LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context Propagation in Transformers

Transformer with its underlying attention mechanism and the ability to capture long-range dependencies makes it become a natural choice for unordered point cloud data. However, local regions separated from the general sampling architecture corrupt the structural information of the instances, and the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 9; p. 1
Main Authors Huang, Zhuoxu, Zhao, Zhiyou, Li, Banghuai, Han, Jungong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transformer with its underlying attention mechanism and the ability to capture long-range dependencies makes it become a natural choice for unordered point cloud data. However, local regions separated from the general sampling architecture corrupt the structural information of the instances, and the inherent relationships between adjacent local regions lack exploration. In other words, the transformer only focuses on the long-range dependence, while local structural information is still crucial in a transformer-based 3D point cloud model. To enable transformers to incorporate local structural information, we proposed a straightforward solution based on the natural structure of the point clouds to exploit the message passing between neighboring local regions, thus making their representations more comprehensive and discriminative. Concretely, the proposed module, named Local Context Propagation (LCP), is inserted between two transformer layers. It takes advantage of the overlapping points of adjacent local regions (statistically shown to be prevalent) as intermediaries, then re-weighs the features of these shared points from different local regions before passing them to the next layers. Finally, we design a flexible LCPFormer architecture equipped with the LCP module, which is applicable to several different tasks. Experimental results demonstrate that our proposed LCPFormer outperforms various transformer-based methods in benchmarks including 3D shape classification and dense prediction tasks such as 3D object detection and semantic segmentation. Code will be released for reproduction.
AbstractList Transformer with its underlying attention mechanism and the ability to capture long-range dependencies makes it become a natural choice for unordered point cloud data. However, local regions separated from the general sampling architecture corrupt the structural information of the instances, and the inherent relationships between adjacent local regions lack exploration. In other words, the transformer only focuses on the long-range dependence, while local structural information is still crucial in a transformer-based 3D point cloud model. To enable transformers to incorporate local structural information, we proposed a straightforward solution based on the natural structure of the point clouds to exploit the message passing between neighboring local regions, thus making their representations more comprehensive and discriminative. Concretely, the proposed module, named Local Context Propagation (LCP), is inserted between two transformer layers. It takes advantage of the overlapping points of adjacent local regions (statistically shown to be prevalent) as intermediaries, then re-weighs the features of these shared points from different local regions before passing them to the next layers. Finally, we design a flexible LCPFormer architecture equipped with the LCP module, which is applicable to several different tasks. Experimental results demonstrate that our proposed LCPFormer outperforms various transformer-based methods in benchmarks including 3D shape classification and dense prediction tasks such as 3D object detection and semantic segmentation. Code will be released for reproduction.
Author Zhao, Zhiyou
Han, Jungong
Li, Banghuai
Huang, Zhuoxu
Author_xml – sequence: 1
  givenname: Zhuoxu
  orcidid: 0000-0002-4698-9200
  surname: Huang
  fullname: Huang, Zhuoxu
  organization: Department of Computer Science, Aberystwyth University, Aberystwyth, U.K
– sequence: 2
  givenname: Zhiyou
  surname: Zhao
  fullname: Zhao, Zhiyou
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Banghuai
  surname: Li
  fullname: Li, Banghuai
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing, China
– sequence: 4
  givenname: Jungong
  orcidid: 0000-0003-4361-956X
  surname: Han
  fullname: Han, Jungong
  organization: Department of Computer Science, University of Sheffield, Sheffield, U.K
BookMark eNp9kMtOwzAQRS1UJNrCDyAWllin-O2EXRVaQIpEJQLbyEkc5CqNi-0W-vekjwViwWI0s7jnzswdgUFnOw3ANUYTjFFyl6ev7_mEIEInlDDJkTgDQ8x5HBGC-KCfEcdRTDC_ACPvlwhhFjM5BGWWLubWrbS7h7n9Uq72cNY0ugpmqyF9gAtrugDT1m5qOO1Uu_PGw61RMLOVamFqu6C_A1w4u1YfKhjbQdPB3KnONwdffwnOG9V6fXXqY_A2n-XpU5S9PD6n0yyqSCJCJEQSK8lYjPqivCxJXZaioVjqitQIx0iVFdZKaSoVlpRyoQipSZNwyVAvHIPbo-_a2c-N9qFY2o3rT_YFiQVmQiYo6VXkqKqc9d7pplg7s1JuV2BU7LMsDlkW-yyLU5Y9FP-BKhMOzwanTPs_enNEjdb61y7EEp5I-gOI4YOo
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3498041
crossref_primary_10_1109_TMM_2024_3349912
crossref_primary_10_3390_s23229042
crossref_primary_10_1109_TCSVT_2024_3454601
crossref_primary_10_1109_ACCESS_2025_3525739
crossref_primary_10_1109_TCSVT_2024_3420150
crossref_primary_10_1109_TCSVT_2024_3417233
crossref_primary_10_1016_j_engappai_2024_109224
crossref_primary_10_1088_2631_8695_adaabf
crossref_primary_10_3390_rs16214103
crossref_primary_10_1007_s00138_024_01543_1
crossref_primary_10_1109_JSEN_2024_3452673
crossref_primary_10_1016_j_neucom_2023_127215
crossref_primary_10_1016_j_patcog_2025_111361
crossref_primary_10_1109_ACCESS_2023_3322433
crossref_primary_10_1109_ACCESS_2023_3323428
crossref_primary_10_1016_j_eswa_2024_124255
crossref_primary_10_1109_TCSVT_2024_3405069
crossref_primary_10_1016_j_jag_2024_104105
crossref_primary_10_1016_j_patcog_2023_110086
crossref_primary_10_1016_j_knosys_2023_111217
crossref_primary_10_1109_TMM_2024_3521745
crossref_primary_10_1016_j_isprsjprs_2025_01_024
crossref_primary_10_1109_TMM_2024_3521849
crossref_primary_10_1109_TIM_2024_3476569
crossref_primary_10_1109_TCSVT_2023_3331589
crossref_primary_10_1109_TGRS_2024_3407761
crossref_primary_10_3390_electronics13224355
crossref_primary_10_1007_s00371_024_03555_4
crossref_primary_10_1016_j_patcog_2024_111152
crossref_primary_10_1109_TCSVT_2024_3440517
crossref_primary_10_1016_j_patcog_2023_110061
crossref_primary_10_1109_TGRS_2024_3492008
Cites_doi 10.1109/CVPR.2019.00571
10.1109/CVPR.2019.01054
10.1109/TCSVT.2021.3102025
10.1109/CVPR.2018.00472
10.1109/CVPR.2019.00287
10.1109/CVPR.2019.00344
10.1109/CVPR.2016.94
10.1109/CVPR.2017.28
10.1109/CVPR42600.2020.00047
10.1109/ICCV.2019.00166
10.1109/ICCV.2019.00937
10.1007/978-3-030-01270-0_39
10.1109/CVPR46437.2021.00494
10.1109/ICCV.2017.99
10.1109/CVPR52688.2022.00835
10.1109/CVPR.2019.00319
10.1109/ICCV48922.2021.00290
10.1109/CVPR.2019.00455
10.1109/CVPR42600.2020.01054
10.1109/ICCV48922.2021.01595
10.1109/CVPR.2018.00959
10.1109/IROS.2018.8594049
10.1109/CVPR42600.2020.01009
10.1109/CVPR.2018.00484
10.1109/IROS.2015.7353481
10.3390/s18103337
10.1109/TCSVT.2021.3100848
10.1109/CVPR.2016.609
10.1007/978-3-030-01237-3_6
10.1609/aaai.v33i01.33018778
10.1109/ICCV48922.2021.00294
10.1007/978-3-030-58610-2_19
10.1109/ICCV48922.2021.00009
10.1109/CVPR.2019.00985
10.1109/CVPR46437.2021.00738
10.1109/CVPR.2018.00526
10.1109/ACCESS.2021.3116304
10.1016/j.dsp.2019.102633
10.1109/CVPR42600.2020.01046
10.1109/CVPR42600.2020.00563
10.1109/CVPR.2018.00961
10.1109/ICCV.2015.114
10.1109/CVPR.2019.00760
10.1109/CVPR42600.2020.01112
10.1109/CVPR46437.2021.01270
10.1109/WACV48630.2021.00386
10.1109/TCSVT.2022.3171968
10.1109/ICCV48922.2021.00010
10.1109/CVPR.2018.00409
10.1109/ICCV48922.2021.00060
10.1109/TGRS.2022.3202823
10.1109/CVPR.2016.170
10.1007/978-3-030-01225-0_4
10.1145/3326362
10.1007/s41095-021-0229-5
10.1109/CVPR.2019.00910
10.1109/IROS51168.2021.9636858
10.1109/CVPR.2018.00479
10.1109/CVPR.2018.00478
10.1109/CVPR46437.2021.01564
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2018.00798
10.1109/ICCV.2019.00936
10.1109/CVPR46437.2021.01625
10.1109/ICCV48922.2021.00041
10.1109/CVPR42600.2020.00170
10.1109/CVPR.2015.7298655
10.1109/ICCV.2019.00651
10.1109/TPAMI.2020.2983686
10.1109/TGRS.2022.3162582
10.1109/CVPR.2018.00979
10.1145/3197517.3201301
10.1109/CVPR.2017.16
10.1109/TCSVT.2021.3100282
10.3390/info13040198
10.1109/CVPR.2019.01298
10.1109/ICCV48922.2021.01204
10.1109/CVPR52688.2022.01150
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3247506
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2023_3247506
10049597
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-6698a7448044835bb2dbb6f317ec2d0180abc1eaae37a173356a22d2f957406f3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 08:32:19 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Tue Jul 01 00:41:20 EDT 2025
Wed Aug 27 02:14:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-6698a7448044835bb2dbb6f317ec2d0180abc1eaae37a173356a22d2f957406f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4698-9200
0000-0003-4361-956X
0009-0001-5015-1929
PQID 2861467909
PQPubID 85433
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCSVT_2023_3247506
crossref_citationtrail_10_1109_TCSVT_2023_3247506
ieee_primary_10049597
proquest_journals_2861467909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref14
ref58
ref53
wang (ref12) 2020
ref52
ref96
ref11
ref55
ref10
ref54
qi (ref15) 2017
ref17
ref16
ref19
yuan (ref31) 2021
ref18
dosovitskiy (ref28) 2020
ref93
ref92
ref51
ref95
ref50
ref94
ref91
ref90
ref46
ref89
ref48
ref47
zhu (ref26) 2020
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
jiang (ref59) 2021
ref8
ref7
ref9
ref4
li (ref84) 2018; 31
woo (ref69) 2018
ref3
ref5
ref82
ref81
ref40
ref83
ref80
huang (ref61) 2019
ref35
ref79
vaswani (ref64) 2017
ref34
ref78
ref37
ref36
ref75
ref74
guan (ref45) 2021
ref33
ref77
han (ref32) 2021
yan (ref6) 2018; 18
ref2
ref1
ref39
ref38
wu (ref76) 2015
d’ascoli (ref30) 2021
ref71
ref70
ref73
qiu (ref67) 2022
ref72
ref24
ref68
ref23
carion (ref27) 2020
ref20
ref63
ref22
ref21
ref65
ref29
wang (ref25) 2022; 44
ronneberger (ref66) 2015
ref60
ref62
References_xml – ident: ref54
  doi: 10.1109/CVPR.2019.00571
– ident: ref51
  doi: 10.1109/CVPR.2019.01054
– ident: ref43
  doi: 10.1109/TCSVT.2021.3102025
– ident: ref13
  doi: 10.1109/CVPR.2018.00472
– volume: 31
  start-page: 820
  year: 2018
  ident: ref84
  article-title: PointCNN: Convolution on ?-transformed points
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1109/CVPR.2019.00287
– ident: ref41
  doi: 10.1109/CVPR.2019.00344
– ident: ref7
  doi: 10.1109/CVPR.2016.94
– ident: ref39
  doi: 10.1109/CVPR.2017.28
– ident: ref73
  doi: 10.1109/CVPR42600.2020.00047
– year: 2021
  ident: ref32
  article-title: Transformer in transformer
  publication-title: arXiv 2103 00112
– start-page: 2475
  year: 2022
  ident: ref67
  article-title: PU-transformer: Point cloud upsampling transformer
  publication-title: Proc Asian Conf Comput Vis
– ident: ref89
  doi: 10.1109/ICCV.2019.00166
– ident: ref18
  doi: 10.1109/ICCV.2019.00937
– ident: ref4
  doi: 10.1007/978-3-030-01270-0_39
– ident: ref94
  doi: 10.1109/CVPR46437.2021.00494
– ident: ref79
  doi: 10.1109/ICCV.2017.99
– ident: ref75
  doi: 10.1109/CVPR52688.2022.00835
– ident: ref9
  doi: 10.1109/CVPR.2019.00319
– ident: ref74
  doi: 10.1109/ICCV48922.2021.00290
– ident: ref11
  doi: 10.1109/CVPR.2019.00455
– start-page: 18
  year: 2020
  ident: ref12
  article-title: Pillar-based object detection for autonomous driving
  publication-title: Proc 16th Eur Conf Comput Vis
– ident: ref47
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref22
  doi: 10.1109/ICCV48922.2021.01595
– ident: ref48
  doi: 10.1109/CVPR.2018.00959
– ident: ref5
  doi: 10.1109/IROS.2018.8594049
– ident: ref65
  doi: 10.1109/CVPR42600.2020.01009
– ident: ref77
  doi: 10.1109/CVPR.2018.00484
– start-page: 5998
  year: 2017
  ident: ref64
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref38
  doi: 10.1109/IROS.2015.7353481
– start-page: 234
  year: 2015
  ident: ref66
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– volume: 18
  start-page: 3337
  year: 2018
  ident: ref6
  article-title: SECOND: Sparsely embedded convolutional detection
  publication-title: SENSORS
  doi: 10.3390/s18103337
– ident: ref1
  doi: 10.1109/TCSVT.2021.3100848
– ident: ref36
  doi: 10.1109/CVPR.2016.609
– ident: ref83
  doi: 10.1007/978-3-030-01237-3_6
– ident: ref86
  doi: 10.1609/aaai.v33i01.33018778
– start-page: 1912
  year: 2015
  ident: ref76
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref24
  doi: 10.1109/ICCV48922.2021.00294
– volume: 44
  start-page: 4419
  year: 2022
  ident: ref25
  article-title: Transformer for 3D point clouds
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2021
  ident: ref59
  article-title: All tokens matter: Token labeling for training better vision transformers
  publication-title: arXiv 2104 10858
– ident: ref71
  doi: 10.1007/978-3-030-58610-2_19
– ident: ref56
  doi: 10.1109/ICCV48922.2021.00009
– ident: ref40
  doi: 10.1109/CVPR.2019.00985
– ident: ref21
  doi: 10.1109/CVPR46437.2021.00738
– ident: ref37
  doi: 10.1109/CVPR.2018.00526
– ident: ref23
  doi: 10.1109/ACCESS.2021.3116304
– ident: ref81
  doi: 10.1016/j.dsp.2019.102633
– ident: ref72
  doi: 10.1109/CVPR42600.2020.01046
– start-page: 213
  year: 2020
  ident: ref27
  article-title: End-to-end object detection with transformers
  publication-title: Proc Eur Conf Comput Vis
– ident: ref88
  doi: 10.1109/CVPR42600.2020.00563
– ident: ref8
  doi: 10.1109/CVPR.2018.00961
– ident: ref35
  doi: 10.1109/ICCV.2015.114
– ident: ref85
  doi: 10.1109/CVPR.2019.00760
– ident: ref17
  doi: 10.1109/CVPR42600.2020.01112
– ident: ref62
  doi: 10.1109/CVPR46437.2021.01270
– ident: ref90
  doi: 10.1109/WACV48630.2021.00386
– ident: ref44
  doi: 10.1109/TCSVT.2022.3171968
– ident: ref55
  doi: 10.1109/ICCV48922.2021.00010
– ident: ref34
  doi: 10.1109/CVPR.2018.00409
– ident: ref58
  doi: 10.1109/ICCV48922.2021.00060
– ident: ref68
  doi: 10.1109/TGRS.2022.3202823
– year: 2020
  ident: ref28
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
– ident: ref93
  doi: 10.1109/CVPR.2016.170
– ident: ref80
  doi: 10.1007/978-3-030-01225-0_4
– year: 2019
  ident: ref61
  article-title: Interlaced sparse self-attention for semantic segmentation
  publication-title: arXiv 1907 12273
– ident: ref53
  doi: 10.1145/3326362
– ident: ref20
  doi: 10.1007/s41095-021-0229-5
– ident: ref87
  doi: 10.1109/CVPR.2019.00910
– ident: ref19
  doi: 10.1109/IROS51168.2021.9636858
– ident: ref49
  doi: 10.1109/CVPR.2018.00479
– year: 2020
  ident: ref26
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
  publication-title: arXiv 2010 04159
– ident: ref50
  doi: 10.1109/CVPR.2018.00478
– ident: ref91
  doi: 10.1109/CVPR46437.2021.01564
– year: 2021
  ident: ref31
  article-title: Hrformer: High-resolution transformer for dense prediction
  publication-title: arXiv 2110 09408
– ident: ref33
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref3
  doi: 10.1109/CVPR.2018.00798
– start-page: 1
  year: 2017
  ident: ref15
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proc NIPS
– ident: ref52
  doi: 10.1109/ICCV.2019.00936
– ident: ref60
  doi: 10.1109/CVPR46437.2021.01625
– ident: ref29
  doi: 10.1109/ICCV48922.2021.00041
– ident: ref46
  doi: 10.1109/CVPR42600.2020.00170
– ident: ref70
  doi: 10.1109/CVPR.2015.7298655
– ident: ref16
  doi: 10.1109/ICCV.2019.00651
– year: 2021
  ident: ref45
  article-title: M3DETR: Multi-representation, multi-scale, mutual-relation 3D object detection with transformers
  publication-title: arXiv 2104 11896
– ident: ref63
  doi: 10.1109/TPAMI.2020.2983686
– year: 2021
  ident: ref30
  article-title: ConViT: Improving vision transformers with soft convolutional inductive biases
  publication-title: arXiv 2103 10697
– ident: ref96
  doi: 10.1109/TGRS.2022.3162582
– ident: ref78
  doi: 10.1109/CVPR.2018.00979
– ident: ref82
  doi: 10.1145/3197517.3201301
– ident: ref14
  doi: 10.1109/CVPR.2017.16
– ident: ref2
  doi: 10.1109/TCSVT.2021.3100282
– ident: ref95
  doi: 10.3390/info13040198
– start-page: 3
  year: 2018
  ident: ref69
  article-title: CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref10
  doi: 10.1109/CVPR.2019.01298
– ident: ref57
  doi: 10.1109/ICCV48922.2021.01204
– ident: ref92
  doi: 10.1109/CVPR52688.2022.01150
SSID ssj0014847
Score 2.5664837
Snippet Transformer with its underlying attention mechanism and the ability to capture long-range dependencies makes it become a natural choice for unordered point...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 3D vision
Context
Context propagation
Convolution
Feature extraction
Message passing
Modules
Object recognition
Point cloud compression
Point cloud learning
Semantic segmentation
Solid modeling
Task analysis
Three dimensional models
Three-dimensional displays
Transformer
Transformers
Title LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context Propagation in Transformers
URI https://ieeexplore.ieee.org/document/10049597
https://www.proquest.com/docview/2861467909
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbFaZQ_eJGle3c16k2opolIwld5C9iXFkkqbivjrnd0k4gPFQyCHnWTh2-x8k535BqFTFfCQ-IQ7JvZwIh35Tkw4dbT2JPWopsIWid3ekeE4up70JlWxuq2FUUrZ5DPlmlt7li_nYmV-lXWNuhkDBtxADYjcymKtjyODKLbdxIAvwOvAkdUVMh7rJv37h8Q1jcJd4A_gI8kXL2TbqvzYi62DGWyhu3pqZV7Jk7squCvevqk2_nvu22izopr4olwbO2hN5bto45MA4R7iN_3RAFirWpzjxCbQLnGpZwybIA4v8Wg-zQvcn81XEtf6JfhlmuEb4wOx1bZ6LfBoAbH3owUZT3Oc1GwYuGULjQdXSX_oVF0XHBEwUjiEsDijELV5cIU9zgPJOdHAM5QIpNH7yrjwVZapkGY-DcMeyYJABpr1KLADHe6jZj7P1QHCsacFiaQETqEj7nMOtr6gnoyp1MwP28ivUUhFJUluOmPMUhuaeCy1yKUGubRCro3OPmyeS0GOP0e3DBSfRpYotFGnRjutPtplGsTE-A3mscNfzI7Qunl6mWPWQc1isVLHQEoKfmIX4zvHNtv5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPFuxUMAHOKGkiZPYMRIHtGW1pdtqJVLUW4hf0ooqQbtZXv-Fv8JvY-wkqwKCWyUOkXKwE9kzmfkmnvkG4KmhMmExk4GLPYLUpnGQM8kDayPNI2658kVixydsepq-OcvOtuD7phbGGOOTz0zobv1Zvm7U2v0q23fsZgIRcJ9DeWS-fsYIbfXy8ADF-YzSyetiPA36JgKBooK1AWMirzgGIRFeSSYl1VIyi27TKKodfVUlVWyqyiS8inmSZKyiVFMrMo7Ozib43CtwFYFGRrvysM0hRZr7_mWIUHCB6DqHmpxI7Bfjt--K0LUmDxGxoFdmv_g938jlD-vvXdrkFvwYNqPLZPkQrlsZqm-_8UT-t7t1G272YJq86rT_DmyZ-i7cuECxeA_kbDyfIC43yxek8CnCK9IxNqOZJ8kBmTeLuiXj82atycDQQj4tKjJzXp549q4vLZkvGzS9Xo3JoibFgPcRPe_A6aUsche266Y294HkkVUs1RpRk01lLCXOjRWPdM61FXEygniQeql60nXX--O89MFXJEqvKaXTlLLXlBE838z52FGO_HP0jhP9hZGd1EewN2hX2ZulVUlz5jyjiMSDv0x7AtemxfGsnB2eHD2E6-5NXUbdHmy3y7V5hBCslY_9h0Dg_WXr0k_B5Df1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LCPFormer%3A+Towards+Effective+3D+Point+Cloud+Analysis+via+Local+Context+Propagation+in+Transformers&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Huang%2C+Zhuoxu&rft.au=Zhao%2C+Zhiyou&rft.au=Li%2C+Banghuai&rft.au=Han%2C+Jungong&rft.date=2023-09-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=9&rft.spage=4985&rft.epage=4996&rft_id=info:doi/10.1109%2FTCSVT.2023.3247506&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2023_3247506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon