Fuzzy Adaptive Resilient Formation Control for Nonlinear Multiagent Systems Subject to DoS Attacks

This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of service (DoS) attacks. Fuzzy logic systems (FLSs) are utilized to model unknown agents, and a fuzzy state estimator is formulate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 32; no. 3; pp. 1 - 9
Main Authors Zhou, Haodong, Tong, Shaocheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of service (DoS) attacks. Fuzzy logic systems (FLSs) are utilized to model unknown agents, and a fuzzy state estimator is formulated to reconstruct the agents' unknown states. Too btain the unknown leader information estimation and its high-order derivatives under DoS attacks, a distributed resilient formation estimator is proposed. Based on the designed fuzzy state estimator and resilient formation estimator, a fuzzy output-feedback adaptive resilient formation control scheme is developed via backstepping control methodology. It is proved that the developed fuzzy resilient formation control scheme can guarantee the controlled nonlinear MASs are stable and formation tracking errors converge even under unknown states and DoS attacks. Finally, the proposed fuzzy adaptive resilient formation control method is applied to marine surface vehicles (MSVs), the simulation results and comparisons show the effectiveness of the presented fuzzy adaptive resilient formation control methodology.
AbstractList This article investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of-service (DoS) attacks. Fuzzy logic systems are utilized to model unknown agents, and a fuzzy state estimator is formulated to reconstruct the agents' unknown states. To obtain the unknown leader information estimation and its high-order derivatives under DoS attacks, a distributed resilient formation estimator is proposed. Based on the designed fuzzy state estimator and resilient formation estimator, a fuzzy output-feedback adaptive resilient formation control scheme is developed via backstepping control methodology. It is proved that the developed fuzzy resilient formation control scheme can guarantee the controlled nonlinear MASs are stable and formation tracking errors converge even under unknown states and DoS attacks. Finally, the proposed fuzzy adaptive resilient formation control method is applied to marine surface vehicles, the simulation results and comparisons show the effectiveness of the presented fuzzy adaptive resilient formation control methodology.
This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and under denial-of service (DoS) attacks. Fuzzy logic systems (FLSs) are utilized to model unknown agents, and a fuzzy state estimator is formulated to reconstruct the agents' unknown states. Too btain the unknown leader information estimation and its high-order derivatives under DoS attacks, a distributed resilient formation estimator is proposed. Based on the designed fuzzy state estimator and resilient formation estimator, a fuzzy output-feedback adaptive resilient formation control scheme is developed via backstepping control methodology. It is proved that the developed fuzzy resilient formation control scheme can guarantee the controlled nonlinear MASs are stable and formation tracking errors converge even under unknown states and DoS attacks. Finally, the proposed fuzzy adaptive resilient formation control method is applied to marine surface vehicles (MSVs), the simulation results and comparisons show the effectiveness of the presented fuzzy adaptive resilient formation control methodology.
Author Zhou, Haodong
Tong, Shaocheng
Author_xml – sequence: 1
  givenname: Haodong
  orcidid: 0000-0002-2329-4828
  surname: Zhou
  fullname: Zhou, Haodong
  organization: Navigation College, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Shaocheng
  orcidid: 0000-0002-7366-7805
  surname: Tong
  fullname: Tong, Shaocheng
  organization: Navigation College, Dalian Maritime University, Dalian, China
BookMark eNp9kE9PwzAMxSM0JLbBF0AcInHucJKua47ToIA0QGLbZZcqbV2U0TUjSZG2T0_354A4cLItvedn_3qkU5saCblmMGAM5N08WSyXAw5cDITgIxbCGekyGbIAQISdtodIBNEIogvSc24FwMIhi7skS5rdbkvHhdp4_Y30HZ2uNNaeJsauldemphNTe2sqWhpLX01d6RqVpS9N5bX62EtnW-dx7eisyVaYe-oNvTczOvZe5Z_ukpyXqnJ4dap9skge5pOnYPr2-DwZT4Ocy8gHQwhLJZgsMlkWkKsiKriQYaGykcQSiphloeQQqxAzHOacA2unUR5xNmQcC9Ent8e9G2u-GnQ-XZnG1m1kyqUQEYOYyVbFj6rcGucslunG6rWy25RBumeZHlime5bpiWVriv-Ycu0PcLxVuvrfenO0akT8ldX-3J4tfgCUWoUi
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_ins_2024_121619
crossref_primary_10_1080_23307706_2024_2417826
crossref_primary_10_1109_TFUZZ_2024_3390141
crossref_primary_10_1109_TFUZZ_2024_3409447
crossref_primary_10_1002_acs_3814
crossref_primary_10_1007_s40815_024_01898_7
crossref_primary_10_1109_TCYB_2024_3472690
crossref_primary_10_1109_TFUZZ_2024_3488316
crossref_primary_10_1016_j_engappai_2024_108968
crossref_primary_10_1109_ACCESS_2025_3526375
crossref_primary_10_1007_s11071_024_10327_1
crossref_primary_10_1016_j_neunet_2025_107288
crossref_primary_10_1109_TSMC_2024_3426931
crossref_primary_10_1109_TFUZZ_2024_3494832
crossref_primary_10_1109_TFUZZ_2024_3439351
crossref_primary_10_1016_j_eswa_2025_127179
Cites_doi 10.1016/j.ins.2021.07.057
10.1109/TII.2021.3133927
10.1109/JAS.2022.105578
10.1109/TVT.2021.3093157
10.1109/TIE.2022.3174289
10.1109/TNSE.2020.2975581
10.1016/j.automatica.2023.111100
10.1109/TFUZZ.2020.3009730
10.1109/TCSI.2021.3116670
10.1109/TCYB.2017.2787740
10.1109/TFUZZ.2022.3148875
10.1109/TSMC.2021.3129469
10.1016/j.ins.2023.01.125
10.1016/j.fss.2022.03.005
10.1109/TSMC.2019.2954870
10.1109/tnnls.2022.3164881
10.1109/TNNLS.2018.2817880
10.1109/TCNS.2020.2972601
10.1109/tfuzz.2023.3277480
10.1109/TFUZZ.2020.3028657
10.1016/j.automatica.2022.110172
10.1109/TCYB.2022.3163157
10.1109/tii.2023.3281703
10.1109/TCYB.2020.2978981
10.1109/tnnls.2021.3117364
10.1109/TIE.2020.2994861
10.1109/TVT.2022.3218706
10.1109/TIE.2017.2782229
10.1109/TNSE.2022.3227937
10.1109/TFUZZ.2023.3245222
10.1109/TSMC.2021.3130070
10.1109/TCYB.2021.3128170
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2023.3327140
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 9
ExternalDocumentID 10_1109_TFUZZ_2023_3327140
10296512
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173172
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
5VS
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-504fa319db9fd0cad6d2394dab79ef0d81b49208a4ebe5c22012087c621512ed3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 06:46:49 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Tue Jul 01 01:55:37 EDT 2025
Wed Aug 27 02:13:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-504fa319db9fd0cad6d2394dab79ef0d81b49208a4ebe5c22012087c621512ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7366-7805
0000-0002-2329-4828
PQID 2933610819
PQPubID 85428
PageCount 9
ParticipantIDs crossref_primary_10_1109_TFUZZ_2023_3327140
ieee_primary_10296512
crossref_citationtrail_10_1109_TFUZZ_2023_3327140
proquest_journals_2933610819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
Wang (ref33) 1994
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1016/j.ins.2021.07.057
– ident: ref13
  doi: 10.1109/TII.2021.3133927
– ident: ref28
  doi: 10.1109/JAS.2022.105578
– ident: ref1
  doi: 10.1109/TVT.2021.3093157
– ident: ref24
  doi: 10.1109/TIE.2022.3174289
– ident: ref7
  doi: 10.1109/TNSE.2020.2975581
– volume-title: Adaptive Fuzzy Systems and Control: Design and Stability Analysis
  year: 1994
  ident: ref33
– ident: ref20
  doi: 10.1016/j.automatica.2023.111100
– ident: ref14
  doi: 10.1109/TFUZZ.2020.3009730
– ident: ref21
  doi: 10.1109/TCSI.2021.3116670
– ident: ref22
  doi: 10.1109/TCYB.2017.2787740
– ident: ref25
  doi: 10.1109/TFUZZ.2022.3148875
– ident: ref5
  doi: 10.1109/TSMC.2021.3129469
– ident: ref26
  doi: 10.1016/j.ins.2023.01.125
– ident: ref18
  doi: 10.1016/j.fss.2022.03.005
– ident: ref15
  doi: 10.1109/TSMC.2019.2954870
– ident: ref30
  doi: 10.1109/tnnls.2022.3164881
– ident: ref10
  doi: 10.1109/TNNLS.2018.2817880
– ident: ref32
  doi: 10.1109/TCNS.2020.2972601
– ident: ref11
  doi: 10.1109/tfuzz.2023.3277480
– ident: ref29
  doi: 10.1109/TFUZZ.2020.3028657
– ident: ref31
  doi: 10.1016/j.automatica.2022.110172
– ident: ref4
  doi: 10.1109/TCYB.2022.3163157
– ident: ref19
  doi: 10.1109/tii.2023.3281703
– ident: ref8
  doi: 10.1109/TCYB.2020.2978981
– ident: ref16
  doi: 10.1109/tnnls.2021.3117364
– ident: ref2
  doi: 10.1109/TIE.2020.2994861
– ident: ref3
  doi: 10.1109/TVT.2022.3218706
– ident: ref6
  doi: 10.1109/TIE.2017.2782229
– ident: ref9
  doi: 10.1109/TNSE.2022.3227937
– ident: ref17
  doi: 10.1109/TFUZZ.2023.3245222
– ident: ref12
  doi: 10.1109/TSMC.2021.3130070
– ident: ref23
  doi: 10.1109/TCYB.2021.3128170
SSID ssj0014518
Score 2.5596237
Snippet This paper investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and...
This article investigates the fuzzy adaptive resilient formation control issue for uncertain nonlinear multiagent systems (MASs) with immeasurable states and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive control
Artificial neural networks
Computer crime
Control methods
Denial of service attacks
Denial-of-service attack
Distributed resilient formation estimator
Formation control
Fuzzy control
Fuzzy logic
fuzzy state estimator
Fuzzy systems
Multiagent systems
Network topology
Nonlinear control
nonlinear multiagent systems
Nonlinear systems
Output feedback
Robot sensing systems
State estimation
Surface vehicles
Tracking errors
Title Fuzzy Adaptive Resilient Formation Control for Nonlinear Multiagent Systems Subject to DoS Attacks
URI https://ieeexplore.ieee.org/document/10296512
https://www.proquest.com/docview/2933610819
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBzaUkDq2E48VECGGDtBKFUvk2K6EqFoE6UB_PXd2ggoIxJZIcXTSPfydfd8dIeeQU6Q5szKSzKmIZ8xFeW4gGCpAp1Zr0XW-2qIvb4f8biRGDVndc2Gcc774zMX46O_y7czM8agMPJwpKXCm8CpkboGs9XllwEU38N5kGskskS1DJlGXg2L4-BjjoPA4TRm2qPuyC_mxKj9isd9gii3Sb0ULdSXP8byuYrP41rXx37Jvk80GatJesI0dsuKmu2SrHeNAG6_eJRtLPQn3SFXMF4t32rP6BSMhvXdvTxMkTdKi5TnSq1DfTgHw0n7otaFfqefyaqRq0aYPOoWwhOc8tJ7R69kD7dU1Uvr3ybC4GVzdRs0ghsiA0HUkEj7W4Ku2UmObGG2lxYnqVleZcuPEAvTliiW55mASwjCGjNw8M9LjCWfTA7I2nU3dIaFVroUQ2uSZqngX8ZkcZ4zDu8XUMemQbquY0jRdynFYxqT02UqiSq_MEpVZNsrskIvPNS-hR8efX--jdpa-DIrpkJPWAMrGj99KAEMpAEwQ7eiXZcdkHf7OQ1naCVmrX-fuFHBKXZ15-_wA0J_iYg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1BT9swFH4CdgAOsDEQZWzzYZymZKljO_FhhwoWlcF62FoJcckc25WmoRbRVIj-F_7Kftue7aRim7Yb0m6JZCex8_n5s_2-9wDe4JoizakRkaBWRiyjNspzjcZQIjs1SvGu9d4WA9EfsY8X_GIF7pdaGGutdz6zsbv0Z_lmquduqwxHOJUCZ6jGh_LM3t3iCm32_vQEf-cRpcWH4XE_apIIRBoL1xFP2FghzkwlxybRygjjsoEbVWXSjhODtI1JmuSKYXO4ptSpSfNMCz8XWpPic1fhCRINToM8bHlIwXg3KO1EGoksEa0mJ5HvhsXo8jJ2qcnjNKUuKN4v855P5PKH9fdTWrENP9rOCJ4s3-N5XcV68VucyP-2t57CVkOmSS-g_xms2MkObLeJKkhjt3Zg80HUxedQFfPF4o70jLp2tp58trNvV04WSopWyUmOgwc_QUpPBiGaiLohXq2snBiNNJHeCRpet5NF6ik5mX4hvbp2QQt2YfQo7d6Dtcl0YveBVLninCudZ7JiXcdAxTijDO-NWxwnHei2QCh1E4fdpQO5Kv16LJGlB0_pwFM24OnA22Wd6xCF5J-ldx0aHpQMQOjAYQu4srFUsxLpXooUGj_t4C_VXsN6f_jpvDw_HZy9gA18EwtOeIewVt_M7UtkZXX1yo8NAl8fG14_AZJMP_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Adaptive+Resilient+Formation+Control+for+Nonlinear+Multiagent+Systems+Subject+to+DoS+Attacks&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou%2C+Haodong&rft.au=Tong%2C+Shaocheng&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=3&rft.spage=1446&rft_id=info:doi/10.1109%2FTFUZZ.2023.3327140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon