Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide
Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact b...
Saved in:
Published in | Nanoscale Vol. 15; no. 16; pp. 7517 - 7525 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
27.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/d3nr00174a |
Cover
Loading…
Abstract | Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size (
D
cri
) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with
D
cri
= 20.14 nm for the defective polycrystalline structure, with its
D
cri
significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs.
The inverse Hall-Petch effect is observed in a bulk nanostructured material synthesized in one step using the reciprocating pressure-induced phase transition technique. Molecular dynamics simulation provides further evidence of its existence in InAs. |
---|---|
AbstractList | Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size (Dcri) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with Dcri = 20.14 nm for the defective polycrystalline structure, with its Dcri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs.Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size (Dcri) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with Dcri = 20.14 nm for the defective polycrystalline structure, with its Dcri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs. Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size ( ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with = 20.14 nm for the defective polycrystalline structure, with its significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs. Is the inverse Hall–Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall–Petch relation in the bulk InAs with a critical grain size ( D cri ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall–Petch relation in the bulk nanocrystalline InAs with D cri = 20.14 nm for the defective polycrystalline structure, with its D cri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall–Petch relation of bulk nanocrystalline InAs. Is the inverse Hall–Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall–Petch relation in the bulk InAs with a critical grain size (Dcri) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall–Petch relation in the bulk nanocrystalline InAs with Dcri = 20.14 nm for the defective polycrystalline structure, with its Dcri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall–Petch relation of bulk nanocrystalline InAs. Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size ( D cri ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with D cri = 20.14 nm for the defective polycrystalline structure, with its D cri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs. The inverse Hall-Petch effect is observed in a bulk nanostructured material synthesized in one step using the reciprocating pressure-induced phase transition technique. Molecular dynamics simulation provides further evidence of its existence in InAs. |
Author | Zhang, Jiawei He, Duanwei Guan, Shixue Guo, Ruiang Li, Shuaiqi |
AuthorAffiliation | Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Institute of Atomic and Molecular Physics Sichuan University Key Laboratory of High Energy Density Physics and Technology of Ministry of Education |
AuthorAffiliation_xml | – sequence: 0 name: Institute of Atomic and Molecular Physics – sequence: 0 name: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Sichuan University – sequence: 0 name: Key Laboratory of High Energy Density Physics and Technology of Ministry of Education |
Author_xml | – sequence: 1 givenname: Shuaiqi surname: Li fullname: Li, Shuaiqi – sequence: 2 givenname: Jiawei surname: Zhang fullname: Zhang, Jiawei – sequence: 3 givenname: Shixue surname: Guan fullname: Guan, Shixue – sequence: 4 givenname: Ruiang surname: Guo fullname: Guo, Ruiang – sequence: 5 givenname: Duanwei surname: He fullname: He, Duanwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37022013$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtLxDAQB_Agio_Vi3el4EWEah7dPI7L-gRRWPTgqaTJRKNtuiat4Le36-oKnjKH30wm-e-g9dAGQGif4FOCmTqzLESMiSj0GtqmuMA5Y4Kur2pebKGdlF4x5opxtom2mMCUYsK20dMMrE-m_YDow3PWvUDmQzfUyZusAfOigze6zuaxnUPsPKSsdVnV129Z0KE18TN1uq59WPRZ3zeZjgmCt7CLNpyuE-z9nCP0eHnxML3Ob--vbqaT29xQxbuccABOjFRWVsZiLYVxUtuCm0pJ5ixxTBqshIGxdRUZUyqkkxg0oVBVBWcjdLycO6z43kPqymZ4ENS1DtD2qaRCCVIUqhgP9OgffW37GIbtSioxZ0qJ4c4ROvxRfdWALefRNzp-lr-fNoCTJTCxTSmCWxGCy0Ui5Tm7m30nMhnwwRLHZFbuLzH2BYQXiFw |
Cites_doi | 10.1016/S1359-6462(97)00157-7 10.1016/j.msea.2013.05.024 10.1103/RevModPhys.64.1045 10.1016/j.pmatsci.2009.03.008 10.1103/PhysRevB.41.7892 10.1103/PhysRevLett.121.145504 10.1016/j.msea.2009.12.005 10.1016/S0965-9773(97)00111-6 10.1007/s10853-008-2936-z 10.1103/PhysRevB.13.5188 10.1016/0022-0248(95)80202-N 10.1107/S0021889873008460 10.1016/0025-5416(88)90489-2 10.1557/jmr.2004.19.1.3 10.1038/s41598-020-66701-7 10.1039/D2NR00180B 10.1016/j.actamat.2014.01.030 10.1021/acs.jpcc.7b03323 10.1080/14786435.2016.1204474 10.1007/s11665-008-9206-8 10.1038/35328 10.1103/PhysRevLett.77.3865 10.1016/j.matlet.2020.128024 10.1016/j.scriptamat.2017.06.049 10.1038/s41586-020-2036-z 10.1016/S0022-3093(01)00906-1 10.1126/science.aal5166 10.1016/j.cpc.2015.07.012 10.1016/S0965-9773(99)00033-1 10.1016/0956-716X(90)90086-V 10.1016/j.msea.2016.10.066 10.1016/j.msea.2007.06.097 10.1080/09500839.2011.619507 10.1021/acsnano.7b07380 10.1039/D0RA10770K 10.1016/j.scriptamat.2020.06.047 10.1103/PhysRevMaterials.5.073606 10.1007/s10853-006-0968-9 10.1103/PhysRevB.77.235303 10.1063/1.2187417 10.1103/PhysRevB.75.115202 10.1016/j.intermet.2011.03.026 10.1016/j.pmatsci.2011.05.001 10.1006/jcph.1995.1039 10.1103/PhysRevB.37.6991 10.1145/116873.116880 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d3nr00174a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 7525 |
ExternalDocumentID | 37022013 10_1039_D3NR00174A d3nr00174a |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c296t-16ee61c89d8bcd0a87cf8ad46cb983fd1f38c097ce5dfb152278f80ea12ebb463 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 08:16:50 EDT 2025 Sun Jun 29 12:20:51 EDT 2025 Wed Feb 19 02:23:42 EST 2025 Tue Jul 01 00:42:06 EDT 2025 Tue Dec 17 20:58:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-16ee61c89d8bcd0a87cf8ad46cb983fd1f38c097ce5dfb152278f80ea12ebb463 |
Notes | Electronic supplementary information (ESI) available: Extra SEM, TEM, XRD, and EDS characterization for the initial and annealed samples. See DOI https://doi.org/10.1039/d3nr00174a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6058-9633 |
PMID | 37022013 |
PQID | 2806399798 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2806399798 pubmed_primary_37022013 crossref_primary_10_1039_D3NR00174A rsc_primary_d3nr00174a proquest_miscellaneous_2797144945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-27 |
PublicationDateYYYYMMDD | 2023-04-27 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Tang (D3NR00174A/cit2/1) 2013; 580 Hirel (D3NR00174A/cit31/1) 2015; 197 Ito (D3NR00174A/cit12/1) 2017; 679 Thomas (D3NR00174A/cit34/1) 2008; 77 Aurenhammer (D3NR00174A/cit30/1) 1991; 23 Tersoff (D3NR00174A/cit32/1) 1988; 37 Jang (D3NR00174A/cit46/1) 2006; 99 Guo (D3NR00174A/cit4/1) 2018; 121 Lu (D3NR00174A/cit10/1) 1990; 24 Zhou (D3NR00174A/cit44/1) 2020; 187 Song (D3NR00174A/cit3/1) 1999; 11 Chen (D3NR00174A/cit43/1) 2011; 19 Ehre (D3NR00174A/cit23/1) 2008; 43 Noskova (D3NR00174A/cit11/1) 1997; 9 Wollmershauser (D3NR00174A/cit15/1) 2014; 69 Schiøtz (D3NR00174A/cit7/1) 1998; 391 Rupert (D3NR00174A/cit45/1) 2012; 92 Langford (D3NR00174A/cit38/1) 1973; 6 Youngdahl (D3NR00174A/cit47/1) 1997; 37 Monkhorst (D3NR00174A/cit28/1) 1976; 13 He (D3NR00174A/cit39/1) 2002; 297 Chavoshi (D3NR00174A/cit5/1) 2021; 5 Payne (D3NR00174A/cit25/1) 1992; 64 Zhu (D3NR00174A/cit18/1) 2012; 57 Vanderbilt (D3NR00174A/cit27/1) 1990; 41 Zhou (D3NR00174A/cit20/1) 2020; 579 Powell (D3NR00174A/cit33/1) 2007; 75 Sokol (D3NR00174A/cit21/1) 2017; 139 Ashu (D3NR00174A/cit35/1) 1995; 150 Zhang (D3NR00174A/cit9/1) 2020; 274 Plimpton (D3NR00174A/cit29/1) 1995; 117 Ericson (D3NR00174A/cit42/1) 1988; 105 Pande (D3NR00174A/cit1/1) 2009; 54 Perdew (D3NR00174A/cit26/1) 1996; 77 Zhang (D3NR00174A/cit40/1) 2010; 527 Hu (D3NR00174A/cit16/1) 2017; 355 Muche (D3NR00174A/cit22/1) 2017; 121 Li (D3NR00174A/cit24/1) 2022; 14 Heonjune (D3NR00174A/cit14/1) 2018; 12 Jones (D3NR00174A/cit13/1) 2020; 10 McMahon (D3NR00174A/cit17/1) 1989; 17 Mohammadabadi (D3NR00174A/cit19/1) 2008; 17 Desai (D3NR00174A/cit6/1) 2008; 493 Oliver (D3NR00174A/cit41/1) 2004; 19 Shen (D3NR00174A/cit8/1) 2021; 11 Basariya (D3NR00174A/cit48/1) 2016; 96 Nord (D3NR00174A/cit36/1) 2003; 15 Ovid'ko (D3NR00174A/cit37/1) 2007; 42 |
References_xml | – volume: 37 start-page: 809 year: 1997 ident: D3NR00174A/cit47/1 publication-title: Scr. Mater. doi: 10.1016/S1359-6462(97)00157-7 – volume: 580 start-page: 414 year: 2013 ident: D3NR00174A/cit2/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2013.05.024 – volume: 64 start-page: 1045 year: 1992 ident: D3NR00174A/cit25/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.1045 – volume: 54 start-page: 689 year: 2009 ident: D3NR00174A/cit1/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2009.03.008 – volume: 41 start-page: 7892 year: 1990 ident: D3NR00174A/cit27/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.41.7892 – volume: 121 start-page: 145504 year: 2018 ident: D3NR00174A/cit4/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.145504 – volume: 527 start-page: 2297 year: 2010 ident: D3NR00174A/cit40/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2009.12.005 – volume: 9 start-page: 505 year: 1997 ident: D3NR00174A/cit11/1 publication-title: Nanostruct. Mater. doi: 10.1016/S0965-9773(97)00111-6 – volume: 43 start-page: 6139 year: 2008 ident: D3NR00174A/cit23/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-008-2936-z – volume: 13 start-page: 5188 year: 1976 ident: D3NR00174A/cit28/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 – volume: 150 start-page: 176 year: 1995 ident: D3NR00174A/cit35/1 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(95)80202-N – volume: 6 start-page: 190 year: 1973 ident: D3NR00174A/cit38/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889873008460 – volume: 105 start-page: 131 year: 1988 ident: D3NR00174A/cit42/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/0025-5416(88)90489-2 – volume: 19 start-page: 3 issue: 1 year: 2004 ident: D3NR00174A/cit41/1 publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.1.3 – volume: 10 start-page: 10151 year: 2020 ident: D3NR00174A/cit13/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-66701-7 – volume: 14 start-page: 9431 year: 2022 ident: D3NR00174A/cit24/1 publication-title: Nanoscale doi: 10.1039/D2NR00180B – volume: 69 start-page: 9 year: 2014 ident: D3NR00174A/cit15/1 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.030 – volume: 121 start-page: 13898 year: 2017 ident: D3NR00174A/cit22/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03323 – volume: 96 start-page: 2445 year: 2016 ident: D3NR00174A/cit48/1 publication-title: Philos. Mag. doi: 10.1080/14786435.2016.1204474 – volume: 17 start-page: 662 year: 2008 ident: D3NR00174A/cit19/1 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-008-9206-8 – volume: 391 start-page: 561 year: 1998 ident: D3NR00174A/cit7/1 publication-title: Nature doi: 10.1038/35328 – volume: 77 start-page: 3865 year: 1996 ident: D3NR00174A/cit26/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 274 start-page: 128024 year: 2020 ident: D3NR00174A/cit9/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.128024 – volume: 17 start-page: 447 year: 1989 ident: D3NR00174A/cit17/1 publication-title: Microstruct. Sci. – volume: 139 start-page: 159 year: 2017 ident: D3NR00174A/cit21/1 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.06.049 – volume: 579 start-page: 67 year: 2020 ident: D3NR00174A/cit20/1 publication-title: Nature doi: 10.1038/s41586-020-2036-z – volume: 297 start-page: 84 year: 2002 ident: D3NR00174A/cit39/1 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00906-1 – volume: 355 start-page: 1292 year: 2017 ident: D3NR00174A/cit16/1 publication-title: Science doi: 10.1126/science.aal5166 – volume: 197 start-page: 212 year: 2015 ident: D3NR00174A/cit31/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.07.012 – volume: 11 start-page: 203 year: 1999 ident: D3NR00174A/cit3/1 publication-title: Nanostruct. Mater. doi: 10.1016/S0965-9773(99)00033-1 – volume: 15 start-page: 5649 year: 2003 ident: D3NR00174A/cit36/1 publication-title: J. Phys.: Condens. Matter – volume: 24 start-page: 2319 year: 1990 ident: D3NR00174A/cit10/1 publication-title: Scr. Metall. Mater. doi: 10.1016/0956-716X(90)90086-V – volume: 679 start-page: 428 year: 2017 ident: D3NR00174A/cit12/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2016.10.066 – volume: 493 start-page: 41 year: 2008 ident: D3NR00174A/cit6/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2007.06.097 – volume: 92 start-page: 20 issue: 1 year: 2012 ident: D3NR00174A/cit45/1 publication-title: Philos. Mag. Lett. doi: 10.1080/09500839.2011.619507 – volume: 12 start-page: 3083 year: 2018 ident: D3NR00174A/cit14/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b07380 – volume: 11 start-page: 9874 year: 2021 ident: D3NR00174A/cit8/1 publication-title: RSC Adv. doi: 10.1039/D0RA10770K – volume: 187 start-page: 345 year: 2020 ident: D3NR00174A/cit44/1 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.06.047 – volume: 5 start-page: 073606 year: 2021 ident: D3NR00174A/cit5/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.073606 – volume: 42 start-page: 1694 year: 2007 ident: D3NR00174A/cit37/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0968-9 – volume: 77 start-page: 235303 year: 2008 ident: D3NR00174A/cit34/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.77.235303 – volume: 99 start-page: 083504 issue: 8 year: 2006 ident: D3NR00174A/cit46/1 publication-title: J. Appl. Phys. doi: 10.1063/1.2187417 – volume: 75 start-page: 115202 year: 2007 ident: D3NR00174A/cit33/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.115202 – volume: 19 start-page: 1275 year: 2011 ident: D3NR00174A/cit43/1 publication-title: Intermetallics doi: 10.1016/j.intermet.2011.03.026 – volume: 57 start-page: 1 year: 2012 ident: D3NR00174A/cit18/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.05.001 – volume: 117 start-page: 1 year: 1995 ident: D3NR00174A/cit29/1 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 37 start-page: 6991 year: 1988 ident: D3NR00174A/cit32/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.6991 – volume: 23 start-page: 345 year: 1991 ident: D3NR00174A/cit30/1 publication-title: ACM Comput. Surv. doi: 10.1145/116873.116880 |
SSID | ssj0069363 |
Score | 2.4146147 |
Snippet | Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk... Is the inverse Hall–Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7517 |
SubjectTerms | Bulk density Crystal defects First principles Grain boundaries Grain size Indium arsenides Intermetallic compounds Mechanical properties Molecular dynamics Nanocrystals Nanoindentation Phase transitions Single crystals Synthesis |
Title | Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37022013 https://www.proquest.com/docview/2806399798 https://www.proquest.com/docview/2797144945 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4lUIFGQEtyoliR0_jhUUlar0sGylclrZjt1GlKTsbsTj1zN2Nslul0NBkaJoNq_192U8nvGMEXrjKGwJU7FMMhVTadJYqMzGNtVFXmjGqfYO_U8n7PCUHp3lZ0NEN2SXLPSe-f3XvJL_QRVkgKvPkv0HZPubggCOAV_YA8KwvxHG45BU6ydhdklPZbWAY2j53W_W5_QGCK68w33mK6d601A3l193K1XVZvYLTMPLYGf6yHWoeDS3VVmsTQ8C_VvP4TY9A47DBIDPF40qv5cbjuejUv2wvRgY2DpYL8qfjR2kwUE7boCb56t-h4z4EEqbxt-qp8zPRSSkrUG-Z1dlfF2_5qs8WtWWPG_zNpc9L8_bHOgNrZ4QXxT1PTkZ-06V9nVRh9LZ17q0fqJhCLETOR2uvY22MhhRJCO0tX8w-XjcddtMkrDsXv-3ulq2RL4drl63XjaGJGCgzLqFY4KBMrmP7i1HFni_pckDdMtWD9HdlXqTj9CXNcJgIAzuCYMHwuCBMLh22BMGXyMMbgmDO8I8RqcfDibvDuPl2hqxySRbxCmzlqVGyEJoUyRKcOOEKigzWgriitQRYRLJjc0Lp8HIy7hwIrEqzazWlJFtNKrqyj5FOM8Nc5niVjFGhSNay9SlhhcuITZJbIRed202vWpLqEw3cYnQTtec0-UnNp_6sD9Y0FyKCL3qfwYF6KNaqrJ1A-dwyVNKJc0j9KSFoX8M4T6RPCUR2gZcenFBqll4qnp2o3d7ju4MX8AOGi1mjX0BtuhCv1yy6A942Yu5 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rediscovering+the+intrinsic+mechanical+properties+of+bulk+nanocrystalline+indium+arsenide&rft.jtitle=Nanoscale&rft.au=Li%2C+Shuaiqi&rft.au=Zhang%2C+Jiawei&rft.au=Guan%2C+Shixue&rft.au=Guo%2C+Ruiang&rft.date=2023-04-27&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=16&rft.spage=7517&rft.epage=7525&rft_id=info:doi/10.1039%2FD3NR00174A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NR00174A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |