Modulation of luminescence properties of circularly polarized thermally activated delayed fluorescence molecules with axial chirality by donor engineering

Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advan...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 26; no. 13; pp. 9931 - 9939
Main Authors Liu, Shulei, Liu, Songsong, Gao, Yang, Lin, Lili, Wang, Chuan-Kui, Fan, Jianzhong, Song, Yuzhi
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 27.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor ( g lum ) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher g lum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. The photophysical properties of circularly polarized thermally activated delayed fluorescence (CP-TADF) molecules are regulated by adjusting the type of donors.
AbstractList Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor ( ) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor ( g lum ) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher g lum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties. The photophysical properties of circularly polarized thermally activated delayed fluorescence (CP-TADF) molecules are regulated by adjusting the type of donors.
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin–orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor ( g lum ) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin–orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher g lum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.
Author Liu, Shulei
Liu, Songsong
Gao, Yang
Lin, Lili
Wang, Chuan-Kui
Fan, Jianzhong
Song, Yuzhi
AuthorAffiliation Shandong Province Key Laboratory of Medical Physics and Image Processing Technology
Shandong Normal University
School of Physics and Electronics
AuthorAffiliation_xml – sequence: 0
  name: School of Physics and Electronics
– sequence: 0
  name: Shandong Normal University
– sequence: 0
  name: Shandong Province Key Laboratory of Medical Physics and Image Processing Technology
Author_xml – sequence: 1
  givenname: Shulei
  surname: Liu
  fullname: Liu, Shulei
– sequence: 2
  givenname: Songsong
  surname: Liu
  fullname: Liu, Songsong
– sequence: 3
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
– sequence: 4
  givenname: Lili
  surname: Lin
  fullname: Lin, Lili
– sequence: 5
  givenname: Chuan-Kui
  surname: Wang
  fullname: Wang, Chuan-Kui
– sequence: 6
  givenname: Jianzhong
  surname: Fan
  fullname: Fan, Jianzhong
– sequence: 7
  givenname: Yuzhi
  surname: Song
  fullname: Song, Yuzhi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38482988$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtv1DAUhS1URB-wYQ-yxAYhDfgdZ1lNeUlFsIB15DjXHVeOHewESH8KvxaXaQeJ1bGuPx-d63OKjmKKgNBTSl5Twts3g7ATIVxQ8wCdUKH4piVaHB3OjTpGp6VcE0KopPwROuZaaNZqfYJ-f0rDEszsU8TJ4bCMPkKxEC3gKacJ8uyh3F5Zn20lc1jxlKr6GxjwvIM8mlBnxs7-h5nrbIBg1qouLCnfe40pQH1erX76eYfNL28CtjufTfDzivsVDymmjCFe1QCQfbx6jB46Ewo8udMz9O3d26_bD5vLz-8_bs8vN5a1at4oaLRyEowCzZyWjkmlLBdWGtf3UjQgmeNsIEQ2IIwzrdPMaEcYUGtYz8_Qy71v3ff7AmXuRl9Th2AipKV0rJUNVbpVrKIv_kOv05JjTVcp3dQ2mlZW6vkdtfQjDN2U_Wjy2t3_egVe7QGbUykZ3AGhpLuttLsQ2y9_Kz2v8LM9nIs9cP8q538ANByhOw
Cites_doi 10.1039/C9CS00680J
10.1002/adma.201900110
10.1557/JMR.1996.0403
10.1039/C5CC04105H
10.1063/1.98799
10.1002/cphc.201600662
10.1038/nature11687
10.1080/00268976.2017.1402966
10.1016/j.mtchem.2023.101700
10.1038/ncomms13680
10.1063/1674-0068/29/cjcp1508181
10.1103/PhysRev.136.A954
10.1016/j.physrep.2013.12.002
10.1021/acs.jpclett.8b02138
10.1002/anie.201914249
10.1002/adma.201605444
10.1021/acs.jpcc.1c08138
10.1021/ja971912c
10.1002/cjoc.202000226
10.1038/s41598-017-05339-4
10.1039/D1SC00272D
10.1021/cr9904009
10.1002/adma.201705406
10.1063/1.1774975
10.1063/1.478522
10.1021/acs.jpclett.2c00224
10.1002/cphc.202000187
10.1002/anie.202005584
10.1021/acs.jpcc.5b07798
10.1021/acs.jpclett.1c00020
10.1016/S0009-2614(99)01149-5
10.1039/C9TC03152A
10.1039/C9TC00720B
10.1002/chem.202203414
10.1021/jacs.6b12124
10.1002/advs.202000804
10.1088/1674-1056/ac1b91
10.1038/nmat4154
10.1021/acs.jpcc.8b08772
10.1039/D0TC04162A
10.1002/aelm.202000255
10.1039/D1TC05159H
10.1016/j.dyepig.2022.110550
10.1021/ct400415r
10.1021/acsmaterialslett.1c00794
10.1021/acs.jpca.0c08994
10.1016/0009-2614(94)00605-9
10.1002/agt2.4
10.1021/acsami.9b04365
10.1021/cr100428a
10.1039/D1CP03144A
10.1039/C7CP00719A
10.1021/acsami.1c13564
10.1016/j.orgel.2020.105667
10.1126/science.1203052
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d4cp00341a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 9939
ExternalDocumentID 38482988
10_1039_D4CP00341A
d4cp00341a
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c296t-6e786f5ea6e82f85f2566c34c5afbb547e52f32d0057e4afa9f82a8f02e1ca2b3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 00:54:03 EDT 2025
Mon Jun 30 05:10:30 EDT 2025
Wed Feb 19 02:05:37 EST 2025
Tue Jul 01 00:48:15 EDT 2025
Tue Dec 17 20:58:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-6e786f5ea6e82f85f2566c34c5afbb547e52f32d0057e4afa9f82a8f02e1ca2b3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4cp00341a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1524-0037
0000-0002-5319-713X
0000-0002-2971-2824
PMID 38482988
PQID 2987103795
PQPubID 2047499
PageCount 9
ParticipantIDs crossref_primary_10_1039_D4CP00341A
rsc_primary_d4cp00341a
proquest_miscellaneous_2957168962
proquest_journals_2987103795
pubmed_primary_38482988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-27
PublicationDateYYYYMMDD 2024-03-27
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wu (D4CP00341A/cit45/1) 2019; 11
Kim (D4CP00341A/cit14/1) 2006; 49
Wong (D4CP00341A/cit58/1) 2017; 29
Mccumber (D4CP00341A/cit31/1) 1964; 136
Fan (D4CP00341A/cit21/1) 2016; 29
Shao (D4CP00341A/cit8/1) 2020; 1
Shizu (D4CP00341A/cit60/1) 2015; 119
Etherington (D4CP00341A/cit53/1) 2016; 7
Hirata (D4CP00341A/cit6/1) 2015; 14
Chen (D4CP00341A/cit50/1) 2017; 7
Ma (D4CP00341A/cit55/1) 2020; 125
Uoyama (D4CP00341A/cit5/1) 2012; 492
Tu (D4CP00341A/cit20/1) 2020; 7
Stephens (D4CP00341A/cit23/1) 1994; 225
Lin (D4CP00341A/cit28/1) 2021; 12
Rothberg (D4CP00341A/cit3/1) 1996; 11
Aidas (D4CP00341A/cit32/1) 2014; 4
Liu (D4CP00341A/cit52/1) 2021; 12
Hirata (D4CP00341A/cit26/1) 1999; 314
Sun (D4CP00341A/cit35/1) 2020; 21
Tomasi (D4CP00341A/cit22/1) 2005; 105
Figueira-Duarte (D4CP00341A/cit1/1) 2011; 111
Chen (D4CP00341A/cit46/1) 2015; 5
Li (D4CP00341A/cit19/1) 2020; 59
McCarthy (D4CP00341A/cit2/1) 2011; 332
Tang (D4CP00341A/cit4/1) 1987; 51
Boese (D4CP00341A/cit25/1) 2004; 121
Nobuyasu (D4CP00341A/cit56/1) 2019; 7
Peng (D4CP00341A/cit41/1) 2021; 125
Xu (D4CP00341A/cit49/1) 2019; 7
Peeters (D4CP00341A/cit17/1) 1997; 119
Yang (D4CP00341A/cit9/1) 2020; 59
Xue (D4CP00341A/cit10/1) 2021; 13
Niu (D4CP00341A/cit44/1) 2018; 116
Chen (D4CP00341A/cit38/1) 2022; 13
Li (D4CP00341A/cit12/1) 2020; 8
Fu (D4CP00341A/cit13/1) 2022; 205
Zhang (D4CP00341A/cit7/1) 2018; 30
Zhang (D4CP00341A/cit42/1) 2021; 23
Gibson (D4CP00341A/cit54/1) 2016; 17
Samanta (D4CP00341A/cit48/1) 2017; 139
Xu (D4CP00341A/cit11/1) 2022; 29
Chen (D4CP00341A/cit51/1) 2018; 9
Sang (D4CP00341A/cit15/1) 2020; 32
Lin (D4CP00341A/cit27/1) 2022; 4
Huang (D4CP00341A/cit47/1) 2013; 9
Zhang (D4CP00341A/cit16/1) 2020; 49
Yin (D4CP00341A/cit36/1) 2020; 6
Imagawa (D4CP00341A/cit18/1) 2015; 51
Zou (D4CP00341A/cit43/1) 2022; 10
Adamo (D4CP00341A/cit24/1) 1999; 110
Shuai (D4CP00341A/cit34/1) 2014; 537
Gao (D4CP00341A/cit37/1) 2018; 122
Shuai (D4CP00341A/cit30/1) 2020; 38
Gibson (D4CP00341A/cit57/1) 2017; 19
Lv (D4CP00341A/cit40/1) 2020; 81
Liu (D4CP00341A/cit61/1) 2023; 33
(D4CP00341A/cit33/1) 2014
Li (D4CP00341A/cit39/1) 2021; 30
Lu (D4CP00341A/cit59/1) 2011; 69
References_xml – issn: 2016
  publication-title: Gaussian 16 Rev. A.03
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– issn: 2014
– volume: 49
  start-page: 1331
  year: 2020
  ident: D4CP00341A/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00680J
– volume: 32
  start-page: 1900110
  year: 2020
  ident: D4CP00341A/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900110
– volume: 11
  start-page: 3174
  year: 1996
  ident: D4CP00341A/cit3/1
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1996.0403
– volume: 51
  start-page: 13268
  year: 2015
  ident: D4CP00341A/cit18/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04105H
– volume: 51
  start-page: 913
  year: 1987
  ident: D4CP00341A/cit4/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.98799
– volume: 17
  start-page: 2956
  year: 2016
  ident: D4CP00341A/cit54/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201600662
– volume: 492
  start-page: 234
  year: 2012
  ident: D4CP00341A/cit5/1
  publication-title: Nature
  doi: 10.1038/nature11687
– volume: 4
  start-page: 269
  year: 2014
  ident: D4CP00341A/cit32/1
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 116
  start-page: 1078
  year: 2018
  ident: D4CP00341A/cit44/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1402966
– volume: 33
  start-page: 101700
  year: 2023
  ident: D4CP00341A/cit61/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2023.101700
– volume: 7
  start-page: 1
  year: 2016
  ident: D4CP00341A/cit53/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13680
– volume: 29
  start-page: 291
  year: 2016
  ident: D4CP00341A/cit21/1
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1063/1674-0068/29/cjcp1508181
– volume: 136
  start-page: A954
  year: 1964
  ident: D4CP00341A/cit31/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.A954
– volume: 537
  start-page: 123
  year: 2014
  ident: D4CP00341A/cit34/1
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.12.002
– volume: 9
  start-page: 5240
  year: 2018
  ident: D4CP00341A/cit51/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02138
– volume: 59
  start-page: 3500
  year: 2020
  ident: D4CP00341A/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914249
– volume: 29
  start-page: 1605444
  year: 2017
  ident: D4CP00341A/cit58/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605444
– volume: 125
  start-page: 27372
  year: 2021
  ident: D4CP00341A/cit41/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c08138
– volume: 119
  start-page: 9909
  year: 1997
  ident: D4CP00341A/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja971912c
– volume: 38
  start-page: 1223
  year: 2020
  ident: D4CP00341A/cit30/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202000226
– volume: 7
  start-page: 6225
  year: 2017
  ident: D4CP00341A/cit50/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05339-4
– volume: 12
  start-page: 5171
  year: 2021
  ident: D4CP00341A/cit52/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC00272D
– volume: 105
  start-page: 2999
  year: 2005
  ident: D4CP00341A/cit22/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 30
  start-page: 1705406
  year: 2018
  ident: D4CP00341A/cit7/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705406
– volume: 121
  start-page: 3405
  year: 2004
  ident: D4CP00341A/cit25/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1774975
– volume: 110
  start-page: 6158
  year: 1999
  ident: D4CP00341A/cit24/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 13
  start-page: 2653
  year: 2022
  ident: D4CP00341A/cit38/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00224
– volume: 21
  start-page: 952
  year: 2020
  ident: D4CP00341A/cit35/1
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.202000187
– volume: 59
  start-page: 13955
  year: 2020
  ident: D4CP00341A/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005584
– volume: 69
  start-page: 2393
  year: 2011
  ident: D4CP00341A/cit59/1
  publication-title: Acta Chim. Sin.
– volume: 119
  start-page: 26283
  year: 2015
  ident: D4CP00341A/cit60/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07798
– volume: 12
  start-page: 2944
  year: 2021
  ident: D4CP00341A/cit28/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00020
– volume: 314
  start-page: 291
  year: 1999
  ident: D4CP00341A/cit26/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01149-5
– volume: 7
  start-page: 9523
  year: 2019
  ident: D4CP00341A/cit49/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03152A
– volume: 7
  start-page: 6672
  year: 2019
  ident: D4CP00341A/cit56/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC00720B
– volume: 29
  start-page: e202203414
  year: 2022
  ident: D4CP00341A/cit11/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202203414
– volume: 139
  start-page: 4042
  year: 2017
  ident: D4CP00341A/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12124
– volume: 7
  start-page: 2000804
  year: 2020
  ident: D4CP00341A/cit20/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000804
– volume: 30
  start-page: 123302
  year: 2021
  ident: D4CP00341A/cit39/1
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/ac1b91
– volume: 14
  start-page: 330
  year: 2015
  ident: D4CP00341A/cit6/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4154
– volume: 122
  start-page: 27608
  year: 2018
  ident: D4CP00341A/cit37/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b08772
– volume: 5
  start-page: 1
  year: 2015
  ident: D4CP00341A/cit46/1
  publication-title: Sci. Rep.
– volume: 8
  start-page: 17464
  year: 2020
  ident: D4CP00341A/cit12/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04162A
– volume: 6
  start-page: 2000255
  year: 2020
  ident: D4CP00341A/cit36/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000255
– volume: 10
  start-page: 517
  year: 2022
  ident: D4CP00341A/cit43/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC05159H
– volume: 205
  start-page: 110550
  year: 2022
  ident: D4CP00341A/cit13/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2022.110550
– volume: 9
  start-page: 3872
  year: 2013
  ident: D4CP00341A/cit47/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400415r
– volume: 4
  start-page: 487
  year: 2022
  ident: D4CP00341A/cit27/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00794
– volume: 125
  start-page: 175
  year: 2020
  ident: D4CP00341A/cit55/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c08994
– year: 2014
  ident: D4CP00341A/cit33/1
– volume: 225
  start-page: 247
  year: 1994
  ident: D4CP00341A/cit23/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00605-9
– volume: 1
  start-page: 45
  year: 2020
  ident: D4CP00341A/cit8/1
  publication-title: Aggregate
  doi: 10.1002/agt2.4
– volume: 11
  start-page: 19294
  year: 2019
  ident: D4CP00341A/cit45/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04365
– volume: 111
  start-page: 7260
  year: 2011
  ident: D4CP00341A/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100428a
– volume: 23
  start-page: 21883
  year: 2021
  ident: D4CP00341A/cit42/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP03144A
– volume: 19
  start-page: 8428
  year: 2017
  ident: D4CP00341A/cit57/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00719A
– volume: 13
  start-page: 47826
  year: 2021
  ident: D4CP00341A/cit10/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c13564
– volume: 49
  start-page: 505
  year: 2006
  ident: D4CP00341A/cit14/1
  publication-title: J. Korean Phys. Soc.
– volume: 81
  start-page: 105667
  year: 2020
  ident: D4CP00341A/cit40/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2020.105667
– volume: 332
  start-page: 570
  year: 2011
  ident: D4CP00341A/cit2/1
  publication-title: Science
  doi: 10.1126/science.1203052
SSID ssj0001513
Score 2.4450486
Snippet Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 9931
SubjectTerms Circular polarization
Correlation
Design optimization
First principles
Fluorescence
Luminescence
Molecular structure
Optical properties
Organic light emitting diodes
Spin-orbit interactions
Title Modulation of luminescence properties of circularly polarized thermally activated delayed fluorescence molecules with axial chirality by donor engineering
URI https://www.ncbi.nlm.nih.gov/pubmed/38482988
https://www.proquest.com/docview/2987103795
https://www.proquest.com/docview/2957168962
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeELdBYSAjeM1ofUmdx6oMDVRQHzppPFW2Y2-RuqTKWkT3U_i1HDtxEsaQgJc0Ok7sKt8X95zTc0Ho7ciCXcUli7SkMmIkVZHicRIlQ6ESapSwxgfIfolPTtmnM37W6-06UUvbjTrS17fmlfwPqiADXF2W7D8g20wKAjgHfOEICMPxrzD-XKR19y2n88E242LYtX9X187JXrpqqT5wPCt9vKlzZThbNrs2Pm4SduUVyFxywzfpdE9XM3IHn3a1Lcow12XVQteETLjvzsuuL7Ky0uFBgU2L3FUOb2sbdnXeeaCCDs3lqjMnqhwrV94xMZ9O21bK2db7ZS9g2eymsMjPwUo4b0KHpHf3fpWtaFZVRphlq6zr1iDMxXVVVQKOTLUVs5g6yrBbN_ohdXVSU6bXrsLOSHYvgq-8vvSQU8EESaq-gTfKaoehO2iPgIVB-mhvcrz4OGt-xkEVoqGeLU3etUvto7vh5l-Vmd8sFNBXytBHxusriwfofm1o4EnFmoeoZ_JH6N40QPAY_WjZgwuLu-zBLXvcUMse3LAHN-zBDXtwzR7cZQ9u2IMde7BnD27Yg9UOe_bgDnueoNMPx4vpSVR36og0SeJNFJuxiC03MjaCWMEtKNKxpkxzaZXibGw4sZSkLvXZMGllYgWRwg6JGWlJFD1A_bzIzTOEtUzBJLd0ZLhmsRCwc6QMdg0DMxrFzQC9CY98ua4Ksix9IAVNlu_ZdO4xmgzQYUBjWb-wV0tAbOzSYhM-QK-bYXjq7j8ymZti667h41EskpgM0NMKxWaZgPoAHQCsjbhlxvM_3vIC7bckP0T9Tbk1L0Gb3ahXNe9-An6lqzE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+luminescence+properties+of+circularly+polarized+thermally+activated+delayed+fluorescence+molecules+with+axial+chirality+by+donor+engineering&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Liu%2C+Shulei&rft.au=Liu%2C+Songsong&rft.au=Gao%2C+Yang&rft.au=Lin%2C+Lili&rft.date=2024-03-27&rft.eissn=1463-9084&rft_id=info:doi/10.1039%2Fd4cp00341a&rft_id=info%3Apmid%2F38482988&rft.externalDocID=38482988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon