Modulation of luminescence properties of circularly polarized thermally activated delayed fluorescence molecules with axial chirality by donor engineering
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advan...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 26; no. 13; pp. 9931 - 9939 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
27.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (
g
lum
) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher
g
lum
values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
The photophysical properties of circularly polarized thermally activated delayed fluorescence (CP-TADF) molecules are regulated by adjusting the type of donors. |
---|---|
AbstractList | Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (
) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher
values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor ( g lum ) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher g lum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. The photophysical properties of circularly polarized thermally activated delayed fluorescence (CP-TADF) molecules are regulated by adjusting the type of donors. Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin–orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor ( g lum ) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin–orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher g lum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. |
Author | Liu, Shulei Liu, Songsong Gao, Yang Lin, Lili Wang, Chuan-Kui Fan, Jianzhong Song, Yuzhi |
AuthorAffiliation | Shandong Province Key Laboratory of Medical Physics and Image Processing Technology Shandong Normal University School of Physics and Electronics |
AuthorAffiliation_xml | – sequence: 0 name: School of Physics and Electronics – sequence: 0 name: Shandong Normal University – sequence: 0 name: Shandong Province Key Laboratory of Medical Physics and Image Processing Technology |
Author_xml | – sequence: 1 givenname: Shulei surname: Liu fullname: Liu, Shulei – sequence: 2 givenname: Songsong surname: Liu fullname: Liu, Songsong – sequence: 3 givenname: Yang surname: Gao fullname: Gao, Yang – sequence: 4 givenname: Lili surname: Lin fullname: Lin, Lili – sequence: 5 givenname: Chuan-Kui surname: Wang fullname: Wang, Chuan-Kui – sequence: 6 givenname: Jianzhong surname: Fan fullname: Fan, Jianzhong – sequence: 7 givenname: Yuzhi surname: Song fullname: Song, Yuzhi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38482988$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtv1DAUhS1URB-wYQ-yxAYhDfgdZ1lNeUlFsIB15DjXHVeOHewESH8KvxaXaQeJ1bGuPx-d63OKjmKKgNBTSl5Twts3g7ATIVxQ8wCdUKH4piVaHB3OjTpGp6VcE0KopPwROuZaaNZqfYJ-f0rDEszsU8TJ4bCMPkKxEC3gKacJ8uyh3F5Zn20lc1jxlKr6GxjwvIM8mlBnxs7-h5nrbIBg1qouLCnfe40pQH1erX76eYfNL28CtjufTfDzivsVDymmjCFe1QCQfbx6jB46Ewo8udMz9O3d26_bD5vLz-8_bs8vN5a1at4oaLRyEowCzZyWjkmlLBdWGtf3UjQgmeNsIEQ2IIwzrdPMaEcYUGtYz8_Qy71v3ff7AmXuRl9Th2AipKV0rJUNVbpVrKIv_kOv05JjTVcp3dQ2mlZW6vkdtfQjDN2U_Wjy2t3_egVe7QGbUykZ3AGhpLuttLsQ2y9_Kz2v8LM9nIs9cP8q538ANByhOw |
Cites_doi | 10.1039/C9CS00680J 10.1002/adma.201900110 10.1557/JMR.1996.0403 10.1039/C5CC04105H 10.1063/1.98799 10.1002/cphc.201600662 10.1038/nature11687 10.1080/00268976.2017.1402966 10.1016/j.mtchem.2023.101700 10.1038/ncomms13680 10.1063/1674-0068/29/cjcp1508181 10.1103/PhysRev.136.A954 10.1016/j.physrep.2013.12.002 10.1021/acs.jpclett.8b02138 10.1002/anie.201914249 10.1002/adma.201605444 10.1021/acs.jpcc.1c08138 10.1021/ja971912c 10.1002/cjoc.202000226 10.1038/s41598-017-05339-4 10.1039/D1SC00272D 10.1021/cr9904009 10.1002/adma.201705406 10.1063/1.1774975 10.1063/1.478522 10.1021/acs.jpclett.2c00224 10.1002/cphc.202000187 10.1002/anie.202005584 10.1021/acs.jpcc.5b07798 10.1021/acs.jpclett.1c00020 10.1016/S0009-2614(99)01149-5 10.1039/C9TC03152A 10.1039/C9TC00720B 10.1002/chem.202203414 10.1021/jacs.6b12124 10.1002/advs.202000804 10.1088/1674-1056/ac1b91 10.1038/nmat4154 10.1021/acs.jpcc.8b08772 10.1039/D0TC04162A 10.1002/aelm.202000255 10.1039/D1TC05159H 10.1016/j.dyepig.2022.110550 10.1021/ct400415r 10.1021/acsmaterialslett.1c00794 10.1021/acs.jpca.0c08994 10.1016/0009-2614(94)00605-9 10.1002/agt2.4 10.1021/acsami.9b04365 10.1021/cr100428a 10.1039/D1CP03144A 10.1039/C7CP00719A 10.1021/acsami.1c13564 10.1016/j.orgel.2020.105667 10.1126/science.1203052 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4cp00341a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 9939 |
ExternalDocumentID | 38482988 10_1039_D4CP00341A d4cp00341a |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c296t-6e786f5ea6e82f85f2566c34c5afbb547e52f32d0057e4afa9f82a8f02e1ca2b3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 00:54:03 EDT 2025 Mon Jun 30 05:10:30 EDT 2025 Wed Feb 19 02:05:37 EST 2025 Tue Jul 01 00:48:15 EDT 2025 Tue Dec 17 20:58:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-6e786f5ea6e82f85f2566c34c5afbb547e52f32d0057e4afa9f82a8f02e1ca2b3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4cp00341a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1524-0037 0000-0002-5319-713X 0000-0002-2971-2824 |
PMID | 38482988 |
PQID | 2987103795 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D4CP00341A rsc_primary_d4cp00341a proquest_miscellaneous_2957168962 proquest_journals_2987103795 pubmed_primary_38482988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-27 |
PublicationDateYYYYMMDD | 2024-03-27 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wu (D4CP00341A/cit45/1) 2019; 11 Kim (D4CP00341A/cit14/1) 2006; 49 Wong (D4CP00341A/cit58/1) 2017; 29 Mccumber (D4CP00341A/cit31/1) 1964; 136 Fan (D4CP00341A/cit21/1) 2016; 29 Shao (D4CP00341A/cit8/1) 2020; 1 Shizu (D4CP00341A/cit60/1) 2015; 119 Etherington (D4CP00341A/cit53/1) 2016; 7 Hirata (D4CP00341A/cit6/1) 2015; 14 Chen (D4CP00341A/cit50/1) 2017; 7 Ma (D4CP00341A/cit55/1) 2020; 125 Uoyama (D4CP00341A/cit5/1) 2012; 492 Tu (D4CP00341A/cit20/1) 2020; 7 Stephens (D4CP00341A/cit23/1) 1994; 225 Lin (D4CP00341A/cit28/1) 2021; 12 Rothberg (D4CP00341A/cit3/1) 1996; 11 Aidas (D4CP00341A/cit32/1) 2014; 4 Liu (D4CP00341A/cit52/1) 2021; 12 Hirata (D4CP00341A/cit26/1) 1999; 314 Sun (D4CP00341A/cit35/1) 2020; 21 Tomasi (D4CP00341A/cit22/1) 2005; 105 Figueira-Duarte (D4CP00341A/cit1/1) 2011; 111 Chen (D4CP00341A/cit46/1) 2015; 5 Li (D4CP00341A/cit19/1) 2020; 59 McCarthy (D4CP00341A/cit2/1) 2011; 332 Tang (D4CP00341A/cit4/1) 1987; 51 Boese (D4CP00341A/cit25/1) 2004; 121 Nobuyasu (D4CP00341A/cit56/1) 2019; 7 Peng (D4CP00341A/cit41/1) 2021; 125 Xu (D4CP00341A/cit49/1) 2019; 7 Peeters (D4CP00341A/cit17/1) 1997; 119 Yang (D4CP00341A/cit9/1) 2020; 59 Xue (D4CP00341A/cit10/1) 2021; 13 Niu (D4CP00341A/cit44/1) 2018; 116 Chen (D4CP00341A/cit38/1) 2022; 13 Li (D4CP00341A/cit12/1) 2020; 8 Fu (D4CP00341A/cit13/1) 2022; 205 Zhang (D4CP00341A/cit7/1) 2018; 30 Zhang (D4CP00341A/cit42/1) 2021; 23 Gibson (D4CP00341A/cit54/1) 2016; 17 Samanta (D4CP00341A/cit48/1) 2017; 139 Xu (D4CP00341A/cit11/1) 2022; 29 Chen (D4CP00341A/cit51/1) 2018; 9 Sang (D4CP00341A/cit15/1) 2020; 32 Lin (D4CP00341A/cit27/1) 2022; 4 Huang (D4CP00341A/cit47/1) 2013; 9 Zhang (D4CP00341A/cit16/1) 2020; 49 Yin (D4CP00341A/cit36/1) 2020; 6 Imagawa (D4CP00341A/cit18/1) 2015; 51 Zou (D4CP00341A/cit43/1) 2022; 10 Adamo (D4CP00341A/cit24/1) 1999; 110 Shuai (D4CP00341A/cit34/1) 2014; 537 Gao (D4CP00341A/cit37/1) 2018; 122 Shuai (D4CP00341A/cit30/1) 2020; 38 Gibson (D4CP00341A/cit57/1) 2017; 19 Lv (D4CP00341A/cit40/1) 2020; 81 Liu (D4CP00341A/cit61/1) 2023; 33 (D4CP00341A/cit33/1) 2014 Li (D4CP00341A/cit39/1) 2021; 30 Lu (D4CP00341A/cit59/1) 2011; 69 |
References_xml | – issn: 2016 publication-title: Gaussian 16 Rev. A.03 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – issn: 2014 – volume: 49 start-page: 1331 year: 2020 ident: D4CP00341A/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00680J – volume: 32 start-page: 1900110 year: 2020 ident: D4CP00341A/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900110 – volume: 11 start-page: 3174 year: 1996 ident: D4CP00341A/cit3/1 publication-title: J. Mater. Res. doi: 10.1557/JMR.1996.0403 – volume: 51 start-page: 13268 year: 2015 ident: D4CP00341A/cit18/1 publication-title: Chem. Commun. doi: 10.1039/C5CC04105H – volume: 51 start-page: 913 year: 1987 ident: D4CP00341A/cit4/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.98799 – volume: 17 start-page: 2956 year: 2016 ident: D4CP00341A/cit54/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201600662 – volume: 492 start-page: 234 year: 2012 ident: D4CP00341A/cit5/1 publication-title: Nature doi: 10.1038/nature11687 – volume: 4 start-page: 269 year: 2014 ident: D4CP00341A/cit32/1 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 116 start-page: 1078 year: 2018 ident: D4CP00341A/cit44/1 publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1402966 – volume: 33 start-page: 101700 year: 2023 ident: D4CP00341A/cit61/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2023.101700 – volume: 7 start-page: 1 year: 2016 ident: D4CP00341A/cit53/1 publication-title: Nat. Commun. doi: 10.1038/ncomms13680 – volume: 29 start-page: 291 year: 2016 ident: D4CP00341A/cit21/1 publication-title: Chin. J. Chem. Phys. doi: 10.1063/1674-0068/29/cjcp1508181 – volume: 136 start-page: A954 year: 1964 ident: D4CP00341A/cit31/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.A954 – volume: 537 start-page: 123 year: 2014 ident: D4CP00341A/cit34/1 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.12.002 – volume: 9 start-page: 5240 year: 2018 ident: D4CP00341A/cit51/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02138 – volume: 59 start-page: 3500 year: 2020 ident: D4CP00341A/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914249 – volume: 29 start-page: 1605444 year: 2017 ident: D4CP00341A/cit58/1 publication-title: Adv. Mater. doi: 10.1002/adma.201605444 – volume: 125 start-page: 27372 year: 2021 ident: D4CP00341A/cit41/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c08138 – volume: 119 start-page: 9909 year: 1997 ident: D4CP00341A/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja971912c – volume: 38 start-page: 1223 year: 2020 ident: D4CP00341A/cit30/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000226 – volume: 7 start-page: 6225 year: 2017 ident: D4CP00341A/cit50/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05339-4 – volume: 12 start-page: 5171 year: 2021 ident: D4CP00341A/cit52/1 publication-title: Chem. Sci. doi: 10.1039/D1SC00272D – volume: 105 start-page: 2999 year: 2005 ident: D4CP00341A/cit22/1 publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 30 start-page: 1705406 year: 2018 ident: D4CP00341A/cit7/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705406 – volume: 121 start-page: 3405 year: 2004 ident: D4CP00341A/cit25/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1774975 – volume: 110 start-page: 6158 year: 1999 ident: D4CP00341A/cit24/1 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 13 start-page: 2653 year: 2022 ident: D4CP00341A/cit38/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00224 – volume: 21 start-page: 952 year: 2020 ident: D4CP00341A/cit35/1 publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.202000187 – volume: 59 start-page: 13955 year: 2020 ident: D4CP00341A/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005584 – volume: 69 start-page: 2393 year: 2011 ident: D4CP00341A/cit59/1 publication-title: Acta Chim. Sin. – volume: 119 start-page: 26283 year: 2015 ident: D4CP00341A/cit60/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07798 – volume: 12 start-page: 2944 year: 2021 ident: D4CP00341A/cit28/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c00020 – volume: 314 start-page: 291 year: 1999 ident: D4CP00341A/cit26/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01149-5 – volume: 7 start-page: 9523 year: 2019 ident: D4CP00341A/cit49/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03152A – volume: 7 start-page: 6672 year: 2019 ident: D4CP00341A/cit56/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00720B – volume: 29 start-page: e202203414 year: 2022 ident: D4CP00341A/cit11/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202203414 – volume: 139 start-page: 4042 year: 2017 ident: D4CP00341A/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12124 – volume: 7 start-page: 2000804 year: 2020 ident: D4CP00341A/cit20/1 publication-title: Adv. Sci. doi: 10.1002/advs.202000804 – volume: 30 start-page: 123302 year: 2021 ident: D4CP00341A/cit39/1 publication-title: Chinese Phys. B doi: 10.1088/1674-1056/ac1b91 – volume: 14 start-page: 330 year: 2015 ident: D4CP00341A/cit6/1 publication-title: Nat. Mater. doi: 10.1038/nmat4154 – volume: 122 start-page: 27608 year: 2018 ident: D4CP00341A/cit37/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b08772 – volume: 5 start-page: 1 year: 2015 ident: D4CP00341A/cit46/1 publication-title: Sci. Rep. – volume: 8 start-page: 17464 year: 2020 ident: D4CP00341A/cit12/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04162A – volume: 6 start-page: 2000255 year: 2020 ident: D4CP00341A/cit36/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000255 – volume: 10 start-page: 517 year: 2022 ident: D4CP00341A/cit43/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC05159H – volume: 205 start-page: 110550 year: 2022 ident: D4CP00341A/cit13/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2022.110550 – volume: 9 start-page: 3872 year: 2013 ident: D4CP00341A/cit47/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400415r – volume: 4 start-page: 487 year: 2022 ident: D4CP00341A/cit27/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00794 – volume: 125 start-page: 175 year: 2020 ident: D4CP00341A/cit55/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c08994 – year: 2014 ident: D4CP00341A/cit33/1 – volume: 225 start-page: 247 year: 1994 ident: D4CP00341A/cit23/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00605-9 – volume: 1 start-page: 45 year: 2020 ident: D4CP00341A/cit8/1 publication-title: Aggregate doi: 10.1002/agt2.4 – volume: 11 start-page: 19294 year: 2019 ident: D4CP00341A/cit45/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04365 – volume: 111 start-page: 7260 year: 2011 ident: D4CP00341A/cit1/1 publication-title: Chem. Rev. doi: 10.1021/cr100428a – volume: 23 start-page: 21883 year: 2021 ident: D4CP00341A/cit42/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP03144A – volume: 19 start-page: 8428 year: 2017 ident: D4CP00341A/cit57/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00719A – volume: 13 start-page: 47826 year: 2021 ident: D4CP00341A/cit10/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c13564 – volume: 49 start-page: 505 year: 2006 ident: D4CP00341A/cit14/1 publication-title: J. Korean Phys. Soc. – volume: 81 start-page: 105667 year: 2020 ident: D4CP00341A/cit40/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2020.105667 – volume: 332 start-page: 570 year: 2011 ident: D4CP00341A/cit2/1 publication-title: Science doi: 10.1126/science.1203052 |
SSID | ssj0001513 |
Score | 2.4450486 |
Snippet | Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9931 |
SubjectTerms | Circular polarization Correlation Design optimization First principles Fluorescence Luminescence Molecular structure Optical properties Organic light emitting diodes Spin-orbit interactions |
Title | Modulation of luminescence properties of circularly polarized thermally activated delayed fluorescence molecules with axial chirality by donor engineering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38482988 https://www.proquest.com/docview/2987103795 https://www.proquest.com/docview/2957168962 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeELdBYSAjeM1ofUmdx6oMDVRQHzppPFW2Y2-RuqTKWkT3U_i1HDtxEsaQgJc0Ok7sKt8X95zTc0Ho7ciCXcUli7SkMmIkVZHicRIlQ6ESapSwxgfIfolPTtmnM37W6-06UUvbjTrS17fmlfwPqiADXF2W7D8g20wKAjgHfOEICMPxrzD-XKR19y2n88E242LYtX9X187JXrpqqT5wPCt9vKlzZThbNrs2Pm4SduUVyFxywzfpdE9XM3IHn3a1Lcow12XVQteETLjvzsuuL7Ky0uFBgU2L3FUOb2sbdnXeeaCCDs3lqjMnqhwrV94xMZ9O21bK2db7ZS9g2eymsMjPwUo4b0KHpHf3fpWtaFZVRphlq6zr1iDMxXVVVQKOTLUVs5g6yrBbN_ohdXVSU6bXrsLOSHYvgq-8vvSQU8EESaq-gTfKaoehO2iPgIVB-mhvcrz4OGt-xkEVoqGeLU3etUvto7vh5l-Vmd8sFNBXytBHxusriwfofm1o4EnFmoeoZ_JH6N40QPAY_WjZgwuLu-zBLXvcUMse3LAHN-zBDXtwzR7cZQ9u2IMde7BnD27Yg9UOe_bgDnueoNMPx4vpSVR36og0SeJNFJuxiC03MjaCWMEtKNKxpkxzaZXibGw4sZSkLvXZMGllYgWRwg6JGWlJFD1A_bzIzTOEtUzBJLd0ZLhmsRCwc6QMdg0DMxrFzQC9CY98ua4Ksix9IAVNlu_ZdO4xmgzQYUBjWb-wV0tAbOzSYhM-QK-bYXjq7j8ymZti667h41EskpgM0NMKxWaZgPoAHQCsjbhlxvM_3vIC7bckP0T9Tbk1L0Gb3ahXNe9-An6lqzE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+luminescence+properties+of+circularly+polarized+thermally+activated+delayed+fluorescence+molecules+with+axial+chirality+by+donor+engineering&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Liu%2C+Shulei&rft.au=Liu%2C+Songsong&rft.au=Gao%2C+Yang&rft.au=Lin%2C+Lili&rft.date=2024-03-27&rft.eissn=1463-9084&rft_id=info:doi/10.1039%2Fd4cp00341a&rft_id=info%3Apmid%2F38482988&rft.externalDocID=38482988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |