(0.7)Ga sub(0.3)As and Na sub(2)S windows are shown to passivate the GaAs surface and reduce the surface recombination velocity to less than 10 super(5) cm/s, while the ZnSe encapsulating layer was used to permanently maintain the temporary surface passivation effects from Na sub(2)S.
Author DeSalvo, G.C.
Barnett, A.M.
Author_xml – sequence: 1
  givenname: G.C.
  surname: DeSalvo
  fullname: DeSalvo, G.C.
  organization: Dept. of Electr. Eng., Delaware Univ., Newark, DE, USA
– sequence: 2
  givenname: A.M.
  surname: Barnett
  fullname: Barnett, A.M.
  organization: Dept. of Electr. Eng., Delaware Univ., Newark, DE, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4696429$$DView record in Pascal Francis
https://www.osti.gov/biblio/6545722$$D View this record in Osti.gov
BookMark eNqFkU1LAzEQhoNUsK0evHoKIoKHrfnu5liLH4WCl95DzCYa2SY12bb4703Z0qunyWSeeefNZAQGIQYLwDVGE4yRfMRiQhCZ1vgMDDHn00oKJgZgiBCuK0lregFGOX-XVDBGhuBpEXY2d_5Tdz4GGB3UbWdTKOnOwr0PTdzDtS5XXrcZupjgq55lmGOrEzS2bfMlOHelZq-OcQxWL8-r-Vu1fH9dzGfLyhApumrqECYNZYI1zDFdi3I01CLecG4QF9h9WEIxFXXTaMMlRgw1kgosHEEC0TG47WVjsauy8Z01XyaGYE2nBGd8SkiB7ntok-LPtjxMrX0-uNTBxm1WpGaS1Jj_D4oCMXYY-9CDJsWck3Vqk_xap1-FkTqsXGGh-pUX9u4oqrPRrUs6GJ9PDUyUzyCyYDc95q21p-pR4w9-j4eo
CODEN IETDAI
CitedBy_id crossref_primary_10_1088_0268_1242_22_10_008
crossref_primary_10_1088_1674_4926_35_9_094010
Cites_doi 10.1016/0022-3697(66)90080-1
10.1016/0038-1101(64)90140-6
10.1109/JRPROC.1960.287647
10.1063/1.325074
10.1063/1.1777056
10.1103/PhysRevB.27.985
10.1103/PhysRev.171.903
10.1016/0038-1101(70)90002-X
10.1063/1.1654421
10.1016/0039-6028(83)90550-2
10.1109/ISLC.2006.1708081
10.1063/1.1713601
10.1063/1.102228
10.1016/0169-4332(89)90091-3
10.1063/1.100744
10.1063/1.332322
10.1063/1.341519
10.1007/BF02660192
10.1149/1.2095643
10.1063/1.98946
10.1016/0038-1101(90)90169-F
10.1103/PhysRevB.15.989
10.1109/55.56488
10.1016/0040-6090(71)90007-1
10.1063/1.98877
10.1063/1.337426
10.1116/1.569773
10.1016/0022-0248(89)90468-5
10.1103/PhysRev.87.835
10.1016/0038-1098(89)90342-6
10.1149/1.2123979
10.1116/1.571150
10.1016/0022-0248(82)90322-0
10.1016/0040-6090(85)90170-1
ContentType Journal Article
Copyright 1993 INIST-CNRS
Copyright_xml – notice: 1993 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SP
7U5
8FD
L7M
OTOTI
DOI 10.1109/16.202781
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1557-9646
EndPage 711
ExternalDocumentID 6545722
10_1109_16_202781
4696429
202781
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
B-7
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
VJK
VOH
XFK
08R
ABPTK
IQODW
AAYXX
CITATION
7SP
7U5
8FD
L7M
OTOTI
ID FETCH-LOGICAL-c296t-7f012d3464d4f4a86346c3e05d55c0561fbe231368ddac591040d93616f20603
IEDL.DBID RIE
ISSN 0018-9383
IngestDate Thu May 18 18:36:46 EDT 2023
Thu Aug 15 22:31:46 EDT 2024
Fri Aug 16 01:59:48 EDT 2024
Fri Aug 23 01:23:26 EDT 2024
Sun Oct 29 17:06:37 EDT 2023
Wed Jun 26 19:25:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Solar cell
Gallium Arsenides
Surface recombination
Optical coating
Experimental study
Comparative study
Optimization
Passivation
Surface
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-7f012d3464d4f4a86346c3e05d55c0561fbe231368ddac591040d93616f20603
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26153440
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_26153440
pascalfrancis_primary_4696429
proquest_miscellaneous_28492815
ieee_primary_202781
osti_scitechconnect_6545722
crossref_primary_10_1109_16_202781
PublicationCentury 1900
PublicationDate 1993-04-01
PublicationDateYYYYMMDD 1993-04-01
PublicationDate_xml – month: 04
  year: 1993
  text: 1993-04-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 1993
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref37
ref15
vendura (ref25) 1979
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
gillander (ref23) 1987
fahrenbruch (ref20) 1983
knobloch (ref30) 1988
(ref22) 0
ref46
ref45
ref26
ref47
ref42
fahrenbruch (ref34) 1983
ref41
ref44
ref43
fonash (ref18) 1981
blakeslee (ref12) 1985
ref28
ref27
ref29
ref8
ref7
hecht (ref21) 1979
ref9
ref4
ref3
iles (ref24) 1987
ref6
spindt (ref5) 1990; 90 15
ref40
References_xml – ident: ref36
  doi: 10.1016/0022-3697(66)90080-1
– ident: ref29
  doi: 10.1016/0038-1101(64)90140-6
– start-page: 331
  year: 1987
  ident: ref24
  publication-title: Proc IEEE Photovoltaic Specialists Conf
  contributor:
    fullname: iles
– start-page: 147
  year: 1981
  ident: ref18
  publication-title: Solar Cell Device Physics
  contributor:
    fullname: fonash
– ident: ref19
  doi: 10.1109/JRPROC.1960.287647
– ident: ref41
  doi: 10.1063/1.325074
– year: 1979
  ident: ref25
  publication-title: Hughes Aircraft Co Tech Rep
  contributor:
    fullname: vendura
– ident: ref28
  doi: 10.1063/1.1777056
– ident: ref27
  doi: 10.1103/PhysRevB.27.985
– ident: ref45
  doi: 10.1103/PhysRev.171.903
– year: 0
  ident: ref22
– volume: 90 15
  start-page: 3
  year: 1990
  ident: ref5
  publication-title: Proc Electrochem Soc (PESODO)
  contributor:
    fullname: spindt
– start-page: 67
  year: 1983
  ident: ref34
  publication-title: Fundamentals of Solar Cells
  contributor:
    fullname: fahrenbruch
– ident: ref11
  doi: 10.1016/0038-1101(70)90002-X
– ident: ref17
  doi: 10.1063/1.1654421
– start-page: 289
  year: 1987
  ident: ref23
  publication-title: Proc 19th IEEE Photovoltaic Specialists Conf
  contributor:
    fullname: gillander
– ident: ref10
  doi: 10.1016/0039-6028(83)90550-2
– ident: ref13
  doi: 10.1109/ISLC.2006.1708081
– ident: ref46
  doi: 10.1063/1.1713601
– ident: ref4
  doi: 10.1063/1.102228
– ident: ref9
  doi: 10.1016/0169-4332(89)90091-3
– ident: ref32
  doi: 10.1016/0039-6028(83)90550-2
– ident: ref8
  doi: 10.1063/1.100744
– ident: ref2
  doi: 10.1063/1.332322
– ident: ref38
  doi: 10.1063/1.341519
– ident: ref35
  doi: 10.1007/BF02660192
– ident: ref7
  doi: 10.1149/1.2095643
– start-page: 313
  year: 1979
  ident: ref21
  publication-title: Optics
  contributor:
    fullname: hecht
– ident: ref47
  doi: 10.1063/1.98946
– ident: ref33
  doi: 10.1016/0038-1101(90)90169-F
– ident: ref37
  doi: 10.1103/PhysRevB.15.989
– ident: ref40
  doi: 10.1109/55.56488
– ident: ref43
  doi: 10.1016/0040-6090(71)90007-1
– start-page: 146
  year: 1985
  ident: ref12
  publication-title: Proc IEEE Photovoltaic Specialists Conf
  contributor:
    fullname: blakeslee
– ident: ref15
  doi: 10.1063/1.98877
– ident: ref26
  doi: 10.1063/1.337426
– ident: ref3
  doi: 10.1116/1.569773
– ident: ref39
  doi: 10.1016/0022-0248(89)90468-5
– ident: ref31
  doi: 10.1103/PhysRev.87.835
– start-page: 74
  year: 1983
  ident: ref20
  publication-title: Fundamentals of Solar Cells
  contributor:
    fullname: fahrenbruch
– ident: ref16
  doi: 10.1016/0038-1098(89)90342-6
– ident: ref6
  doi: 10.1149/1.2123979
– ident: ref1
  doi: 10.1116/1.571150
– ident: ref42
  doi: 10.1016/0022-0248(82)90322-0
– ident: ref14
  doi: 10.1063/1.98946
– ident: ref44
  doi: 10.1016/0040-6090(85)90170-1
– start-page: 1165
  year: 1988
  ident: ref30
  publication-title: Proc 8th E C Photovoltaic Solar Energy Conf
  contributor:
    fullname: knobloch
SSID ssj0016442
Score 1.4708036
Snippet The optimum window material for surface passivation of GaAs solar cells is investigated using theoretical analysis of optical losses due to window bandgap...
SourceID osti
proquest
crossref
pascalfrancis
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 705
SubjectTerms 140501 - Solar Energy Conversion- Photovoltaic Conversion
ALKALI METAL COMPOUNDS
Applied sciences
CHALCOGENIDES
DESIGN
DIMENSIONS
DIRECT ENERGY CONVERTERS
EFFICIENCY
Energy
ENERGY GAP
Exact sciences and technology
FABRICATION
Gallium arsenide
GALLIUM ARSENIDE SOLAR CELLS
Lattices
MATERIALS
Natural energy
Optical materials
OXYGEN COMPOUNDS
PASSIVATION
PHOTOELECTRIC CELLS
Photonic band gap
PHOTOVOLTAIC CELLS
Photovoltaic conversion
QUANTUM EFFICIENCY
Radiative recombination
SELENIDES
SELENIUM COMPOUNDS
SODIUM COMPOUNDS
SODIUM SULFATES
SOLAR CELLS
Solar cells. Photoelectrochemical cells
SOLAR ENERGY
SOLAR EQUIPMENT
Spontaneous emission
SULFATES
SULFUR COMPOUNDS
Surface treatment
THICKNESS
ZINC COMPOUNDS
ZINC SELENIDES
Title Investigation of alternative window materials for GaAs solar cells
URI https://ieeexplore.ieee.org/document/202781
https://search.proquest.com/docview/26153440
https://search.proquest.com/docview/28492815
https://www.osti.gov/biblio/6545722
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVtTu2hH9uGuJttRenVW1mSZeuYlqZLoT1tYW9G1sclYIfYJtBfnxlpd9lNQujJxkhgjyTPe9LMG0K-1LrVwbY6906VWMKM51q0wFqdqrk3qmpjUtjvP2r1V_7alJutznbMhfHex-Azv8TbeJbvejvhVlkk6phm_bxmPKVq7Q8MwK0nYfAC1i-wrq2IUMH01wIjEbDjkeuJtVTg0sNKwoBIM4BNQipm8eC_HJ3N5euUxT1EjUKMMblaTmO7tP_uKTj-53e8Ia-2oJNepFnyljzz3Yy8PJAifEe-HQhu9B3tA43n6F3UBae3wNz7WwroNk1YClCX_jQXAx2QGlPc_h_ek_Xlj_X3Vb6tr5BbrtWYVwG8kxNSSSeDNLWCWys8K11ZWmQWofUA_4SqnTO2BGAhmdNCFSpwppg4JSdd3_kzQislgzbWiNJoWbHWMOELx6qqtioYIzLyeWf55jqpaDSRfTDdFKpJ9sjIDE21b7B7OschagAQoKqtxfAfOzYKkF_FeUYWRyO37wysH5iVzsin3Ug2sG7QGqbz_TQ0HJGulOyJFrXUvC7KD4--15y8SLGPGMRzTk7Gm8kvAJ-M7cc4M-8A8mvihQ
link.rule.ids 230,315,786,790,802,891,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeigcaMtDXR7FQlyzOLHjxEeoSrctcFokbpbjxwUpQU1WK_HrmbF3V7yEeooV2VIytjPfl5n5TMhJrRoVbKMy72SJR5gVmeINsFYn68IbWTWxKOzqWk5uxJ_b8nahsx1rYbz3MfnMj7EZY_muszP8VRaJOpZZfwQ3z6pUrLUKGYBjT9LgOexg4F0LGaGcqdMccxFw6DPnE09TgUsHewlTIk0PVgnpOItXX-bobi4-pzruPqoUYpbJ3Xg2NGP78ELD8T_f5AvZXMBOepbWyVfywbdbZOOJGOE2OX8iudG1tAs0RtLbqAxO58DduzkFfJuWLAWwS3-Zs572SI4pBgD6HTK9-Dn9MckWJyxktlByyKoA_slxIYUTQZhaQtNyz0pXlha5RWg8AEAua-eMLQFaCOYUl7kMBZOM75K1tmv9N0IrKYIy1vDSKFGxxjDuc8eqqrYyGMNH5HhpeX2fdDR05B9M6VzqZI8R2UJTrTos7-7jFGmABKhrazEByA5aAvarimJEDp_N3Gow8H7gVmpEjpYzqWHnoDVM67tZrwvEukKwd3rUQhV1Xu69-VxH5NNkenWpL39f_90n6ykTElN6Dsja8G_mDwGtDM33uEofAQYV5dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+alternative+window+materials+for+GaAs+solar+cells&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=DeSalvo%2C+Gregory+C&rft.au=Barnett%2C+Allen+M&rft.date=1993-04-01&rft.issn=0018-9383&rft.volume=40&rft.issue=4&rft.spage=705&rft.epage=711&rft_id=info:doi/10.1109%2F16.202781&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon