Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models?
The development of trustworthy simulation models is crucial for planning drug administration in magnetic drug targeting (MDT) interventions for future cancer treatment. In the MDT cancer therapy, the drug is bound to magnetic nanoparticles, which act as carriers and are guided through the cardiovasc...
Saved in:
Published in | IEEE journal on multiscale and multiphysics computational techniques Vol. 10; pp. 69 - 84 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2379-8815 2379-8815 |
DOI | 10.1109/JMMCT.2024.3520488 |
Cover
Loading…
Abstract | The development of trustworthy simulation models is crucial for planning drug administration in magnetic drug targeting (MDT) interventions for future cancer treatment. In the MDT cancer therapy, the drug is bound to magnetic nanoparticles, which act as carriers and are guided through the cardiovascular system into the tumor region using an external magnetic field. Thus, the modeling represents a multiphysical problem and can be approached either by particle-based or concentration-based models. In this paper, both simulation approaches are implemented in COMSOL Multiphysics in a typical magnetic drug targeting scenario, verified by measurements, and compared among each other. Two different particle concentrations with and without an applied magnetic field of a Halbach array consisting of five permanent magnets in a tube flow system with a laminar velocity flow were investigated. Within this scope, an analytical model for calculating the system response for the detection of nanoparticles with a commercial susceptometer is derived, too. Considering the two implemented models and the investigated scenario, the concentration-based model shows a considerably better agreement with the experimental results for both with and without an applied magnetic field. The spatial resolution of the particle-based model is reduced due to the limited number of considered particles resulting in an inaccurate system response. Overall, the high number of new publications shows the need for research in this interdisciplinary research field to improve therapeutic success. |
---|---|
AbstractList | The development of trustworthy simulation models is crucial for planning drug administration in magnetic drug targeting (MDT) interventions for future cancer treatment. In the MDT cancer therapy, the drug is bound to magnetic nanoparticles, which act as carriers and are guided through the cardiovascular system into the tumor region using an external magnetic field. Thus, the modeling represents a multiphysical problem and can be approached either by particle-based or concentration-based models. In this paper, both simulation approaches are implemented in COMSOL Multiphysics in a typical magnetic drug targeting scenario, verified by measurements, and compared among each other. Two different particle concentrations with and without an applied magnetic field of a Halbach array consisting of five permanent magnets in a tube flow system with a laminar velocity flow were investigated. Within this scope, an analytical model for calculating the system response for the detection of nanoparticles with a commercial susceptometer is derived, too. Considering the two implemented models and the investigated scenario, the concentration-based model shows a considerably better agreement with the experimental results for both with and without an applied magnetic field. The spatial resolution of the particle-based model is reduced due to the limited number of considered particles resulting in an inaccurate system response. Overall, the high number of new publications shows the need for research in this interdisciplinary research field to improve therapeutic success. |
Author | Xiao, Keyu Wolff, Paul Fischer, Georg Thalmayer, Angelika S. |
Author_xml | – sequence: 1 givenname: Angelika S. orcidid: 0000-0001-6681-5497 surname: Thalmayer fullname: Thalmayer, Angelika S. email: angelika.thalmayer@fau.de organization: Institute for Smart Electronics and Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany – sequence: 2 givenname: Keyu orcidid: 0009-0003-3691-5464 surname: Xiao fullname: Xiao, Keyu email: keyu.xiao@fau.de organization: Institute for Smart Electronics and Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany – sequence: 3 givenname: Paul orcidid: 0009-0008-9600-2348 surname: Wolff fullname: Wolff, Paul email: paul.wolff@fau.de organization: Institute for Smart Electronics and Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany – sequence: 4 givenname: Georg orcidid: 0000-0002-4033-2005 surname: Fischer fullname: Fischer, Georg email: georg.fischer@fau.de organization: Institute for Smart Electronics and Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany |
BookMark | eNp9kMtOwzAQRS0EEqX0BxALS6xT_EjihA2CUF5qgEUQy8hxJlGq1Cl2IsHf45IuKhas7Bndc0c6J-hQdxoQOqNkTimJL5_TNMnmjDB_zgNG_Cg6QBPGRexFEQ0O9_7HaGbtihBCBWOEsAlSi68NmGYNupctlrrEL8PaLZSb0q6EttE17iqcylpD3yh8Z4YaZ9LUbtL1FU6kxh-AMzPYHr9J4zIteLfSQjkW2OtTdFTJ1sJs907R-_0iSx695evDU3Kz9BSLw94TRcBlKULOJJAyiHlUSCUqt_T9gDDGoeCipKGKQ1kqxmgMXPlFVMXCFy7Bp-hi7N2Y7nMA2-erbjDancw5DZhrJsJ3qWhMKdNZa6DKVdPLvul0b2TT5pTkW6v5r9V8azXfWXUo-4NunDppvv-HzkeoAYA9IKJE8ID_ADsFhBU |
CODEN | IJMMOP |
CitedBy_id | crossref_primary_10_1002_advs_202416838 |
Cites_doi | 10.1063/1.4952612 10.1080/02656736.2020.1800831 10.1016/j.partic.2023.12.018 10.1109/OJNANO.2023.3273921 10.1109/tase.2024.3386745 10.3322/caac.21660 10.1109/TMAG.2021.3140169 10.1007/s10948-021-05932-9 10.1021/acs.jpcc.8b06471 10.2147/IJN.S236927 10.1021/acs.chemrev.5b00589 10.1109/TMAG.2021.3138588 10.1515/9783110569636 10.1016/j.jmmm.2022.170110 10.1007/s10948-021-05893-z 10.3390/nu15071704 10.1016/j.powtec.2021.11.028 10.1109/TMAG.2007.893798 10.1109/TBME.2019.2958683 10.1007/s10404-022-02576-6 10.1016/j.jmmm.2023.170553 10.1109/JPROC.2019.2919455 10.1007/s41745-024-00428-6 10.1016/j.jddst.2021.102997 10.3390/nano14020222 10.1016/j.jconrel.2020.09.017 10.2147/IJN.S68539 10.1515/bmt-2015-0145 10.7150/ntno.76559 10.1007/s13239-023-00681-3 10.1007/s10404-014-1442-7 10.1109/TMBMC.2021.3061030 10.1109/TBME.2020.3018266 10.1016/j.nano.2013.05.001 10.1016/0021-9290(86)90104-1 10.1002/mp.16180 10.1109/TMBMC.2024.3423005 10.1016/j.actbio.2019.11.027 10.1016/j.jconrel.2019.03.031 10.1007/s10040-004-0387-4 10.32604/cmes.2022.017257 10.2147/IJN.S402320 10.1109/SENSORS56945.2023.10324887 10.1016/j.euromechflu.2020.04.004 10.1007/s10237-020-01416-2 10.1109/tbme.2024.3479938 10.1088/0022-3727/39/9/003 10.3390/ijms24032545 10.1109/TMBMC.2021.3099399 10.1109/TMBMC.2015.2501745 10.1016/j.sna.2024.115365 10.3390/sym16020148 10.5194/ars-20-93-2023 10.1016/j.icheatmasstransfer.2021.105756 10.1515/cdbme-2022-1143 10.1007/s40997-023-00669-3 10.1109/SENSORS43011.2019.8956713 10.23919/IEEECONF54431.2021.9598436 10.1016/j.jmmm.2021.167752 10.1109/TMBMC.2023.3296828 10.1098/rsif.2020.0558 10.1109/MNANO.2020.2966029 10.1080/10717544.2018.1497106 10.1016/j.jmmm.2023.170984 10.1016/j.jmmm.2020.167490 10.1016/j.jddst.2022.104046 10.1016/j.colsurfa.2022.128370 10.1007/s40139-020-00219-5 10.1039/c0sm01424a 10.1007/s11051-017-4065-6 10.1016/j.jmmm.2010.09.008 10.1103/PhysRevE.75.061405 10.1038/s41598-023-32299-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/JMMCT.2024.3520488 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2379-8815 |
EndPage | 84 |
ExternalDocumentID | 10_1109_JMMCT_2024_3520488 10810735 |
Genre | orig-research |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - GRK 2950 grantid: 509922606 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION RIG 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-7b53ad7632ae0d5938bac7f53a4450223eb37d16c96adc2219e3c4b8f97474503 |
IEDL.DBID | RIE |
ISSN | 2379-8815 |
IngestDate | Mon Jun 30 13:08:06 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Tue Jul 01 01:32:48 EDT 2025 Wed Aug 27 01:57:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-7b53ad7632ae0d5938bac7f53a4450223eb37d16c96adc2219e3c4b8f97474503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4033-2005 0009-0008-9600-2348 0000-0001-6681-5497 0009-0003-3691-5464 |
PQID | 3152763074 |
PQPubID | 4437231 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_JMMCT_2024_3520488 proquest_journals_3152763074 crossref_primary_10_1109_JMMCT_2024_3520488 ieee_primary_10810735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal on multiscale and multiphysics computational techniques |
PublicationTitleAbbrev | JMMCT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Gottlob (ref75) 1989 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Jackson (ref35) 2009 ref34 ref37 ref36 ref31 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Harley (ref14) 2020; 37 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref57 doi: 10.1063/1.4952612 – volume: 37 start-page: 76 issue: 3 year: 2020 ident: ref14 article-title: In vivo magnetic nanoparticle hyperthermia: A review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning publication-title: Int. J. Hyperthermia doi: 10.1080/02656736.2020.1800831 – ident: ref67 doi: 10.1016/j.partic.2023.12.018 – ident: ref6 doi: 10.1109/OJNANO.2023.3273921 – ident: ref70 doi: 10.1109/tase.2024.3386745 – ident: ref1 doi: 10.3322/caac.21660 – ident: ref73 doi: 10.1109/TMAG.2021.3140169 – ident: ref5 doi: 10.1007/s10948-021-05932-9 – ident: ref53 doi: 10.1021/acs.jpcc.8b06471 – ident: ref3 doi: 10.2147/IJN.S236927 – ident: ref10 doi: 10.1021/acs.chemrev.5b00589 – ident: ref69 doi: 10.1109/TMAG.2021.3138588 – ident: ref30 doi: 10.1515/9783110569636 – ident: ref27 doi: 10.1016/j.jmmm.2022.170110 – ident: ref43 doi: 10.1007/s10948-021-05893-z – ident: ref2 doi: 10.3390/nu15071704 – ident: ref18 doi: 10.1016/j.powtec.2021.11.028 – ident: ref42 doi: 10.1109/TMAG.2007.893798 – ident: ref8 doi: 10.1109/TBME.2019.2958683 – ident: ref47 doi: 10.1007/s10404-022-02576-6 – ident: ref52 doi: 10.1016/j.jmmm.2023.170553 – ident: ref16 doi: 10.1109/JPROC.2019.2919455 – ident: ref32 doi: 10.1007/s41745-024-00428-6 – ident: ref26 doi: 10.1016/j.jddst.2021.102997 – ident: ref7 doi: 10.3390/nano14020222 – ident: ref11 doi: 10.1016/j.jconrel.2020.09.017 – ident: ref29 doi: 10.2147/IJN.S68539 – ident: ref49 doi: 10.1515/bmt-2015-0145 – ident: ref72 doi: 10.7150/ntno.76559 – ident: ref28 doi: 10.1007/s13239-023-00681-3 – ident: ref38 doi: 10.1007/s10404-014-1442-7 – ident: ref54 doi: 10.1109/TMBMC.2021.3061030 – ident: ref66 doi: 10.1109/TBME.2020.3018266 – ident: ref9 doi: 10.1016/j.nano.2013.05.001 – ident: ref61 doi: 10.1016/0021-9290(86)90104-1 – ident: ref41 doi: 10.1002/mp.16180 – ident: ref64 doi: 10.1109/TMBMC.2024.3423005 – ident: ref4 doi: 10.1016/j.actbio.2019.11.027 – ident: ref13 doi: 10.1016/j.jconrel.2019.03.031 – ident: ref63 doi: 10.1007/s10040-004-0387-4 – ident: ref25 doi: 10.32604/cmes.2022.017257 – ident: ref31 doi: 10.2147/IJN.S402320 – ident: ref51 doi: 10.1109/SENSORS56945.2023.10324887 – ident: ref23 doi: 10.1016/j.euromechflu.2020.04.004 – volume-title: Classical Electrodynamics year: 2009 ident: ref35 – ident: ref19 doi: 10.1007/s10237-020-01416-2 – ident: ref56 doi: 10.1109/tbme.2024.3479938 – ident: ref33 doi: 10.1088/0022-3727/39/9/003 – ident: ref48 doi: 10.3390/ijms24032545 – ident: ref60 doi: 10.1109/TMBMC.2021.3099399 – ident: ref65 doi: 10.1109/TMBMC.2015.2501745 – ident: ref68 doi: 10.1016/j.sna.2024.115365 – volume-title: The Coil year: 1989 ident: ref75 – ident: ref12 doi: 10.3390/sym16020148 – ident: ref34 doi: 10.5194/ars-20-93-2023 – ident: ref21 doi: 10.1016/j.icheatmasstransfer.2021.105756 – ident: ref58 doi: 10.1515/cdbme-2022-1143 – ident: ref40 doi: 10.1007/s40997-023-00669-3 – ident: ref50 doi: 10.1109/SENSORS43011.2019.8956713 – ident: ref17 doi: 10.23919/IEEECONF54431.2021.9598436 – ident: ref55 doi: 10.1016/j.jmmm.2021.167752 – ident: ref59 doi: 10.1109/TMBMC.2023.3296828 – ident: ref39 doi: 10.1098/rsif.2020.0558 – ident: ref37 doi: 10.1109/MNANO.2020.2966029 – ident: ref46 doi: 10.1080/10717544.2018.1497106 – ident: ref20 doi: 10.1016/j.jmmm.2023.170984 – ident: ref22 doi: 10.1016/j.jmmm.2020.167490 – ident: ref74 doi: 10.1016/j.jddst.2022.104046 – ident: ref24 doi: 10.1016/j.colsurfa.2022.128370 – ident: ref15 doi: 10.1007/s40139-020-00219-5 – ident: ref45 doi: 10.1039/c0sm01424a – ident: ref44 doi: 10.1007/s11051-017-4065-6 – ident: ref62 doi: 10.1016/j.jmmm.2010.09.008 – ident: ref36 doi: 10.1103/PhysRevE.75.061405 – ident: ref71 doi: 10.1038/s41598-023-32299-9 |
SSID | ssj0001722002 |
Score | 2.285753 |
Snippet | The development of trustworthy simulation models is crucial for planning drug administration in magnetic drug targeting (MDT) interventions for future cancer... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 69 |
SubjectTerms | Cancer Cancer treatment Cardiovascular system Coatings concentration-based model Drag Force Interdisciplinary studies Laminar flow Magnetic cores Magnetic domains magnetic drug targeting Magnetic fields Magnetic forces magnetic nanoparticles Magnetic susceptibility Mathematical models multiphysics simulation Nanoparticles Numerical models particle-based model Permanent magnets Simulation models solenoid Spatial resolution Superparamagnetic iron oxide nanoparticles tube flow system |
Title | Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? |
URI | https://ieeexplore.ieee.org/document/10810735 https://www.proquest.com/docview/3152763074 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxaeRRQK8sCGElLn5bAgKK2qSq0YUtEtcs5uB6oUtc3Cr-fsuFBAILYouYss3fnuPvsehFyJWIRSibaTMAYaoOQOBykcxjlyhB6AyaocjqL-OBhMwoktVje1MEopk3ymXP1o7vLlAkp9VIY7nCNa8cMaqSFyq4q1Pg9UYqYTDjaFMV5yMxgOOylCQBa4GGZoVf3ifMw0lR8m2PiV3j4ZbVZUpZO8uOU6d-HtW7PGfy_5gOzZCJPeVypxSHZUcUT2bbRJ7V5eHRPobjX3p6KQdFRW1zdzqiek6Tp1upjSoZgVutKRPi7LGU1N5jh-uqUdUdBnRVNdtUGfrAo6D-gWZfWD1V2DjHvdtNN37MgFB1gSrZ04D30h0eYwoTwZJj7PBcRTfBkEIbp7H7F3LNsRJJGQwNDcKR-CnE81LEEK_4TUi0WhTgmN-FS0PcE9ZAkAcQxgZAqC-5BIibi7SdobWWRg-5HrsRjzzOASL8mM_DItv8zKr0muP3heq24cf1I3tEC2KCtZNElrI_PM7thV5uv5vhFavODsF7Zzssv08F9z_tIi9fWyVBcYkazzS6OJ752Q3JI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RemgvhdJUhOceekNO7fVrzQVBAAWIox4ckZu1nt3kUOQgEl_49cyuN5SCWnGz7BlrpZmdmW93HgA_ZCpjpWXgZZyjASiVJ1BJjwtBHLGPaLMq81EyGEfXk3jiitVtLYzW2iaf6Z55tHf5ao6NOSqjHS4IrYTxB_hIjj8O2nKtP0cqKTcpB6vSGD_7eZ3n_YJAII96FGgYZf3L_dh5Km-MsPUslxswWq2pTSj53WuWVQ8fX7VrfPeiN-GLizHZaasUX2FN11uw4eJN5nbz4hvgxYv2_kzWio2a9gLnjpkZaaZSnc2nLJez2tQ6svOHZsYKmztOn45ZX9bsVrPC1G2wX04JvTNyjKr9weKkA-PLi6I_8NzQBQ95liy9tIpDqcjqcKl9FWehqCSmU3oZRTE5_JDQd6qCBLNEKuRk8HSIUSWmBpgQRfgd1ut5rbeBJWIqA18Kn1giJCSDFJuiFCFmShHy7kKwkkWJriO5GYxxV1pk4mellV9p5Fc6-XXh6Jnnvu3H8V_qjhHIC8pWFl3YW8m8dHt2UYZmwm9CNi_a-QfbIXwaFPmwHF6NbnbhMzejgO1pzB6sLx8avU_xybI6sFr5BEkw39s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Numerical+Modeling+of+Magnetic+Drug+Targeting%3A+Can+We+Trust+Particle-Based+Models%3F&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=Thalmayer%2C+Angelika+S.&rft.au=Xiao%2C+Keyu&rft.au=Wolff%2C+Paul&rft.au=Fischer%2C+Georg&rft.date=2025&rft.pub=IEEE&rft.eissn=2379-8815&rft.volume=10&rft.spage=69&rft.epage=84&rft_id=info:doi/10.1109%2FJMMCT.2024.3520488&rft.externalDocID=10810735 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon |