Dep-FER: Facial Expression Recognition in Depressed Patients Based on Voluntary Facial Expression Mimicry

Facial expressions are important nonverbal behaviors that humans use to express their feelings. Clinical research have shown that depressed patients have poor facial expressiveness and mimicry. As a result, we propose a VFEM experiment with seven expressions to explore variations in facial expressio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 15; no. 3; pp. 1725 - 1738
Main Authors Ye, Jiayu, Yu, Yanhong, Zheng, Yunshao, Liu, Yang, Wang, Qingxiang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial expressions are important nonverbal behaviors that humans use to express their feelings. Clinical research have shown that depressed patients have poor facial expressiveness and mimicry. As a result, we propose a VFEM experiment with seven expressions to explore variations in facial expression features between depressed patients and normal people, including anger, disgust, fear, happiness, neutrality, sadness, and surprise. It has been discovered through VFEM experiments that depressed patients frequently exhibit negative facial expressions. Meanwhile, we propose a depression facial expression recognition (Dep-FER) model in this research. Dep-FER involves three innovative and crucial components: Mask Multi-head Self-Attention (MMSA), facial action unit similarity loss function (AUs Loss), and case-control loss function (CC Loss). MMSA can filter out disturbing samples and force to learn the relationship between different samples. AUs Loss utilizes the similarity between each expression AU and the model output to improve the generalization ability of the model. CC Loss addresses the intrinsic link between the depressed and normal patient categories. Dep-FER achieves excellent performance in VFEM and outperforms existing comparative models.
AbstractList Facial expressions are important nonverbal behaviors that humans use to express their feelings. Clinical research have shown that depressed patients have poor facial expressiveness and mimicry. As a result, we propose a VFEM experiment with seven expressions to explore variations in facial expression features between depressed patients and normal people, including anger, disgust, fear, happiness, neutrality, sadness, and surprise. It has been discovered through VFEM experiments that depressed patients frequently exhibit negative facial expressions. Meanwhile, we propose a depression facial expression recognition (Dep-FER) model in this research. Dep-FER involves three innovative and crucial components: Mask Multi-head Self-Attention (MMSA), facial action unit similarity loss function (AUs Loss), and case-control loss function (CC Loss). MMSA can filter out disturbing samples and force to learn the relationship between different samples. AUs Loss utilizes the similarity between each expression AU and the model output to improve the generalization ability of the model. CC Loss addresses the intrinsic link between the depressed and normal patient categories. Dep-FER achieves excellent performance in VFEM and outperforms existing comparative models.
Author Zheng, Yunshao
Liu, Yang
Ye, Jiayu
Wang, Qingxiang
Yu, Yanhong
Author_xml – sequence: 1
  givenname: Jiayu
  orcidid: 0000-0003-0368-9651
  surname: Ye
  fullname: Ye, Jiayu
  email: yejiayu97@outlook.com
  organization: Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
– sequence: 2
  givenname: Yanhong
  orcidid: 0000-0002-6547-6320
  surname: Yu
  fullname: Yu, Yanhong
  organization: Shandong University of Traditional Chinese Medicine, Jinan, China
– sequence: 3
  givenname: Yunshao
  orcidid: 0009-0008-0076-2968
  surname: Zheng
  fullname: Zheng, Yunshao
  organization: Shandong Mental Health Center, Jinan, China
– sequence: 4
  givenname: Yang
  orcidid: 0009-0005-0759-2728
  surname: Liu
  fullname: Liu, Yang
  organization: Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
– sequence: 5
  givenname: Qingxiang
  orcidid: 0000-0002-8159-7739
  surname: Wang
  fullname: Wang, Qingxiang
  email: wangqx@qlu.edu.cn
  organization: Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
BookMark eNp9kFFLwzAQx4NMcM59AfGh4HNnkkvaxrc5VxUmypi-lixLJaNLa9KB-_ambg9DxHu5C_f_Xe7-56hna6sRuiR4RAgWN4txnk9GFFM2AkgxwXCC-kQwEQNmvHdUn6Gh92scAgASmvaRuddNnE_nt1EulZFVNP1qnPbe1Daaa1V_WNN2tbFRUHYdvYpeZWu0bX10J7tnaL_X1da20u3-GPNsNka53QU6LWXl9fCQB-gtny4mj_Hs5eFpMp7FioqkjRPJaMppwnhIgkO5LCXVSixFkmQ4yYAJLvCKE7XKIKPAOZVMM0WzMk0ExTBA1_u5jas_t9q3xbreOhu-LIBgAsA4ZEGV7VXK1d47XRbKtLI7tXXSVAXBRedt8eNt0XlbHLwNKP2FNs5swu3_Q1d7yGitjwDGRNgGvgHoNYUw
CODEN ITACBQ
CitedBy_id crossref_primary_10_3390_computers14010029
Cites_doi 10.1016/j.imavis.2008.08.005
10.1109/ISBI45749.2020.9098396
10.1016/j.neucli.2014.03.003
10.1145/3133944.3133953
10.1017/S0033291709990948
10.1111/j.0963-7214.2005.00354.x
10.1109/ICCV.2017.74
10.1037/h0030377
10.3758/brm.40.1.109
10.3389/fnins.2021.609760
10.1609/aaai.v34i04.6113
10.1007/978-3-030-01249-6_50
10.1109/TIFS.2019.2946938
10.1145/2988257.2988258
10.3390/s21093046
10.1109/TAFFC.2017.2724035
10.1016/j.pnpbp.2010.04.011
10.1145/2512530.2512533
10.1016/j.jad.2021.08.090
10.1109/TAFFC.2021.3122146
10.1109/WACV.2016.7477553
10.1145/3347320.3357688
10.1109/CVPRW.2010.5543262
10.1109/TMM.2018.2844085
10.1109/AFGR.1998.670949
10.1016/j.neuroimage.2005.02.048
10.1097/PSY.0b013e3181a2515c
10.1037/0021-843X.116.1.80
10.1109/TBME.2010.2048568
10.1109/CVPR42600.2020.00693
10.1145/2661806.2661807
10.1177/1534582302001001003
10.1109/FG.2018.00019
10.1037/0894-4105.18.2.212
10.1109/ICCV48922.2021.00358
10.1109/CVPR.2018.00745
10.1007/978-3-031-15934-3_10
10.1109/ACCESS.2022.3156598
10.1073/pnas.1322355111
10.1109/BIBM49941.2020.9313597
10.1093/nar/gkg509
10.1109/DSAA.2019.00082
10.1176/appi.focus.140208
10.1016/0165-1781(94)90032-9
10.1016/j.jad.2011.03.049
10.1109/CVPR.2016.90
10.1109/TIP.2019.2956143
10.1007/978-3-642-42051-1_16
10.1109/WACV48630.2021.00245
10.1007/BF02169077
10.1007/BF02190342
10.1007/s41870-023-01184-z
10.1007/978-90-481-3987-3_14
10.1109/CVPR42600.2020.01155
10.1109/ICCVW60793.2023.00339
10.1109/CVPR52688.2022.01167
10.1007/978-3-319-24574-4_28
10.1016/j.cpr.2007.10.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2024.3370103
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 1738
ExternalDocumentID 10_1109_TAFFC_2024_3370103
10449383
Genre orig-research
GrantInformation_xml – fundername: Key Technology Research and Development Program of Shandong Province; Key Research and Development Program of Shandong Province
  grantid: 2020CXGC010901; 2021SFGC0504
  funderid: 10.13039/100014103
– fundername: Talent Training and Promotion Plan of Qilu University of Technology
  grantid: Shandong Academy of Sciences; 2021PY06007
– fundername: Natural Science Foundation of Shandong Province; Shandong Provincial Natural Science Foundation
  grantid: ZR2021MF079
  funderid: 10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 81573829
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-6a42752645275953fbfa2ec9b9668068349590d51cd83823552a4e4c28f769203
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 16:34:05 EDT 2025
Tue Jul 01 02:57:55 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Wed Aug 27 02:01:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-6a42752645275953fbfa2ec9b9668068349590d51cd83823552a4e4c28f769203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6547-6320
0009-0008-0076-2968
0009-0005-0759-2728
0000-0003-0368-9651
0000-0002-8159-7739
PQID 3101334538
PQPubID 2040414
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TAFFC_2024_3370103
proquest_journals_3101334538
ieee_primary_10449383
crossref_primary_10_1109_TAFFC_2024_3370103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
Srivastava (ref52) 2014; 15
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
(ref1) 2017
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Dosovitskiy (ref48) 2020
ref36
ref31
ref30
ref33
ref32
ref2
Simonyan (ref62) 2014
ref39
ref38
ref24
American (ref37) 2013; 5
ref23
ref26
ref25
ref64
ref63
ref22
ref21
ref28
ref27
ref29
Pourmirzaei (ref20) 2021
ref60
ref61
References_xml – ident: ref27
  doi: 10.1016/j.imavis.2008.08.005
– ident: ref25
  doi: 10.1109/ISBI45749.2020.9098396
– ident: ref45
  doi: 10.1016/j.neucli.2014.03.003
– ident: ref41
  doi: 10.1145/3133944.3133953
– volume: 5
  volume-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-5
  year: 2013
  ident: ref37
– ident: ref13
  doi: 10.1017/S0033291709990948
– ident: ref47
  doi: 10.1111/j.0963-7214.2005.00354.x
– ident: ref63
  doi: 10.1109/ICCV.2017.74
– ident: ref16
  doi: 10.1037/h0030377
– ident: ref54
  doi: 10.3758/brm.40.1.109
– ident: ref26
  doi: 10.3389/fnins.2021.609760
– ident: ref50
  doi: 10.1609/aaai.v34i04.6113
– ident: ref53
  doi: 10.1007/978-3-030-01249-6_50
– ident: ref30
  doi: 10.1109/TIFS.2019.2946938
– ident: ref40
  doi: 10.1145/2988257.2988258
– ident: ref55
  doi: 10.3390/s21093046
– year: 2020
  ident: ref48
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref9
  doi: 10.1109/TAFFC.2017.2724035
– ident: ref5
  doi: 10.1016/j.pnpbp.2010.04.011
– ident: ref38
  doi: 10.1145/2512530.2512533
– ident: ref8
  doi: 10.1016/j.jad.2021.08.090
– ident: ref33
  doi: 10.1109/TAFFC.2021.3122146
– ident: ref42
  doi: 10.1109/WACV.2016.7477553
– ident: ref23
  doi: 10.1145/3347320.3357688
– ident: ref18
  doi: 10.1109/CVPRW.2010.5543262
– ident: ref32
  doi: 10.1109/TMM.2018.2844085
– ident: ref64
  doi: 10.1109/AFGR.1998.670949
– ident: ref3
  doi: 10.1016/j.neuroimage.2005.02.048
– ident: ref7
  doi: 10.1097/PSY.0b013e3181a2515c
– ident: ref12
  doi: 10.1037/0021-843X.116.1.80
– ident: ref2
  doi: 10.1109/TBME.2010.2048568
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00693
– ident: ref39
  doi: 10.1145/2661806.2661807
– ident: ref44
  doi: 10.1177/1534582302001001003
– year: 2014
  ident: ref62
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2021
  ident: ref20
  article-title: Using self-supervised auxiliary tasks to improve fine-grained facial representation
– ident: ref29
  doi: 10.1109/FG.2018.00019
– ident: ref14
  doi: 10.1037/0894-4105.18.2.212
– ident: ref31
  doi: 10.1109/ICCV48922.2021.00358
– ident: ref49
  doi: 10.1109/CVPR.2018.00745
– ident: ref60
  doi: 10.1007/978-3-031-15934-3_10
– ident: ref19
  doi: 10.1109/ACCESS.2022.3156598
– ident: ref43
  doi: 10.1073/pnas.1322355111
– year: 2017
  ident: ref1
  article-title: Depression and other common mental disorders: Global health estimates
– ident: ref24
  doi: 10.1109/BIBM49941.2020.9313597
– ident: ref28
  doi: 10.1093/nar/gkg509
– ident: ref6
  doi: 10.1109/DSAA.2019.00082
– ident: ref11
  doi: 10.1176/appi.focus.140208
– ident: ref15
  doi: 10.1016/0165-1781(94)90032-9
– ident: ref4
  doi: 10.1016/j.jad.2011.03.049
– ident: ref56
  doi: 10.1109/CVPR.2016.90
– ident: ref35
  doi: 10.1109/TIP.2019.2956143
– ident: ref17
  doi: 10.1007/978-3-642-42051-1_16
– ident: ref36
  doi: 10.1109/WACV48630.2021.00245
– ident: ref22
  doi: 10.1007/BF02169077
– ident: ref21
  doi: 10.1007/BF02190342
– ident: ref58
  doi: 10.1007/s41870-023-01184-z
– ident: ref10
  doi: 10.1007/978-90-481-3987-3_14
– ident: ref51
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref59
  doi: 10.1109/ICCVW60793.2023.00339
– ident: ref57
  doi: 10.1109/CVPR52688.2022.01167
– ident: ref61
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref46
  doi: 10.1016/j.cpr.2007.10.001
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref52
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
SSID ssj0000333627
Score 2.3435607
Snippet Facial expressions are important nonverbal behaviors that humans use to express their feelings. Clinical research have shown that depressed patients have poor...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1725
SubjectTerms Affective computing
Deep learning
dep -FER
Depression
Face recognition
Faces
Feature extraction
FER
Mimicry
Similarity
Task analysis
Uncertainty
Title Dep-FER: Facial Expression Recognition in Depressed Patients Based on Voluntary Facial Expression Mimicry
URI https://ieeexplore.ieee.org/document/10449383
https://www.proquest.com/docview/3101334538
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7akxfrinUjB28ydSbLTOOt2g4itEhR6W3INlDUaWmnoP56X2YRd7xlmCQEvry89yVvQegkYoAqiYxnqQ09RrT1QM-AXDEeSS2oUdIFJw-G4dUdux7zcRWsXsTCWGsL5zPbds3iLd9M9dJdlYGEMyaAUq2iVWBuZbDW-4WKTykcxlEdGOOLs9tuHF8CBSSsTWnkChp8Uj5FNZVvR3ChV-ImGtYrKt1JHtrLXLX165dkjf9e8gZaryxM3C23xCZasdkWatbVG3AlzNto0rMzL-6PznEs3b057j9XTrEZHtVuRdCeZLhXustag2_KNKwLfCHdJ_y-h72b5XL-8sM0g8nTRM9fdtBd3L-9vPKqwgueJiLMvVAyEnHi3jwjLjhNVSqJ1UIBN-r4YYcCqxK-4YE2HfeOyDmRzDJNOmkUCuLTXdTIppndQ1ipwJg0BStAcJYqJU2oAxrQ0ABRYoFooaBGJNFVVnJXHOMxKdiJL5ICxcShmFQottDp-5hZmZPjz947DpYPPUtEWuiwRj6p5HaRgLELpJ2BFtj_ZdgBWnOzlx67h6iRz5f2COySXB0X-_EN7bTdhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH6icCiXsospUHzoDWWaeEnG3FgmGigzQmiouEXeIo3ahtGQkQq_nucsCApFvTmKnVj6_PzeZ78F4GvCEVWa2MAxFwecGhegnkG54iJRRjKrlQ9OHo7iwTU_vxE3TbB6FQvjnKucz1zXN6u7fHtr5v6oDCWcc4mU6gMsoeIXUR2u9XSkEjKG23HShsaE8tv4KE1PkARS3mUs8SUNXqifqp7Kq0240izpCozaOdUOJT-781J3zcNf6Rr_e9Kr8KmxMclRvSjWYMEV67DS1m8gjThvwOTUTYO0f3VIUuVPzkn_T-MWW5Cr1rEI25OCnNYOs86SyzoR6x05Vv4RX__A1VuUanb_xmeGk98TM7vfhOu0Pz4ZBE3phcBQGZdBrDhNBPW3nomQguU6V9QZqZEd9cK4x5BXydCKyNiev0kUgiruuKG9PIklDdkWLBa3hdsGonVkbZ6jHSAFz7VWNjYRi1hskSrxSHYgahHJTJOX3JfH-JVV_CSUWYVi5lHMGhQ7cPA0Zlpn5Xi396aH5VnPGpEO7LbIZ43k3mVo7iJt56gHPv9j2D58HIyHF9nF2ej7Diz7P9X-u7uwWM7mbg-tlFJ_qdbmI6WO4NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dep-FER%3A+Facial+Expression+Recognition+in+Depressed+Patients+Based+on+Voluntary+Facial+Expression+Mimicry&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Ye%2C+Jiayu&rft.au=Yu%2C+Yanhong&rft.au=Zheng%2C+Yunshao&rft.au=Liu%2C+Yang&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=15&rft.issue=3&rft.spage=1725&rft.epage=1738&rft_id=info:doi/10.1109%2FTAFFC.2024.3370103&rft.externalDocID=10449383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon