MMSMCNet: Modal Memory Sharing and Morphological Complementary Networks for RGB-T Urban Scene Semantic Segmentation

Combining color (RGB) images with thermal images can facilitate semantic segmentation of poorly lit urban scenes. However, for RGB-thermal (RGB-T) semantic segmentation, most existing models address cross-modal feature fusion by focusing only on exploring the samples while neglecting the connections...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 12; p. 1
Main Authors Zhou, Wujie, Zhang, Han, Yan, Weiqing, Lin, Weisi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combining color (RGB) images with thermal images can facilitate semantic segmentation of poorly lit urban scenes. However, for RGB-thermal (RGB-T) semantic segmentation, most existing models address cross-modal feature fusion by focusing only on exploring the samples while neglecting the connections between different samples. Additionally, although the importance of boundary, binary, and semantic information is considered in the decoding process, the differences and complementarities between different morphological features are usually neglected. In this paper, we propose a novel RGB-T semantic segmentation network, called MMSMCNet, based on modal memory fusion and morphological multiscale assistance to address the aforementioned problems. For this network, in the encoding part, we used SegFormer for feature extraction of bimodal inputs. Next, our modal memory sharing module implements staged learning and memory sharing of sample information across modal multiscales. Furthermore, we constructed a decoding union unit comprising three decoding units in a layer-by-layer progression that can extract two different morphological features according to the information category and realize the complementary utilization of multiscale cross-modal fusion information. Each unit contains a contour positioning module based on detail information, a skeleton positioning module with deep features as the primary input, and a morphological complementary module for mutual reinforcement of the first two types of information and construction of semantic information. Based on this, we constructed a new supervision strategy, that is, a multi-unit-based complementary supervision strategy. Extensive experiments using two standard datasets showed that MMSMCNet outperformed related state-of-the-art methods. The code is available at: https://github.com/2021nihao/MMSMCNet.
AbstractList Combining color (RGB) images with thermal images can facilitate semantic segmentation of poorly lit urban scenes. However, for RGB-thermal (RGB-T) semantic segmentation, most existing models address cross-modal feature fusion by focusing only on exploring the samples while neglecting the connections between different samples. Additionally, although the importance of boundary, binary, and semantic information is considered in the decoding process, the differences and complementarities between different morphological features are usually neglected. In this paper, we propose a novel RGB-T semantic segmentation network, called MMSMCNet, based on modal memory fusion and morphological multiscale assistance to address the aforementioned problems. For this network, in the encoding part, we used SegFormer for feature extraction of bimodal inputs. Next, our modal memory sharing module implements staged learning and memory sharing of sample information across modal multiscales. Furthermore, we constructed a decoding union unit comprising three decoding units in a layer-by-layer progression that can extract two different morphological features according to the information category and realize the complementary utilization of multiscale cross-modal fusion information. Each unit contains a contour positioning module based on detail information, a skeleton positioning module with deep features as the primary input, and a morphological complementary module for mutual reinforcement of the first two types of information and construction of semantic information. Based on this, we constructed a new supervision strategy, that is, a multi-unit-based complementary supervision strategy. Extensive experiments using two standard datasets showed that MMSMCNet outperformed related state-of-the-art methods. The code is available at: https://github.com/2021nihao/MMSMCNet .
Author Zhou, Wujie
Zhang, Han
Lin, Weisi
Yan, Weiqing
Author_xml – sequence: 1
  givenname: Wujie
  orcidid: 0000-0002-3055-2493
  surname: Zhou
  fullname: Zhou, Wujie
  organization: School of Information & Electronic Engineering, Zhejiang University of Science & Technology, Hangzhou, China
– sequence: 2
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  organization: School of Information & Electronic Engineering, Zhejiang University of Science & Technology, Hangzhou, China
– sequence: 3
  givenname: Weiqing
  orcidid: 0000-0001-7869-2404
  surname: Yan
  fullname: Yan, Weiqing
  organization: School of Computer and Control Engineering, Yantai University, Yantai, China
– sequence: 4
  givenname: Weisi
  orcidid: 0000-0001-9866-1947
  surname: Lin
  fullname: Lin, Weisi
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNp9kM1OwzAQhC1UJFrgBRAHS5xTbMfODzeIoCARkEjhGjnOuk1J7OKkQrw9pu0BceC0K-18M9qZoJGxBhA6o2RKKUkv51nxNp8ywsJpyGIRUn6AxlSIJGCMiJHfiaBBwqg4QpO-XxFCecLjMerzvMizJxiucG5r2eIcOuu-cLGUrjELLE3tD269tK1dNMoLMtutW-jADNLrPPlp3XuPtXX4ZXYTzPGrq6TBhQIDuIBOmqFRfllskaGx5gQdatn2cLqfx-j17nae3QePz7OH7PoxUCyNhkCEVQ1Ug9KRIDwSEMUyrUFXdVVBnEZcC0mZ1ITriHOtVcIj8EgitdYkVuExutj5rp392EA_lCu7ccZHlixJU2-ZMuFVbKdSzva9A12uXdP530pKyp9yy2255U-55b5cDyV_INXsnhucbNr_0fMd2gDAryzKQkLS8BvKEowA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1007_s11554_024_01578_7
crossref_primary_10_1109_TITS_2023_3306368
crossref_primary_10_1016_j_engappai_2023_106885
crossref_primary_10_1109_LRA_2024_3458594
crossref_primary_10_1109_TIP_2024_3501077
crossref_primary_10_1109_TIP_2025_3544484
crossref_primary_10_1016_j_engappai_2023_106729
crossref_primary_10_1016_j_engappai_2025_110068
crossref_primary_10_1016_j_engappai_2024_109881
crossref_primary_10_1016_j_knosys_2025_113016
crossref_primary_10_1109_ACCESS_2024_3432709
crossref_primary_10_1109_TCSVT_2024_3382354
crossref_primary_10_1016_j_engappai_2024_108013
crossref_primary_10_1016_j_inffus_2023_101832
crossref_primary_10_1109_TIP_2023_3275538
crossref_primary_10_1016_j_engappai_2024_108290
crossref_primary_10_1016_j_isprsjprs_2025_01_022
crossref_primary_10_1016_j_jvcir_2023_103951
crossref_primary_10_1109_TCSVT_2024_3485655
crossref_primary_10_1109_TIM_2024_3418111
crossref_primary_10_3390_rs16244717
crossref_primary_10_1109_ACCESS_2023_3314199
crossref_primary_10_1109_TGRS_2023_3311480
crossref_primary_10_1007_s10489_024_05743_0
crossref_primary_10_1016_j_jag_2025_104383
crossref_primary_10_1007_s11760_024_03779_w
crossref_primary_10_1109_TIV_2024_3376534
crossref_primary_10_1007_s11042_024_19302_9
Cites_doi 10.1109/TCSVT.2022.3206865
10.1109/ACCESS.2022.3227771
10.1109/TITS.2017.2750080
10.1109/ICRA40945.2020.9196831
10.1109/cvpr.2018.00474
10.1109/TIP.2018.2794207
10.1145/3351180.3351182
10.1007/978-3-030-58621-8_33
10.1109/LGRS.2023.3241648
10.1109/tip.2023.3275538
10.1007/978-3-030-58574-7_1
10.1109/TPAMI.2016.2644615
10.1109/IROS51168.2021.9636084
10.1109/CVPR46437.2021.00266
10.1109/ICCV.2019.00069
10.1109/TCSVT.2022.3178178
10.1109/TIV.2022.3164899
10.1109/TCSVT.2022.3187664
10.1609/aaai.v36i3.20269
10.1109/tip.2020.2976689
10.1109/tnnls.2022.3233089
10.1109/TMM.2021.3077767
10.1016/j.neucom.2022.07.041
10.1016/j.engappai.2022.105510
10.1109/CVPR.2019.00326
10.1109/TIP.2021.3109518
10.1007/s00371-022-02559-2
10.1109/CVPR.2017.353
10.1109/TITS.2023.3242651
10.1109/TCSVT.2019.2951621
10.1109/tcsvt.2022.3229359
10.1007/978-3-319-54181-5_14
10.1016/j.dsp.2023.104011
10.1109/CVPR.2016.90
10.1109/TCSVT.2022.3208833
10.1016/j.patcog.2021.108468
10.1109/CVPR.2019.00770
10.1109/tmm.2022.3161852
10.1109/LSP.2023.3270759
10.1109/TMM.2021.3086618
10.1016/j.measurement.2022.112177
10.1007/978-3-030-01261-8_20
10.1109/lsp.2021.3066071
10.1109/CVPR.2018.00199
10.1109/TCSVT.2021.3121680
10.1007/978-3-030-01234-2_49
10.1109/TIP.2023.3242775
10.1007/s11042-017-4440-4
10.1109/TCSVT.2020.3015866
10.1109/LRA.2019.2904733
10.1109/TASE.2020.2993143
10.1109/ICIP.2019.8803154
10.1109/IROS.2017.8206396
10.1109/TPAMI.2017.2699184
10.1109/TCSVT.2021.3132047
10.1109/TCSVT.2019.2962073
10.1016/j.neucom.2022.12.036
10.1016/j.measurement.2021.110176
10.1109/CVPRW56347.2022.00341
10.1109/ICIP.2019.8803025
10.1109/LGRS.2022.3179721
10.1007/s10489-021-02687-7
10.1109/CVPR.2017.549
10.1109/TIP.2023.3256762
10.1109/TCSVT.2021.3077058
10.1109/cvpr46437.2021.00306
10.1109/TPAMI.2022.3179526
10.1109/tpami.2022.3211006
10.1109/iccv48922.2021.00717
10.1007/978-3-319-46454-1_40
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298965
10.1109/JSTSP.2022.3159032
10.1109/TCSVT.2022.3166914
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3275314
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2023_3275314
10123009
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFE0196000
– fundername: National Natural Science Foundation of China
  grantid: 61502429
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-53bde1fecf650465e67a9defbdbbe7964f5a12af04f644ffc846ebde8afff07c3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 03:07:33 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Tue Jul 01 00:41:21 EDT 2025
Wed Aug 27 02:18:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-53bde1fecf650465e67a9defbdbbe7964f5a12af04f644ffc846ebde8afff07c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9866-1947
0000-0001-7869-2404
0000-0002-3055-2493
PQID 2899465925
PQPubID 85433
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2023_3275314
crossref_primary_10_1109_TCSVT_2023_3275314
proquest_journals_2899465925
ieee_primary_10123009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Chen (ref35) 2014
ref51
ref50
ref46
ref45
Dosovitskiy (ref47) 2020
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Xie (ref48); 34
ref5
ref80
ref34
ref78
ref36
ref31
ref75
Simonyan (ref79) 2014
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
Chen (ref37) 2017
ref39
ref38
Paszke (ref40) 2016
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref9
  doi: 10.1109/TCSVT.2022.3206865
– year: 2014
  ident: ref35
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: arXiv:1412.7062
– ident: ref66
  doi: 10.1109/ACCESS.2022.3227771
– ident: ref77
  doi: 10.1109/TITS.2017.2750080
– ident: ref13
  doi: 10.1109/ICRA40945.2020.9196831
– ident: ref78
  doi: 10.1109/cvpr.2018.00474
– year: 2016
  ident: ref40
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: arXiv:1606.02147
– ident: ref22
  doi: 10.1109/TIP.2018.2794207
– ident: ref56
  doi: 10.1145/3351180.3351182
– ident: ref60
  doi: 10.1007/978-3-030-58621-8_33
– ident: ref23
  doi: 10.1109/LGRS.2023.3241648
– ident: ref15
  doi: 10.1109/tip.2023.3275538
– ident: ref46
  doi: 10.1007/978-3-030-58574-7_1
– ident: ref39
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref30
  doi: 10.1109/IROS51168.2021.9636084
– ident: ref14
  doi: 10.1109/CVPR46437.2021.00266
– year: 2017
  ident: ref37
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv:1706.05587
– ident: ref45
  doi: 10.1109/ICCV.2019.00069
– ident: ref3
  doi: 10.1109/TCSVT.2022.3178178
– ident: ref69
  doi: 10.1109/TIV.2022.3164899
– ident: ref5
  doi: 10.1109/TCSVT.2022.3187664
– ident: ref62
  doi: 10.1609/aaai.v36i3.20269
– volume: 34
  start-page: 12077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref48
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– ident: ref50
  doi: 10.1109/tip.2020.2976689
– ident: ref70
  doi: 10.1109/tnnls.2022.3233089
– year: 2014
  ident: ref79
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref51
  doi: 10.1109/TMM.2021.3077767
– ident: ref31
  doi: 10.1016/j.neucom.2022.07.041
– ident: ref63
  doi: 10.1016/j.engappai.2022.105510
– ident: ref44
  doi: 10.1109/CVPR.2019.00326
– ident: ref33
  doi: 10.1109/TIP.2021.3109518
– ident: ref76
  doi: 10.1007/s00371-022-02559-2
– ident: ref72
  doi: 10.1109/CVPR.2017.353
– ident: ref2
  doi: 10.1109/TITS.2023.3242651
– ident: ref52
  doi: 10.1109/TCSVT.2019.2951621
– ident: ref8
  doi: 10.1109/tcsvt.2022.3229359
– ident: ref55
  doi: 10.1007/978-3-319-54181-5_14
– ident: ref7
  doi: 10.1016/j.dsp.2023.104011
– ident: ref57
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1109/TCSVT.2022.3208833
– ident: ref61
  doi: 10.1016/j.patcog.2021.108468
– ident: ref75
  doi: 10.1109/CVPR.2019.00770
– ident: ref21
  doi: 10.1109/tmm.2022.3161852
– ident: ref26
  doi: 10.1109/LSP.2023.3270759
– ident: ref27
  doi: 10.1109/TMM.2021.3086618
– ident: ref65
  doi: 10.1016/j.measurement.2022.112177
– ident: ref73
  doi: 10.1007/978-3-030-01261-8_20
– year: 2020
  ident: ref47
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref58
  doi: 10.1109/lsp.2021.3066071
– ident: ref74
  doi: 10.1109/CVPR.2018.00199
– ident: ref20
  doi: 10.1109/TCSVT.2021.3121680
– ident: ref38
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref6
  doi: 10.1109/TIP.2023.3242775
– ident: ref80
  doi: 10.1007/s11042-017-4440-4
– ident: ref42
  doi: 10.1109/TCSVT.2020.3015866
– ident: ref11
  doi: 10.1109/LRA.2019.2904733
– ident: ref12
  doi: 10.1109/TASE.2020.2993143
– ident: ref41
  doi: 10.1109/ICIP.2019.8803154
– ident: ref10
  doi: 10.1109/IROS.2017.8206396
– ident: ref36
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref1
  doi: 10.1109/TCSVT.2021.3132047
– ident: ref19
  doi: 10.1109/TCSVT.2019.2962073
– ident: ref67
  doi: 10.1016/j.neucom.2022.12.036
– ident: ref29
  doi: 10.1016/j.measurement.2021.110176
– ident: ref64
  doi: 10.1109/CVPRW56347.2022.00341
– ident: ref25
  doi: 10.1109/ICIP.2019.8803025
– ident: ref68
  doi: 10.1109/LGRS.2022.3179721
– ident: ref28
  doi: 10.1007/s10489-021-02687-7
– ident: ref43
  doi: 10.1109/CVPR.2017.549
– ident: ref53
  doi: 10.1109/TIP.2023.3256762
– ident: ref17
  doi: 10.1109/TCSVT.2021.3077058
– ident: ref54
  doi: 10.1109/cvpr46437.2021.00306
– ident: ref18
  doi: 10.1109/TPAMI.2022.3179526
– ident: ref71
  doi: 10.1109/tpami.2022.3211006
– ident: ref49
  doi: 10.1109/iccv48922.2021.00717
– ident: ref59
  doi: 10.1007/978-3-319-46454-1_40
– ident: ref4
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref34
  doi: 10.1109/CVPR.2015.7298965
– ident: ref24
  doi: 10.1109/JSTSP.2022.3159032
– ident: ref16
  doi: 10.1109/TCSVT.2022.3166914
SSID ssj0014847
Score 2.6044137
Snippet Combining color (RGB) images with thermal images can facilitate semantic segmentation of poorly lit urban scenes. However, for RGB-thermal (RGB-T) semantic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms complementary supervision strategy
contour skeleton positioning
Data mining
Decoding
Feature extraction
Image segmentation
information memory sharing
Modules
morphological complementary
Morphology
RGB-T semantic segmentation
Semantic segmentation
Semantics
Skeleton
Thermal imaging
Title MMSMCNet: Modal Memory Sharing and Morphological Complementary Networks for RGB-T Urban Scene Semantic Segmentation
URI https://ieeexplore.ieee.org/document/10123009
https://www.proquest.com/docview/2899465925
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELWAEz0ApSC2LJUPvVUO-XJic4MVFFXKHtjdilsU22OE2s1WbPYAv56xk6xoEai3SJmxLD1n_BzPmyHkK5dGGCUjFsdGsRQ3YCa4zpg2oTCGZ3kOTpxcjLPrWfrjlt92YnWvhQEAn3wGgXv0d_lmoVfuV9mpq0WVeLneJp7cWrHW-sogFb6bGPKFiAncyHqFTChPp6PJz2ngGoUHSYz8PEr_2oV8W5VXsdhvMFe7ZNxPrc0r-RWsGhXop3-qNv733PfITkc16Xm7Nj6SDaj3yYcXBQg_kWVRTIrRGJozWiwMGhcu8faRujLOaECr2uALhKIPkdTFjy7jHO3GbRL5kiL1pTffL9iUzh5UVdOJxhhKJzBH4O41PtzNO5FTfUBmV5fT0TXr2jAwHcusYTxRBiIL2iKbSzMOWV5JA1YZpcApWS2voriyYWqRXFmrkdIAuojKWhvmOjkkW_WihiNCrZMCG82NQTcupIgTHF0KSMLKyDQfkKiHpdRdjXLXKuN36c8qoSw9lKWDsuygHJBva58_bYWOd60PHDYvLFtYBmTYw192X_GydIfR1N07889vuB2TbTd6m98yJFvNwwpOkKU06otfnc8qdOPT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPItYKOADnJDTxIkTG4kDLJQtbfbAZlFvIX5VFTSLulmh8l_4K_w2xnmsCghulbhZyoyjOF8838TzAHjCpRFGyYgyZhRN0ABTwXVKtQmFMTzNMuuTk_NpOpkn7w754QZ8X-fCWGvb4DMb-GF7lm8WeuV_le34WlQxkoI-hnLfnn1FD235Yu81vs6njO2-KcYT2jcRoJrJtKE8VsZGzmqHXCRJuU2zShrrlFHK-jxMx6uIVS5MHFID5zQaZIsqonLOhZmOcd5LcBmJBmddetj6kCIRbf8yZCgRFWg6h5ycUO4U49mHIvCtyYOYoUcQJb_YvbaRyx-7f2vSdm_Aj2ExukiWT8GqUYH-9ludyP92tW7C9Z5Mk5cd-m_Bhq1vw7VzJRbvwDLPZ_l4apvnJF8YFM59aPEZ8YWqUYBUtcELCLbBCBC_Q_Yx9Sg37cLklwTJPXn_9hUtyPxUVTWZabQSZGZPEJrHGgdHJ30aV70F8wt56ruwWS9qew-I88nORnNjUI0LKViMs0th47AyMslGEA0wKHVfhd03A_lctt5YKMsWOqWHTtlDZwTP1jpfuhok_5Te8lg4J9nBYATbA9zKfp9alt7dTvzJOr__F7XHcGVS5Aflwd50_wFc9Xfqonm2YbM5XdmHyMka9aj9Mgh8vGhw_QQmDkb7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMSMCNet%3A+Modal+Memory+Sharing+and+Morphological+Complementary+Networks+for+RGB-T+Urban+Scene+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhou%2C+Wujie&rft.au=Zhang%2C+Han&rft.au=Yan%2C+Weiqing&rft.au=Lin%2C+Weisi&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2023.3275314&rft.externalDocID=10123009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon