Fuzzy Adaptive Resilient Formation Control for Nonlinear Multiagent Systems Subject to DoS Attacks
This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of service (DoS) attacks. Fuzzy logic systems (FLSs) are utilized to model unknown agents, and a fuzzy state estimator is formulate...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 32; no. 3; pp. 1 - 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of service (DoS) attacks. Fuzzy logic systems (FLSs) are utilized to model unknown agents, and a fuzzy state estimator is formulated to reconstruct the agents' unknown states. Too btain the unknown leader information estimation and its high-order derivatives under DoS attacks, a distributed resilient formation estimator is proposed. Based on the designed fuzzy state estimator and resilient formation estimator, a fuzzy output-feedback adaptive resilient formation control scheme is developed via backstepping control methodology. It is proved that the developed fuzzy resilient formation control scheme can guarantee the controlled nonlinear MASs are stable and formation tracking errors converge even under unknown states and DoS attacks. Finally, the proposed fuzzy adaptive resilient formation control method is applied to marine surface vehicles (MSVs), the simulation results and comparisons show the effectiveness of the presented fuzzy adaptive resilient formation control methodology. |
---|---|
AbstractList | This article investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of-service (DoS) attacks. Fuzzy logic systems are utilized to model unknown agents, and a fuzzy state estimator is formulated to reconstruct the agents' unknown states. To obtain the unknown leader information estimation and its high-order derivatives under DoS attacks, a distributed resilient formation estimator is proposed. Based on the designed fuzzy state estimator and resilient formation estimator, a fuzzy output-feedback adaptive resilient formation control scheme is developed via backstepping control methodology. It is proved that the developed fuzzy resilient formation control scheme can guarantee the controlled nonlinear MASs are stable and formation tracking errors converge even under unknown states and DoS attacks. Finally, the proposed fuzzy adaptive resilient formation control method is applied to marine surface vehicles, the simulation results and comparisons show the effectiveness of the presented fuzzy adaptive resilient formation control methodology. This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of service (DoS) attacks. Fuzzy logic systems (FLSs) are utilized to model unknown agents, and a fuzzy state estimator is formulated to reconstruct the agents' unknown states. Too btain the unknown leader information estimation and its high-order derivatives under DoS attacks, a distributed resilient formation estimator is proposed. Based on the designed fuzzy state estimator and resilient formation estimator, a fuzzy output-feedback adaptive resilient formation control scheme is developed via backstepping control methodology. It is proved that the developed fuzzy resilient formation control scheme can guarantee the controlled nonlinear MASs are stable and formation tracking errors converge even under unknown states and DoS attacks. Finally, the proposed fuzzy adaptive resilient formation control method is applied to marine surface vehicles (MSVs), the simulation results and comparisons show the effectiveness of the presented fuzzy adaptive resilient formation control methodology. |
Author | Zhou, Haodong Tong, Shaocheng |
Author_xml | – sequence: 1 givenname: Haodong orcidid: 0000-0002-2329-4828 surname: Zhou fullname: Zhou, Haodong organization: Navigation College, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Shaocheng orcidid: 0000-0002-7366-7805 surname: Tong fullname: Tong, Shaocheng organization: Navigation College, Dalian Maritime University, Dalian, China |
BookMark | eNp9kE9PwzAMxSM0JLbBF0AcInHucJKua47ToIA0QGLbZZcqbV2U0TUjSZG2T0_354A4cLItvedn_3qkU5saCblmMGAM5N08WSyXAw5cDITgIxbCGekyGbIAQISdtodIBNEIogvSc24FwMIhi7skS5rdbkvHhdp4_Y30HZ2uNNaeJsauldemphNTe2sqWhpLX01d6RqVpS9N5bX62EtnW-dx7eisyVaYe-oNvTczOvZe5Z_ukpyXqnJ4dap9skge5pOnYPr2-DwZT4Ocy8gHQwhLJZgsMlkWkKsiKriQYaGykcQSiphloeQQqxAzHOacA2unUR5xNmQcC9Ent8e9G2u-GnQ-XZnG1m1kyqUQEYOYyVbFj6rcGucslunG6rWy25RBumeZHlime5bpiWVriv-Ycu0PcLxVuvrfenO0akT8ldX-3J4tfgCUWoUi |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_121619 crossref_primary_10_1080_23307706_2024_2417826 crossref_primary_10_1109_TFUZZ_2024_3390141 crossref_primary_10_1109_TFUZZ_2024_3409447 crossref_primary_10_1002_acs_3814 crossref_primary_10_1007_s40815_024_01898_7 crossref_primary_10_1109_TCYB_2024_3472690 crossref_primary_10_1109_TFUZZ_2024_3488316 crossref_primary_10_1016_j_engappai_2024_108968 crossref_primary_10_1109_ACCESS_2025_3526375 crossref_primary_10_1007_s11071_024_10327_1 crossref_primary_10_1016_j_neunet_2025_107288 crossref_primary_10_1109_TSMC_2024_3426931 crossref_primary_10_1109_TFUZZ_2024_3494832 crossref_primary_10_1109_TFUZZ_2024_3439351 crossref_primary_10_1016_j_eswa_2025_127179 |
Cites_doi | 10.1016/j.ins.2021.07.057 10.1109/TII.2021.3133927 10.1109/JAS.2022.105578 10.1109/TVT.2021.3093157 10.1109/TIE.2022.3174289 10.1109/TNSE.2020.2975581 10.1016/j.automatica.2023.111100 10.1109/TFUZZ.2020.3009730 10.1109/TCSI.2021.3116670 10.1109/TCYB.2017.2787740 10.1109/TFUZZ.2022.3148875 10.1109/TSMC.2021.3129469 10.1016/j.ins.2023.01.125 10.1016/j.fss.2022.03.005 10.1109/TSMC.2019.2954870 10.1109/tnnls.2022.3164881 10.1109/TNNLS.2018.2817880 10.1109/TCNS.2020.2972601 10.1109/tfuzz.2023.3277480 10.1109/TFUZZ.2020.3028657 10.1016/j.automatica.2022.110172 10.1109/TCYB.2022.3163157 10.1109/tii.2023.3281703 10.1109/TCYB.2020.2978981 10.1109/tnnls.2021.3117364 10.1109/TIE.2020.2994861 10.1109/TVT.2022.3218706 10.1109/TIE.2017.2782229 10.1109/TNSE.2022.3227937 10.1109/TFUZZ.2023.3245222 10.1109/TSMC.2021.3130070 10.1109/TCYB.2021.3128170 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2023.3327140 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 9 |
ExternalDocumentID | 10_1109_TFUZZ_2023_3327140 10296512 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62173172 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 5VS AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG VH1 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-504fa319db9fd0cad6d2394dab79ef0d81b49208a4ebe5c22012087c621512ed3 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Mon Jun 30 06:46:49 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 01:55:37 EDT 2025 Wed Aug 27 02:13:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-504fa319db9fd0cad6d2394dab79ef0d81b49208a4ebe5c22012087c621512ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7366-7805 0000-0002-2329-4828 |
PQID | 2933610819 |
PQPubID | 85428 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TFUZZ_2023_3327140 ieee_primary_10296512 crossref_citationtrail_10_1109_TFUZZ_2023_3327140 proquest_journals_2933610819 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 Wang (ref33) 1994 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref27 doi: 10.1016/j.ins.2021.07.057 – ident: ref13 doi: 10.1109/TII.2021.3133927 – ident: ref28 doi: 10.1109/JAS.2022.105578 – ident: ref1 doi: 10.1109/TVT.2021.3093157 – ident: ref24 doi: 10.1109/TIE.2022.3174289 – ident: ref7 doi: 10.1109/TNSE.2020.2975581 – volume-title: Adaptive Fuzzy Systems and Control: Design and Stability Analysis year: 1994 ident: ref33 – ident: ref20 doi: 10.1016/j.automatica.2023.111100 – ident: ref14 doi: 10.1109/TFUZZ.2020.3009730 – ident: ref21 doi: 10.1109/TCSI.2021.3116670 – ident: ref22 doi: 10.1109/TCYB.2017.2787740 – ident: ref25 doi: 10.1109/TFUZZ.2022.3148875 – ident: ref5 doi: 10.1109/TSMC.2021.3129469 – ident: ref26 doi: 10.1016/j.ins.2023.01.125 – ident: ref18 doi: 10.1016/j.fss.2022.03.005 – ident: ref15 doi: 10.1109/TSMC.2019.2954870 – ident: ref30 doi: 10.1109/tnnls.2022.3164881 – ident: ref10 doi: 10.1109/TNNLS.2018.2817880 – ident: ref32 doi: 10.1109/TCNS.2020.2972601 – ident: ref11 doi: 10.1109/tfuzz.2023.3277480 – ident: ref29 doi: 10.1109/TFUZZ.2020.3028657 – ident: ref31 doi: 10.1016/j.automatica.2022.110172 – ident: ref4 doi: 10.1109/TCYB.2022.3163157 – ident: ref19 doi: 10.1109/tii.2023.3281703 – ident: ref8 doi: 10.1109/TCYB.2020.2978981 – ident: ref16 doi: 10.1109/tnnls.2021.3117364 – ident: ref2 doi: 10.1109/TIE.2020.2994861 – ident: ref3 doi: 10.1109/TVT.2022.3218706 – ident: ref6 doi: 10.1109/TIE.2017.2782229 – ident: ref9 doi: 10.1109/TNSE.2022.3227937 – ident: ref17 doi: 10.1109/TFUZZ.2023.3245222 – ident: ref12 doi: 10.1109/TSMC.2021.3130070 – ident: ref23 doi: 10.1109/TCYB.2021.3128170 |
SSID | ssj0014518 |
Score | 2.5596237 |
Snippet | This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and... This article investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive control Artificial neural networks Computer crime Control methods Denial of service attacks Denial-of-service attack Distributed resilient formation estimator Formation control Fuzzy control Fuzzy logic fuzzy state estimator Fuzzy systems Multiagent systems Network topology Nonlinear control nonlinear multiagent systems Nonlinear systems Output feedback Robot sensing systems State estimation Surface vehicles Tracking errors |
Title | Fuzzy Adaptive Resilient Formation Control for Nonlinear Multiagent Systems Subject to DoS Attacks |
URI | https://ieeexplore.ieee.org/document/10296512 https://www.proquest.com/docview/2933610819 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBzaUkDq2E48VECGGDtBKFUvk2K6EqFoE6UB_PXd2ggoIxJZIcXTSPfydfd8dIeeQU6Q5szKSzKmIZ8xFeW4gGCpAp1Zr0XW-2qIvb4f8biRGDVndc2Gcc774zMX46O_y7czM8agMPJwpKXCm8CpkboGs9XllwEU38N5kGskskS1DJlGXg2L4-BjjoPA4TRm2qPuyC_mxKj9isd9gii3Sb0ULdSXP8byuYrP41rXx37Jvk80GatJesI0dsuKmu2SrHeNAG6_eJRtLPQn3SFXMF4t32rP6BSMhvXdvTxMkTdKi5TnSq1DfTgHw0n7otaFfqefyaqRq0aYPOoWwhOc8tJ7R69kD7dU1Uvr3ybC4GVzdRs0ghsiA0HUkEj7W4Ku2UmObGG2lxYnqVleZcuPEAvTliiW55mASwjCGjNw8M9LjCWfTA7I2nU3dIaFVroUQ2uSZqngX8ZkcZ4zDu8XUMemQbquY0jRdynFYxqT02UqiSq_MEpVZNsrskIvPNS-hR8efX--jdpa-DIrpkJPWAMrGj99KAEMpAEwQ7eiXZcdkHf7OQ1naCVmrX-fuFHBKXZ15-_wA0J_iYg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1BT9swFH4CdgAOsDEQZWzzYZymZKljO_FhhwoWlcF62FoJcckc25WmoRbRVIj-F_7Kftue7aRim7Yb0m6JZCex8_n5s_2-9wDe4JoizakRkaBWRiyjNspzjcZQIjs1SvGu9d4WA9EfsY8X_GIF7pdaGGutdz6zsbv0Z_lmquduqwxHOJUCZ6jGh_LM3t3iCm32_vQEf-cRpcWH4XE_apIIRBoL1xFP2FghzkwlxybRygjjsoEbVWXSjhODtI1JmuSKYXO4ptSpSfNMCz8XWpPic1fhCRINToM8bHlIwXg3KO1EGoksEa0mJ5HvhsXo8jJ2qcnjNKUuKN4v855P5PKH9fdTWrENP9rOCJ4s3-N5XcV68VucyP-2t57CVkOmSS-g_xms2MkObLeJKkhjt3Zg80HUxedQFfPF4o70jLp2tp58trNvV04WSopWyUmOgwc_QUpPBiGaiLohXq2snBiNNJHeCRpet5NF6ik5mX4hvbp2QQt2YfQo7d6Dtcl0YveBVLninCudZ7JiXcdAxTijDO-NWxwnHei2QCh1E4fdpQO5Kv16LJGlB0_pwFM24OnA22Wd6xCF5J-ldx0aHpQMQOjAYQu4srFUsxLpXooUGj_t4C_VXsN6f_jpvDw_HZy9gA18EwtOeIewVt_M7UtkZXX1yo8NAl8fG14_AZJMP_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Adaptive+Resilient+Formation+Control+for+Nonlinear+Multiagent+Systems+Subject+to+DoS+Attacks&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou%2C+Haodong&rft.au=Tong%2C+Shaocheng&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=3&rft.spage=1446&rft_id=info:doi/10.1109%2FTFUZZ.2023.3327140&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |