Fatty acid epoxidation by Collariella virescens peroxygenase and heme-channel variants
Enzyme-driven oxygenation reactions are in the spotlight for organic synthesis. In this regard, a heme-thiolate unspecific peroxygenase (UPO) from the fungus Chaetomium globosum has recently proven to be a suitable catalyst for selective epoxidation of unsaturated fatty acids in the context of the b...
Saved in:
Published in | Catalysis science & technology Vol. 10; no. 3; pp. 717 - 725 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enzyme-driven oxygenation reactions are in the spotlight for organic synthesis. In this regard, a heme-thiolate unspecific peroxygenase (UPO) from the fungus
Chaetomium globosum
has recently proven to be a suitable catalyst for selective epoxidation of unsaturated fatty acids in the context of the bio-based industry, but this enzyme could not be expressed in
Escherichia coli
for directed mutagenesis studies. Here, a previously unknown UPO from the related
Collariella virescens
(synonym:
Chaetomium virescens
) was obtained by
E. coli
expression of a putative
upo
gene. The activity of the purified enzyme on unsaturated fatty acids with different lengths and unsaturation degrees was tested. The ability of
C. virescens
UPO to epoxidize these compounds increases in the order myristoleic acid (C14:1) < palmitoleic acid (C16:1) < oleic acid (C18:1) differing from that observed for the
C. globosum
UPO, which also forms less hydroxylated derivatives. Given the possibility to produce the
C. virescens
UPO in
E. coli
as a recombinant enzyme and its oxyfunctionalization ability, some mutated variants were obtained mimicking the active-site of
C. globosum
UPO and evaluated on 18-carbon unsaturated fatty acids. Results revealed that widening the heme-access channel of
C. virescens
UPO by substituting a phenylalanine residue (in a F88L variant) maintains the enzyme epoxidation activity, and reduces undesired hydroxylation side-reactions (from 34% to only 7% of linoleic acid products) approaching the oxyfunctionalization pattern obtained with
C. globosum
UPO, although maintaining the absence of diepoxides. Conversely, its partial occlusion by introducing a second phenylalanine residue (in a T158F variant) resulted in partial selective epoxidation of linoleic acid (C18:2), while the oleic acid epoxidation was prevented. The above results show how
E. coli
expression can speed up the availability of new UPOs, and the design of
ad hoc
variants of these self-sufficient monooxygenases. |
---|---|
AbstractList | Enzyme-driven oxygenation reactions are in the spotlight for organic synthesis. In this regard, a heme-thiolate unspecific peroxygenase (UPO) from the fungus
Chaetomium globosum
has recently proven to be a suitable catalyst for selective epoxidation of unsaturated fatty acids in the context of the bio-based industry, but this enzyme could not be expressed in
Escherichia coli
for directed mutagenesis studies. Here, a previously unknown UPO from the related
Collariella virescens
(synonym:
Chaetomium virescens
) was obtained by
E. coli
expression of a putative
upo
gene. The activity of the purified enzyme on unsaturated fatty acids with different lengths and unsaturation degrees was tested. The ability of
C. virescens
UPO to epoxidize these compounds increases in the order myristoleic acid (C14:1) < palmitoleic acid (C16:1) < oleic acid (C18:1) differing from that observed for the
C. globosum
UPO, which also forms less hydroxylated derivatives. Given the possibility to produce the
C. virescens
UPO in
E. coli
as a recombinant enzyme and its oxyfunctionalization ability, some mutated variants were obtained mimicking the active-site of
C. globosum
UPO and evaluated on 18-carbon unsaturated fatty acids. Results revealed that widening the heme-access channel of
C. virescens
UPO by substituting a phenylalanine residue (in a F88L variant) maintains the enzyme epoxidation activity, and reduces undesired hydroxylation side-reactions (from 34% to only 7% of linoleic acid products) approaching the oxyfunctionalization pattern obtained with
C. globosum
UPO, although maintaining the absence of diepoxides. Conversely, its partial occlusion by introducing a second phenylalanine residue (in a T158F variant) resulted in partial selective epoxidation of linoleic acid (C18:2), while the oleic acid epoxidation was prevented. The above results show how
E. coli
expression can speed up the availability of new UPOs, and the design of
ad hoc
variants of these self-sufficient monooxygenases. Enzyme-driven oxygenation reactions are in the spotlight for organic synthesis. In this regard, a heme-thiolate unspecific peroxygenase (UPO) from the fungus Chaetomium globosum has recently proven to be a suitable catalyst for selective epoxidation of unsaturated fatty acids in the context of the bio-based industry, but this enzyme could not be expressed in Escherichia coli for directed mutagenesis studies. Here, a previously unknown UPO from the related Collariella virescens (synonym: Chaetomium virescens) was obtained by E. coli expression of a putative upo gene. The activity of the purified enzyme on unsaturated fatty acids with different lengths and unsaturation degrees was tested. The ability of C. virescens UPO to epoxidize these compounds increases in the order myristoleic acid (C14:1) < palmitoleic acid (C16:1) < oleic acid (C18:1) differing from that observed for the C. globosum UPO, which also forms less hydroxylated derivatives. Given the possibility to produce the C. virescens UPO in E. coli as a recombinant enzyme and its oxyfunctionalization ability, some mutated variants were obtained mimicking the active-site of C. globosum UPO and evaluated on 18-carbon unsaturated fatty acids. Results revealed that widening the heme-access channel of C. virescens UPO by substituting a phenylalanine residue (in a F88L variant) maintains the enzyme epoxidation activity, and reduces undesired hydroxylation side-reactions (from 34% to only 7% of linoleic acid products) approaching the oxyfunctionalization pattern obtained with C. globosum UPO, although maintaining the absence of diepoxides. Conversely, its partial occlusion by introducing a second phenylalanine residue (in a T158F variant) resulted in partial selective epoxidation of linoleic acid (C18:2), while the oleic acid epoxidation was prevented. The above results show how E. coli expression can speed up the availability of new UPOs, and the design of ad hoc variants of these self-sufficient monooxygenases. |
Author | Carro, Juan Linde, Dolores Martínez, Angel T. Fernández-Fueyo, Elena González-Benjumea, Alejandro Renau-Mínguez, Chantal Gutiérrez, Ana |
Author_xml | – sequence: 1 givenname: Alejandro orcidid: 0000-0003-2857-9491 surname: González-Benjumea fullname: González-Benjumea, Alejandro organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, E-41012 Sevilla, Spain – sequence: 2 givenname: Juan surname: Carro fullname: Carro, Juan organization: Centro de Investigaciones Biológicas, CSIC, E-28040 Madrid, Spain – sequence: 3 givenname: Chantal orcidid: 0000-0003-1308-7013 surname: Renau-Mínguez fullname: Renau-Mínguez, Chantal organization: Centro de Investigaciones Biológicas, CSIC, E-28040 Madrid, Spain – sequence: 4 givenname: Dolores surname: Linde fullname: Linde, Dolores organization: Centro de Investigaciones Biológicas, CSIC, E-28040 Madrid, Spain – sequence: 5 givenname: Elena orcidid: 0000-0002-5079-2240 surname: Fernández-Fueyo fullname: Fernández-Fueyo, Elena organization: Centro de Investigaciones Biológicas, CSIC, E-28040 Madrid, Spain – sequence: 6 givenname: Ana orcidid: 0000-0002-8823-9029 surname: Gutiérrez fullname: Gutiérrez, Ana organization: Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, E-41012 Sevilla, Spain – sequence: 7 givenname: Angel T. orcidid: 0000-0002-1584-2863 surname: Martínez fullname: Martínez, Angel T. organization: Centro de Investigaciones Biológicas, CSIC, E-28040 Madrid, Spain |
BookMark | eNptkE1LAzEQhoNUsNZe_AUBb8JqPrebY1msCoIXFTwt2eysTdkmNUlL99-7WlEQB-bj8LwzzHuKRs47QOickitKuLouVflKGOdsfoTGjAiRiVlORz-z5CdoGuOKDCEUJQUbo5eFTqnH2tgGw8bvbaOT9Q7XPS591-lgYah4ZwNEAy7iDQS_79_A6QhYuwYvYQ2ZWWrnoMO7QaBdimfouNVdhOl3n6Dnxc1TeZc9PN7el_OHzDCVp0yaQnFBKKWmEKzI81kuZwqGJK1mShoQmpGa0kbWEloDXBlZ19QIEKqgik_QxWHvJvj3LcRUrfw2uOFkxbhkOaNUioEiB8oEH2OAtjI2ff2ZgrZdRUn1aWD1a-Agufwj2QS71qH_D_4A7lZx0A |
CitedBy_id | crossref_primary_10_3390_antiox11050891 crossref_primary_10_3390_antiox11030522 crossref_primary_10_1002_cssc_202201275 crossref_primary_10_3390_antiox10121888 crossref_primary_10_1021_acs_chemrev_3c00520 crossref_primary_10_1016_S1872_2067_24_60206_8 crossref_primary_10_1039_D0CY02457K crossref_primary_10_1016_j_biotechadv_2020_107615 crossref_primary_10_1002_anie_202422241 crossref_primary_10_3390_antiox11050915 crossref_primary_10_1016_j_sbi_2022_102342 crossref_primary_10_3390_antiox11010163 crossref_primary_10_1021_jacsau_1c00251 crossref_primary_10_1039_D3GC04593E crossref_primary_10_1021_acscatal_1c00759 crossref_primary_10_1021_acscatal_0c03165 crossref_primary_10_3390_jof7090752 crossref_primary_10_1016_j_mcat_2023_113275 crossref_primary_10_3390_applmicrobiol3030057 crossref_primary_10_1016_j_biotechadv_2021_107703 crossref_primary_10_1002_ange_202422241 crossref_primary_10_1021_jacsau_4c00129 crossref_primary_10_1128_AEM_00878_21 crossref_primary_10_1039_D3RE00209H crossref_primary_10_1002_ejlt_70000 crossref_primary_10_1016_j_cclet_2023_108701 crossref_primary_10_1016_j_mcat_2022_112707 crossref_primary_10_1016_j_bioorg_2021_105014 crossref_primary_10_1021_acs_orglett_3c01601 crossref_primary_10_1038_s42003_021_02076_3 crossref_primary_10_2139_ssrn_4185994 crossref_primary_10_5802_crchim_375 |
Cites_doi | 10.1002/cbic.201600677 10.1016/j.abb.2011.08.001 10.1002/anie.201605430 10.1016/j.simyco.2016.11.005 10.1016/j.cbpa.2014.01.015 10.1128/AEM.70.8.4575-4581.2004 10.1093/nar/gky427 10.1002/cctc.201800849 10.1016/S0021-9258(18)96701-3 10.1128/AEM.00026-07 10.1093/nar/gku340 10.1016/j.jinorgbio.2018.03.011 10.1039/C4CY01477D 10.1007/978-3-319-16009-2_13 10.1016/j.bmc.2015.06.035 10.1039/C8CY02114G 10.1002/chem.201704773 10.1021/cr050989d 10.1016/j.pep.2005.01.016 10.3389/fmicb.2017.01463 10.1016/j.jbiotec.2010.01.021 10.1186/s12862-019-1394-3 10.1007/978-3-319-16009-2 10.1002/3527607862 10.1093/nar/gkm219 10.1016/j.cbpa.2016.10.007 10.1051/ocl.2008.0191 10.1002/bit.24904 10.1039/C8CY00272J 10.1021/acscatal.9b01454 10.1186/2191-0855-1-31 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/C9CY02332A |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2044-4761 |
EndPage | 725 |
ExternalDocumentID | 10_1039_C9CY02332A |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACAYK ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- OK1 R7G RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c296t-5c89340111c84286676579e5790fa295ce4a20b11d5b5efce39c5bb1c4e498193 |
ISSN | 2044-4753 |
IngestDate | Sun Jun 29 16:22:16 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Jul 01 02:28:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-5c89340111c84286676579e5790fa295ce4a20b11d5b5efce39c5bb1c4e498193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2857-9491 0000-0002-5079-2240 0000-0003-1308-7013 0000-0002-8823-9029 0000-0002-1584-2863 |
PQID | 2352621154 |
PQPubID | 2047527 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2352621154 crossref_citationtrail_10_1039_C9CY02332A crossref_primary_10_1039_C9CY02332A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-07 |
PublicationDateYYYYMMDD | 2020-02-07 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Catalysis science & technology |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Aranda (C9CY02332A-(cit19)/*[position()=1]) 2018; 10 Morris (C9CY02332A-(cit3)/*[position()=1]) 1966; 241 Olmedo (C9CY02332A-(cit23)/*[position()=1]) 2016; 55 Ullrich (C9CY02332A-(cit4)/*[position()=1]) 2004; 70 Hofrichter (C9CY02332A-(cit12)/*[position()=1]) 2014; 19 Kiebist (C9CY02332A-(cit21)/*[position()=1]) 2015; 23 Hrycay (C9CY02332A-(cit10)/*[position()=1]) 2015 Otey (C9CY02332A-(cit31)/*[position()=1]) 2003; 230 Corma (C9CY02332A-(cit25)/*[position()=1]) 2007; 107 Hofrichter (C9CY02332A-(cit2)/*[position()=1]) 2015; 851 Anh (C9CY02332A-(cit5)/*[position()=1]) 2007; 73 Karich (C9CY02332A-(cit22)/*[position()=1]) 2017; 8 Ullrich (C9CY02332A-(cit8)/*[position()=1]) 2018; 183 Studier (C9CY02332A-(cit29)/*[position()=1]) 2005; 41 Wang (C9CY02332A-(cit1)/*[position()=1]) 2017; 37 Gutiérrez (C9CY02332A-(cit37)/*[position()=1]) 2011; 514 Aranda (C9CY02332A-(cit20)/*[position()=1]) 2018; 8 Gröbe (C9CY02332A-(cit6)/*[position()=1]) 2011; 1 Aranda (C9CY02332A-(cit35)/*[position()=1]) 2018; 9 Biasini (C9CY02332A-(cit34)/*[position()=1]) 2014; 42 Yudin (C9CY02332A-(cit24)/*[position()=1]) 2006 Puigbò (C9CY02332A-(cit28)/*[position()=1]) 2007; 35 Babot (C9CY02332A-(cit9)/*[position()=1]) 2013; 110 Faiza (C9CY02332A-(cit16)/*[position()=1]) 2019; 19 Waterhouse (C9CY02332A-(cit32)/*[position()=1]) 2018; 46 Bormann (C9CY02332A-(cit26)/*[position()=1]) 2015; 5 Wang (C9CY02332A-(cit11)/*[position()=1]) 2016; 84 Tiran (C9CY02332A-(cit14)/*[position()=1]) 2008; 15 Olmedo (C9CY02332A-(cit18)/*[position()=1]) 2017; 23 Pazmino (C9CY02332A-(cit13)/*[position()=1]) 2010; 146 Carro (C9CY02332A-(cit17)/*[position()=1]) 2019; 9 Kiebist (C9CY02332A-(cit7)/*[position()=1]) 2017; 18 Hofrichter (C9CY02332A-(cit15)/*[position()=1]) 2019 |
References_xml | – volume: 18 start-page: 563 year: 2017 ident: C9CY02332A-(cit7)/*[position()=1] publication-title: ChemBioChem doi: 10.1002/cbic.201600677 – volume: 514 start-page: 33 year: 2011 ident: C9CY02332A-(cit37)/*[position()=1] publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.08.001 – volume: 55 start-page: 12248 year: 2016 ident: C9CY02332A-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605430 – volume: 84 start-page: 145 year: 2016 ident: C9CY02332A-(cit11)/*[position()=1] publication-title: Stud. Mycol. doi: 10.1016/j.simyco.2016.11.005 – volume: 19 start-page: 116 year: 2014 ident: C9CY02332A-(cit12)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.01.015 – volume: 70 start-page: 4575 year: 2004 ident: C9CY02332A-(cit4)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.8.4575-4581.2004 – volume: 46 start-page: W296 year: 2018 ident: C9CY02332A-(cit32)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky427 – volume: 10 start-page: 3964 year: 2018 ident: C9CY02332A-(cit19)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201800849 – volume: 241 start-page: 1763 year: 1966 ident: C9CY02332A-(cit3)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96701-3 – volume: 73 start-page: 5477 year: 2007 ident: C9CY02332A-(cit5)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00026-07 – volume: 42 start-page: W252 year: 2014 ident: C9CY02332A-(cit34)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku340 – volume: 183 start-page: 84 year: 2018 ident: C9CY02332A-(cit8)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2018.03.011 – volume: 5 start-page: 2038 year: 2015 ident: C9CY02332A-(cit26)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY01477D – volume: 851 start-page: 341 year: 2015 ident: C9CY02332A-(cit2)/*[position()=1] publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-16009-2_13 – start-page: 52 volume-title: Grand challenges in fungal biotechnology year: 2019 ident: C9CY02332A-(cit15)/*[position()=1] – volume: 23 start-page: 4324 year: 2015 ident: C9CY02332A-(cit21)/*[position()=1] publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2015.06.035 – volume: 9 start-page: 1398 year: 2018 ident: C9CY02332A-(cit35)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02114G – volume: 23 start-page: 16985 year: 2017 ident: C9CY02332A-(cit18)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704773 – volume: 230 start-page: 137 year: 2003 ident: C9CY02332A-(cit31)/*[position()=1] publication-title: Methods Mol. Biol. – volume: 107 start-page: 2411 year: 2007 ident: C9CY02332A-(cit25)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr050989d – volume: 41 start-page: 207 year: 2005 ident: C9CY02332A-(cit29)/*[position()=1] publication-title: Protein Express. Purif. doi: 10.1016/j.pep.2005.01.016 – volume: 8 start-page: 1463 year: 2017 ident: C9CY02332A-(cit22)/*[position()=1] publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01463 – volume: 146 start-page: 9 year: 2010 ident: C9CY02332A-(cit13)/*[position()=1] publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.01.021 – volume: 19 start-page: 76 year: 2019 ident: C9CY02332A-(cit16)/*[position()=1] publication-title: BMC Evol. Biol. doi: 10.1186/s12862-019-1394-3 – volume-title: Monooxygenase, Peroxidase and Peroxygenase Properties and Reaction Mechanisms of Cytochrome P450 Enzymes year: 2015 ident: C9CY02332A-(cit10)/*[position()=1] doi: 10.1007/978-3-319-16009-2 – volume-title: Aziridines and epoxides in organic synthesis year: 2006 ident: C9CY02332A-(cit24)/*[position()=1] doi: 10.1002/3527607862 – volume: 35 start-page: W126 year: 2007 ident: C9CY02332A-(cit28)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm219 – volume: 37 start-page: 1 year: 2017 ident: C9CY02332A-(cit1)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.10.007 – volume: 15 start-page: 179 year: 2008 ident: C9CY02332A-(cit14)/*[position()=1] publication-title: OCL doi: 10.1051/ocl.2008.0191 – volume: 110 start-page: 2332 year: 2013 ident: C9CY02332A-(cit9)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24904 – volume: 8 start-page: 2394 year: 2018 ident: C9CY02332A-(cit20)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00272J – volume: 9 start-page: 6234 year: 2019 ident: C9CY02332A-(cit17)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b01454 – volume: 1 start-page: 31 year: 2011 ident: C9CY02332A-(cit6)/*[position()=1] publication-title: AMB Express doi: 10.1186/2191-0855-1-31 |
SSID | ssj0000491082 |
Score | 2.4067185 |
Snippet | Enzyme-driven oxygenation reactions are in the spotlight for organic synthesis. In this regard, a heme-thiolate unspecific peroxygenase (UPO) from the fungus... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 717 |
SubjectTerms | Derivatives E coli Enzymes Epoxidation Fatty acids Gene expression Hydroxylation Occlusion Oleic acid Oxygenation Phenylalanine |
Title | Fatty acid epoxidation by Collariella virescens peroxygenase and heme-channel variants |
URI | https://www.proquest.com/docview/2352621154 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gAviE8xGMgSvKDKI3GcDz92Zd00xpBQC-UpchxnbCop6tJp7f_D_8n5Ix_VJgQ8NKqc1Ip8v57vzne_Q-hNEqiYFZyRwisYgf02J5xJQTyasbyIijiRJtviNDqasONpOO31fnWylpZVtifXt9aV_I9UYQzkqqtk_0GyzaQwAN9BvnAFCcP1r2Q8EhXY0EKe532wo6_PbX8kbVHqeID2guHavwKtpjmbLjVH8fx6BdPB1mVODb6rH4ro2t9SzfpX8APhmJ1a8oLKkZbU9T8aKtWNePzhvFybM3d_ptZkX5UXoPOEq6C5EJoVoT3tWNjamuNli8zP8E5L8tFM8b48W9q4ti59qESTA6LjB8pa_bP5Qm1ELMA91UnOcYMxGxepk1JN0olrbdfqPuoxQE5seYT3VHfMcrc3ytvrgDToaOLYloS6TT221dU39gsv0HSrkssV2C4B7eyKdSbA6ad0NDk5SccH0_EdtE3BGwF1uj34sH_4tQnmgZvle6YxWfPiNRVuwN-1028aP5t7vzFoxg_QfeeJ4IGF1UPUU-UjdLdZpcfoi4EX1vDCHXjhbIU78MINvHAXXhhkjrvwwjW8nqDJ6GA8PCKuDQeRlEcVCSXYtOCG-75MwFnVSdFhzBV8vEJQHkrFBPUy38_DLFSFVAGXYZb5kinGweAMnqKtcl6qZwhzIUEx5CLJaM4YpyLME5VEMYt8wb1A7aC39fqk0nHU61Yps9TkSgQ8HfLhN7OWgx30unn2p2VmufWp3XqZU_fPvUypbgpBNRHV8z_ffoHutQDeRVvVYqleghFaZa8cBH4DsxaLwg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatty+acid+epoxidation+by+Collariella+virescens+peroxygenase+and+heme-channel+variants&rft.jtitle=Catalysis+science+%26+technology&rft.au=Gonz%C3%A1lez-Benjumea%2C+Alejandro&rft.au=Carro%2C+Juan&rft.au=Renau-M%C3%ADnguez%2C+Chantal&rft.au=Linde%2C+Dolores&rft.date=2020-02-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=10&rft.issue=3&rft.spage=717&rft.epage=725&rft_id=info:doi/10.1039%2Fc9cy02332a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |