Theme-aware Visual Attribute Reasoning for Image Aesthetics Assessment
People usually assess image aesthetics according to visual attributes, e.g., interesting content, good lighting and vivid color, etc. Further, the perception of visual attributes depends on the image theme. Therefore, the inherent relationship between visual attributes and image theme is crucial for...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 33; no. 9; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1051-8215 1558-2205 |
DOI | 10.1109/TCSVT.2023.3249185 |
Cover
Loading…
Abstract | People usually assess image aesthetics according to visual attributes, e.g., interesting content, good lighting and vivid color, etc. Further, the perception of visual attributes depends on the image theme. Therefore, the inherent relationship between visual attributes and image theme is crucial for image aesthetics assessment (IAA), which has not been comprehensively investigated. With this motivation, this paper presents a new IAA model based on Theme-Aware Visual Attribute Reasoning (TAVAR). The underlying idea is to simulate the process of human perception in image aesthetics by performing bilevel reasoning. Specifically, a visual attribute analysis network and a theme understanding network are first pre-trained to extract aesthetic attribute features and theme features, respectively. Then, the first level Attribute-Theme Graph (ATG) is built to investigate the coupling relationship between visual attributes and image theme. Further, a flexible aesthetics network is introduced to extract general aesthetic features, based on which we built the second level Attribute-Aesthetics Graph (AAG) to mine the relationship between theme-aware visual attributes and aesthetic features, producing the final aesthetic prediction. Extensive experiments on four public IAA databases demonstrate the superiority of the proposed TAVAR model over the state-of-the-arts. Furthermore, TAVAR features better explainability due to the use of visual attributes. |
---|---|
AbstractList | People usually assess image aesthetics according to visual attributes, e.g., interesting content, good lighting and vivid color, etc. Further, the perception of visual attributes depends on the image theme. Therefore, the inherent relationship between visual attributes and image theme is crucial for image aesthetics assessment (IAA), which has not been comprehensively investigated. With this motivation, this paper presents a new IAA model based on Theme-Aware Visual Attribute Reasoning (TAVAR). The underlying idea is to simulate the process of human perception in image aesthetics by performing bilevel reasoning. Specifically, a visual attribute analysis network and a theme understanding network are first pre-trained to extract aesthetic attribute features and theme features, respectively. Then, the first level Attribute-Theme Graph (ATG) is built to investigate the coupling relationship between visual attributes and image theme. Further, a flexible aesthetics network is introduced to extract general aesthetic features, based on which we built the second level Attribute-Aesthetics Graph (AAG) to mine the relationship between theme-aware visual attributes and aesthetic features, producing the final aesthetic prediction. Extensive experiments on four public IAA databases demonstrate the superiority of the proposed TAVAR model over the state-of-the-arts. Furthermore, TAVAR features better explainability due to the use of visual attributes. |
Author | Wu, Jinjian Li, Leida Huang, Yipo Yang, Yuzhe Shi, Guangming Li, Yaqian Guo, Yandong |
Author_xml | – sequence: 1 givenname: Leida orcidid: 0000-0001-9069-8796 surname: Li fullname: Li, Leida organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 2 givenname: Yipo orcidid: 0000-0003-0908-2180 surname: Huang fullname: Huang, Yipo organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 3 givenname: Jinjian orcidid: 0000-0001-7501-0009 surname: Wu fullname: Wu, Jinjian organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 4 givenname: Yuzhe orcidid: 0000-0001-9098-2105 surname: Yang fullname: Yang, Yuzhe organization: Intelligent Perception and Interaction Research Department, OPPO Research Institute, Shanghai, China – sequence: 5 givenname: Yaqian orcidid: 0000-0003-3582-9997 surname: Li fullname: Li, Yaqian organization: Intelligent Perception and Interaction Research Department, OPPO Research Institute, Shanghai, China – sequence: 6 givenname: Yandong surname: Guo fullname: Guo, Yandong organization: Intelligent Perception and Interaction Research Department, OPPO Research Institute, Shanghai, China – sequence: 7 givenname: Guangming orcidid: 0000-0003-2179-3292 surname: Shi fullname: Shi, Guangming organization: School of Artificial Intelligence, Xidian University, Xi'an, China |
BookMark | eNp9kEFLwzAUx4NMcJt-AfFQ8NyapEmTHstwOhgIWncNafa6ZaztTFLEb2_ndhAPnt7_8H7v__hN0KjtWkDoluCEEJw_lLO3VZlQTNMkpSwnkl-gMeFcxpRiPhoy5iSWlPArNPF-hzFhkokxmpdbaCDWn9pBtLK-1_uoCMHZqg8QvYL2XWvbTVR3Llo0egNRAT5sIVjjo8J78L6BNlyjy1rvPdyc5xS9zx_L2XO8fHlazIplbGiehTiVHK_BME1pamglKjxEIQ1kdaZZDVAJDsJQqStZcZlRvtZCklqYXDNjdDpF96e7B9d99MMnatf1rh0qFZUZYZnIhRy26GnLuM57B7U6ONto96UIVkdf6seXOvpSZ18DJP9AxgYdbNcGp-3-f_TuhFoA-NWFOSNMpN9iXHuI |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3349961 crossref_primary_10_1109_TMM_2023_3290479 crossref_primary_10_1109_TMM_2024_3389452 crossref_primary_10_1007_s00530_025_01736_2 crossref_primary_10_32604_cmc_2024_050344 crossref_primary_10_1016_j_patcog_2024_110584 crossref_primary_10_1016_j_jvcir_2024_104316 crossref_primary_10_1111_bjop_12707 crossref_primary_10_1007_s00530_024_01490_x crossref_primary_10_1109_TCSVT_2024_3374887 crossref_primary_10_1109_TPAMI_2024_3492259 crossref_primary_10_1117_1_JEI_33_5_053059 crossref_primary_10_1109_TCSVT_2024_3470870 crossref_primary_10_1109_TIM_2024_3365174 crossref_primary_10_1145_3716820 crossref_primary_10_1145_3719012 crossref_primary_10_1007_s40745_024_00531_6 |
Cites_doi | 10.1007/978-3-540-88690-7_29 10.1109/CVPR42600.2020.01412 10.1109/CVPR.2017.243 10.1109/ICCV.2017.546 10.1109/TCSVT.2020.3010181 10.1109/ICCV48922.2021.00510 10.1145/2647868.2654927 10.1109/CVPR.2016.90 10.1109/ICCV48922.2021.00986 10.1109/TMM.2019.2911428 10.24963/ijcai.2022/132 10.1109/TIP.2019.2941778 10.1109/TCSVT.2022.3201510 10.1109/TIP.2020.2968285 10.1109/TMM.2013.2269899 10.1109/CVPR52688.2022.01924 10.1023/A:1011139631724 10.1023/B:VISI.0000029664.99615.94 10.1109/TCSVT.2022.3164467 10.1109/MSP.2017.2696576 10.1109/TIP.2021.3061932 10.1109/TIP.2022.3191853 10.1007/978-3-319-46448-0_40 10.1016/j.aiopen.2021.01.001 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2017.650 10.1109/TCSVT.2020.3048945 10.1109/CVPR.2006.303 10.1109/TCSVT.2022.3179744 10.1016/j.neucom.2020.04.142 10.1109/CVPR.2012.6247954 10.1109/TIP.2018.2831899 10.1109/TCSVT.2012.2189689 10.1109/TMM.2017.2777664 10.1109/TCSVT.2022.3188991 10.1049/iet-cvi.2018.5249 10.1109/TCSVT.2016.2555658 10.1109/TCSVT.2017.2741472 10.1145/3240508.3240635 10.1109/TCSVT.2019.2915103 10.1109/CVPR46437.2021.00837 10.1109/CVPR.2017.84 10.1109/TCSVT.2022.3186307 10.1109/TCSVT.2021.3112197 10.1109/CVPR.2016.319 10.1109/ICCV.2019.00140 10.1109/TMM.2021.3118881 10.1109/TCSVT.2020.3024882 10.1145/3423268.3423590 10.1109/WACV45572.2020.9093412 10.1038/s41562-021-01124-6 10.1109/TKDE.2020.2981333 10.1109/ICCV.2015.123 10.1007/978-3-030-01246-5_41 10.1109/CVPR.2019.00960 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2023.3249185 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCSVT_2023_3249185 10054147 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61771473; 61991451; 62171340 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-3850dec4a223c2b7b04a278ce6f6a4feeb75e7c28ab8b58625da781f7c9a4cca3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:08:00 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 00:41:20 EDT 2025 Mon Aug 04 05:48:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-3850dec4a223c2b7b04a278ce6f6a4feeb75e7c28ab8b58625da781f7c9a4cca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3582-9997 0000-0001-7501-0009 0000-0001-9069-8796 0000-0001-9098-2105 0000-0003-2179-3292 0000-0003-0908-2180 |
PQID | 2861467978 |
PQPubID | 85433 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2023_3249185 proquest_journals_2861467978 ieee_primary_10054147 crossref_citationtrail_10_1109_TCSVT_2023_3249185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref14 ref58 ref53 ref52 Touvron (ref59) ref11 ref55 ref10 ref54 ref17 ref16 ref18 Malu (ref35) 2017 Tan (ref56) Hou (ref47) 2016 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 Kipf (ref30) 2016 ref49 ref8 ref7 Oliva (ref19) 2001; 42 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 Barnbaum (ref15) 2017 ref21 ref28 ref27 ref29 ref60 ref61 |
References_xml | – year: 2016 ident: ref30 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv:1609.02907 – ident: ref17 doi: 10.1007/978-3-540-88690-7_29 – ident: ref23 doi: 10.1109/CVPR42600.2020.01412 – ident: ref57 doi: 10.1109/CVPR.2017.243 – ident: ref28 doi: 10.1109/ICCV.2017.546 – ident: ref10 doi: 10.1109/TCSVT.2020.3010181 – ident: ref50 doi: 10.1109/ICCV48922.2021.00510 – year: 2016 ident: ref47 article-title: Squared Earth mover’s distance-based loss for training deep neural networks publication-title: arXiv:1611.05916 – ident: ref21 doi: 10.1145/2647868.2654927 – ident: ref34 doi: 10.1109/CVPR.2016.90 – ident: ref38 doi: 10.1109/ICCV48922.2021.00986 – ident: ref54 doi: 10.1109/TMM.2019.2911428 – ident: ref12 doi: 10.24963/ijcai.2022/132 – ident: ref42 doi: 10.1109/TIP.2019.2941778 – ident: ref2 doi: 10.1109/TCSVT.2022.3201510 – ident: ref24 doi: 10.1109/TIP.2020.2968285 – ident: ref18 doi: 10.1109/TMM.2013.2269899 – ident: ref41 doi: 10.1109/CVPR52688.2022.01924 – volume: 42 start-page: 145 issue: 3 year: 2001 ident: ref19 article-title: Modeling the shape of the scene: A holistic representation of the spatial envelope publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011139631724 – ident: ref20 doi: 10.1023/B:VISI.0000029664.99615.94 – year: 2017 ident: ref35 article-title: Learning photography aesthetics with deep CNNs publication-title: arXiv:1707.03981 – ident: ref46 doi: 10.1109/TCSVT.2022.3164467 – ident: ref3 doi: 10.1109/MSP.2017.2696576 – ident: ref58 doi: 10.1109/TIP.2021.3061932 – ident: ref51 doi: 10.1109/TIP.2022.3191853 – year: 2017 ident: ref15 publication-title: The Art Photography: A Personal Approach to Artistic Expression – ident: ref16 doi: 10.1007/978-3-319-46448-0_40 – ident: ref31 doi: 10.1016/j.aiopen.2021.01.001 – ident: ref60 doi: 10.1007/978-3-319-24574-4_28 – ident: ref29 doi: 10.1109/CVPR.2017.650 – ident: ref6 doi: 10.1109/TCSVT.2020.3048945 – ident: ref11 doi: 10.1109/CVPR.2006.303 – ident: ref44 doi: 10.1109/TCSVT.2022.3179744 – start-page: 6105 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref56 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – ident: ref25 doi: 10.1016/j.neucom.2020.04.142 – ident: ref40 doi: 10.1109/CVPR.2012.6247954 – ident: ref13 doi: 10.1109/TIP.2018.2831899 – ident: ref4 doi: 10.1109/TCSVT.2012.2189689 – start-page: 10347 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref59 article-title: Training data-efficient image transformers & distillation through attention – ident: ref7 doi: 10.1109/TMM.2017.2777664 – ident: ref45 doi: 10.1109/TCSVT.2022.3188991 – ident: ref22 doi: 10.1049/iet-cvi.2018.5249 – ident: ref8 doi: 10.1109/TCSVT.2016.2555658 – ident: ref5 doi: 10.1109/TCSVT.2017.2741472 – ident: ref53 doi: 10.1145/3240508.3240635 – ident: ref9 doi: 10.1109/TCSVT.2019.2915103 – ident: ref26 doi: 10.1109/CVPR46437.2021.00837 – ident: ref52 doi: 10.1109/CVPR.2017.84 – ident: ref1 doi: 10.1109/TCSVT.2022.3186307 – ident: ref37 doi: 10.1109/TCSVT.2021.3112197 – ident: ref61 doi: 10.1109/CVPR.2016.319 – ident: ref55 doi: 10.1109/ICCV.2019.00140 – ident: ref33 doi: 10.1109/TMM.2021.3118881 – ident: ref43 doi: 10.1109/TCSVT.2020.3024882 – ident: ref39 doi: 10.1145/3423268.3423590 – ident: ref48 doi: 10.1109/WACV45572.2020.9093412 – ident: ref14 doi: 10.1038/s41562-021-01124-6 – ident: ref27 doi: 10.1109/TKDE.2020.2981333 – ident: ref36 doi: 10.1109/ICCV.2015.123 – ident: ref32 doi: 10.1007/978-3-030-01246-5_41 – ident: ref49 doi: 10.1109/CVPR.2019.00960 |
SSID | ssj0014847 |
Score | 2.607188 |
Snippet | People usually assess image aesthetics according to visual attributes, e.g., interesting content, good lighting and vivid color, etc. Further, the perception... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Aesthetics bilevel reasoning Cognition Data mining Feature extraction Image aesthetics assessment Image color analysis image theme Lighting Perception Predictive models Reasoning visual attribute Visualization |
Title | Theme-aware Visual Attribute Reasoning for Image Aesthetics Assessment |
URI | https://ieeexplore.ieee.org/document/10054147 https://www.proquest.com/docview/2861467978 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoKAMbSsjbzlhVVIBEB2irbpEfF4GgLWoSIfHrOTtJVYFALJGHu8jy2b7vbN99hFwyHoQq8pQdZgo_ARN2onAzVFRIwRMEvKAP9B9G8e0kvJ9FszpZ3eTCAIB5fAaObpq7fLWUpT4qwxXuatZq2iItjNyqZK31lUHIDJsY4gXPZujImgwZN7keD56mY0cThTuIHxJPEydveCFDq_JjLzYOZrhHRk3Xqnclr05ZCEd-fqva-O--75PdGmpa_WpuHJAtWBySnY0ChEdkiLNkDjb_4Cuwpi95qeWLigQLrEfguTmttRDZWndz3HqsPvb8WSc-5lZ_XdSzQybDm_Hg1q6ZFWzpJ3FhByxyFciQIziQvqDCxSZlEuIs5mEGIGgEVPqMCyYiDHoixSnzMioTHqLNg2PSXiwXcEIs9IESUCaIUVOpiGWIyRCUBDRhuixEl3jNSKeyLjuu2S_eUhN-uElqrJNq66S1dbrkaq3zXhXd-FO6o4d7Q7Ia6S7pNRZN64WZpz6LtW_A2Pn0F7Uzsq3_Xr0j65F2sSrhHIFHIS7MhPsClIDTTA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADb8R49sANtbTrI-lxQkzjtQOMabcqD1cg2Ia2Tkj8epy0myYQiEuVg6NGdhJ_SWx_AGdchJGOA-1GuaZPyKWbatoMNZNKipQAL5oL_ft20nqKbnpxr0pWt7kwiGiDz9AzTfuWr4dqYq7KaIX7hrWaLcIyOf44KNO1Zo8GEbd8YoQYApeTK5vmyPjpRefysdvxDFW4RwgiDQx18pwfssQqP3Zj62KaG9CeDq6MLHn1JoX01Oe3uo3_Hv0mrFdg02mUs2MLFnCwDWtzJQh3oEnzpI-u-BAjdLov44mRL0oaLHQeUIztfa1D2Na57tPm4zRo5M8m9XHsNGZlPXfhqXnVuWy5FbeCq-ppUrghj32NKhIED1RdMulTk3GFSZ6IKEeULEam6lxILmM69sRaMB7kTKUiIquHe7A0GA5wHxzyggpJJkyop9Yxz8k4BEtClnJTGKIGwVTTmaoKjxv-i7fMHkD8NLPWyYx1sso6NTif9Xkvy278Kb1r1D0nWWq6BkdTi2bV0hxndZ4Y70Cn54Nfup3CSqtzf5fdXbdvD2HV_KmMKjuCpWI0wWOCIYU8sZPvC8b01pU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theme-Aware+Visual+Attribute+Reasoning+for+Image+Aesthetics+Assessment&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Li%2C+Leida&rft.au=Huang%2C+Yipo&rft.au=Wu%2C+Jinjian&rft.au=Yang%2C+Yuzhe&rft.date=2023-09-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=9&rft.spage=4798&rft.epage=4811&rft_id=info:doi/10.1109%2FTCSVT.2023.3249185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2023_3249185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |