Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide

Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact b...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 15; no. 16; pp. 7517 - 7525
Main Authors Li, Shuaiqi, Zhang, Jiawei, Guan, Shixue, Guo, Ruiang, He, Duanwei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 27.04.2023
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/d3nr00174a

Cover

Loading…
Abstract Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size ( D cri ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with D cri = 20.14 nm for the defective polycrystalline structure, with its D cri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs. The inverse Hall-Petch effect is observed in a bulk nanostructured material synthesized in one step using the reciprocating pressure-induced phase transition technique. Molecular dynamics simulation provides further evidence of its existence in InAs.
AbstractList Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size (Dcri) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with Dcri = 20.14 nm for the defective polycrystalline structure, with its Dcri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs.Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size (Dcri) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with Dcri = 20.14 nm for the defective polycrystalline structure, with its Dcri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs.
Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size ( ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with = 20.14 nm for the defective polycrystalline structure, with its significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs.
Is the inverse Hall–Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall–Petch relation in the bulk InAs with a critical grain size ( D cri ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall–Petch relation in the bulk nanocrystalline InAs with D cri = 20.14 nm for the defective polycrystalline structure, with its D cri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall–Petch relation of bulk nanocrystalline InAs.
Is the inverse Hall–Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall–Petch relation in the bulk InAs with a critical grain size (Dcri) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall–Petch relation in the bulk nanocrystalline InAs with Dcri = 20.14 nm for the defective polycrystalline structure, with its Dcri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall–Petch relation of bulk nanocrystalline InAs.
Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk nanocrystalline material with clean grain boundaries. By using the reciprocating pressure-induced phase transition (RPPT) technique, compact bulk nanocrystalline indium arsenide (InAs) has been synthesized from a single crystal in a single step, while its grain size is controlled by thermal annealing. The influence of macroscopic stress or surface states on the mechanical characterization has been successfully excluded by combining first-principles calculations and experiments. Unexpectedly, nanoindentation tests show a potential inverse Hall-Petch relation in the bulk InAs with a critical grain size ( D cri ) of 35.93 nm in the experimental scope. Further molecular dynamics investigation confirms the existence of the inverse Hall-Petch relation in the bulk nanocrystalline InAs with D cri = 20.14 nm for the defective polycrystalline structure, with its D cri significantly affected by the intragranular-defect density. The experimental and theoretical conclusions comprehensively reveal the great potential of RPPT in the synthesis and characterization of compact bulk nanocrystalline materials, which provides a novel window to rediscover their intrinsic mechanical properties, for instance, the inverse Hall-Petch relation of bulk nanocrystalline InAs. The inverse Hall-Petch effect is observed in a bulk nanostructured material synthesized in one step using the reciprocating pressure-induced phase transition technique. Molecular dynamics simulation provides further evidence of its existence in InAs.
Author Zhang, Jiawei
He, Duanwei
Guan, Shixue
Guo, Ruiang
Li, Shuaiqi
AuthorAffiliation Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
Chinese Academy of Sciences
Institute of Atomic and Molecular Physics
Sichuan University
Key Laboratory of High Energy Density Physics and Technology of Ministry of Education
AuthorAffiliation_xml – sequence: 0
  name: Institute of Atomic and Molecular Physics
– sequence: 0
  name: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Sichuan University
– sequence: 0
  name: Key Laboratory of High Energy Density Physics and Technology of Ministry of Education
Author_xml – sequence: 1
  givenname: Shuaiqi
  surname: Li
  fullname: Li, Shuaiqi
– sequence: 2
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
– sequence: 3
  givenname: Shixue
  surname: Guan
  fullname: Guan, Shixue
– sequence: 4
  givenname: Ruiang
  surname: Guo
  fullname: Guo, Ruiang
– sequence: 5
  givenname: Duanwei
  surname: He
  fullname: He, Duanwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022013$$D View this record in MEDLINE/PubMed
BookMark eNpd0UtLxDAQB_Agio_Vi3el4EWEah7dPI7L-gRRWPTgqaTJRKNtuiat4Le36-oKnjKH30wm-e-g9dAGQGif4FOCmTqzLESMiSj0GtqmuMA5Y4Kur2pebKGdlF4x5opxtom2mMCUYsK20dMMrE-m_YDow3PWvUDmQzfUyZusAfOigze6zuaxnUPsPKSsdVnV129Z0KE18TN1uq59WPRZ3zeZjgmCt7CLNpyuE-z9nCP0eHnxML3Ob--vbqaT29xQxbuccABOjFRWVsZiLYVxUtuCm0pJ5ixxTBqshIGxdRUZUyqkkxg0oVBVBWcjdLycO6z43kPqymZ4ENS1DtD2qaRCCVIUqhgP9OgffW37GIbtSioxZ0qJ4c4ROvxRfdWALefRNzp-lr-fNoCTJTCxTSmCWxGCy0Ui5Tm7m30nMhnwwRLHZFbuLzH2BYQXiFw
Cites_doi 10.1016/S1359-6462(97)00157-7
10.1016/j.msea.2013.05.024
10.1103/RevModPhys.64.1045
10.1016/j.pmatsci.2009.03.008
10.1103/PhysRevB.41.7892
10.1103/PhysRevLett.121.145504
10.1016/j.msea.2009.12.005
10.1016/S0965-9773(97)00111-6
10.1007/s10853-008-2936-z
10.1103/PhysRevB.13.5188
10.1016/0022-0248(95)80202-N
10.1107/S0021889873008460
10.1016/0025-5416(88)90489-2
10.1557/jmr.2004.19.1.3
10.1038/s41598-020-66701-7
10.1039/D2NR00180B
10.1016/j.actamat.2014.01.030
10.1021/acs.jpcc.7b03323
10.1080/14786435.2016.1204474
10.1007/s11665-008-9206-8
10.1038/35328
10.1103/PhysRevLett.77.3865
10.1016/j.matlet.2020.128024
10.1016/j.scriptamat.2017.06.049
10.1038/s41586-020-2036-z
10.1016/S0022-3093(01)00906-1
10.1126/science.aal5166
10.1016/j.cpc.2015.07.012
10.1016/S0965-9773(99)00033-1
10.1016/0956-716X(90)90086-V
10.1016/j.msea.2016.10.066
10.1016/j.msea.2007.06.097
10.1080/09500839.2011.619507
10.1021/acsnano.7b07380
10.1039/D0RA10770K
10.1016/j.scriptamat.2020.06.047
10.1103/PhysRevMaterials.5.073606
10.1007/s10853-006-0968-9
10.1103/PhysRevB.77.235303
10.1063/1.2187417
10.1103/PhysRevB.75.115202
10.1016/j.intermet.2011.03.026
10.1016/j.pmatsci.2011.05.001
10.1006/jcph.1995.1039
10.1103/PhysRevB.37.6991
10.1145/116873.116880
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d3nr00174a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 7525
ExternalDocumentID 37022013
10_1039_D3NR00174A
d3nr00174a
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c296t-16ee61c89d8bcd0a87cf8ad46cb983fd1f38c097ce5dfb152278f80ea12ebb463
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 08:16:50 EDT 2025
Sun Jun 29 12:20:51 EDT 2025
Wed Feb 19 02:23:42 EST 2025
Tue Jul 01 00:42:06 EDT 2025
Tue Dec 17 20:58:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-16ee61c89d8bcd0a87cf8ad46cb983fd1f38c097ce5dfb152278f80ea12ebb463
Notes Electronic supplementary information (ESI) available: Extra SEM, TEM, XRD, and EDS characterization for the initial and annealed samples. See DOI
https://doi.org/10.1039/d3nr00174a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6058-9633
PMID 37022013
PQID 2806399798
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_journals_2806399798
pubmed_primary_37022013
crossref_primary_10_1039_D3NR00174A
rsc_primary_d3nr00174a
proquest_miscellaneous_2797144945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-27
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Tang (D3NR00174A/cit2/1) 2013; 580
Hirel (D3NR00174A/cit31/1) 2015; 197
Ito (D3NR00174A/cit12/1) 2017; 679
Thomas (D3NR00174A/cit34/1) 2008; 77
Aurenhammer (D3NR00174A/cit30/1) 1991; 23
Tersoff (D3NR00174A/cit32/1) 1988; 37
Jang (D3NR00174A/cit46/1) 2006; 99
Guo (D3NR00174A/cit4/1) 2018; 121
Lu (D3NR00174A/cit10/1) 1990; 24
Zhou (D3NR00174A/cit44/1) 2020; 187
Song (D3NR00174A/cit3/1) 1999; 11
Chen (D3NR00174A/cit43/1) 2011; 19
Ehre (D3NR00174A/cit23/1) 2008; 43
Noskova (D3NR00174A/cit11/1) 1997; 9
Wollmershauser (D3NR00174A/cit15/1) 2014; 69
Schiøtz (D3NR00174A/cit7/1) 1998; 391
Rupert (D3NR00174A/cit45/1) 2012; 92
Langford (D3NR00174A/cit38/1) 1973; 6
Youngdahl (D3NR00174A/cit47/1) 1997; 37
Monkhorst (D3NR00174A/cit28/1) 1976; 13
He (D3NR00174A/cit39/1) 2002; 297
Chavoshi (D3NR00174A/cit5/1) 2021; 5
Payne (D3NR00174A/cit25/1) 1992; 64
Zhu (D3NR00174A/cit18/1) 2012; 57
Vanderbilt (D3NR00174A/cit27/1) 1990; 41
Zhou (D3NR00174A/cit20/1) 2020; 579
Powell (D3NR00174A/cit33/1) 2007; 75
Sokol (D3NR00174A/cit21/1) 2017; 139
Ashu (D3NR00174A/cit35/1) 1995; 150
Zhang (D3NR00174A/cit9/1) 2020; 274
Plimpton (D3NR00174A/cit29/1) 1995; 117
Ericson (D3NR00174A/cit42/1) 1988; 105
Pande (D3NR00174A/cit1/1) 2009; 54
Perdew (D3NR00174A/cit26/1) 1996; 77
Zhang (D3NR00174A/cit40/1) 2010; 527
Hu (D3NR00174A/cit16/1) 2017; 355
Muche (D3NR00174A/cit22/1) 2017; 121
Li (D3NR00174A/cit24/1) 2022; 14
Heonjune (D3NR00174A/cit14/1) 2018; 12
Jones (D3NR00174A/cit13/1) 2020; 10
McMahon (D3NR00174A/cit17/1) 1989; 17
Mohammadabadi (D3NR00174A/cit19/1) 2008; 17
Desai (D3NR00174A/cit6/1) 2008; 493
Oliver (D3NR00174A/cit41/1) 2004; 19
Shen (D3NR00174A/cit8/1) 2021; 11
Basariya (D3NR00174A/cit48/1) 2016; 96
Nord (D3NR00174A/cit36/1) 2003; 15
Ovid'ko (D3NR00174A/cit37/1) 2007; 42
References_xml – volume: 37
  start-page: 809
  year: 1997
  ident: D3NR00174A/cit47/1
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(97)00157-7
– volume: 580
  start-page: 414
  year: 2013
  ident: D3NR00174A/cit2/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2013.05.024
– volume: 64
  start-page: 1045
  year: 1992
  ident: D3NR00174A/cit25/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.64.1045
– volume: 54
  start-page: 689
  year: 2009
  ident: D3NR00174A/cit1/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.03.008
– volume: 41
  start-page: 7892
  year: 1990
  ident: D3NR00174A/cit27/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.41.7892
– volume: 121
  start-page: 145504
  year: 2018
  ident: D3NR00174A/cit4/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.145504
– volume: 527
  start-page: 2297
  year: 2010
  ident: D3NR00174A/cit40/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2009.12.005
– volume: 9
  start-page: 505
  year: 1997
  ident: D3NR00174A/cit11/1
  publication-title: Nanostruct. Mater.
  doi: 10.1016/S0965-9773(97)00111-6
– volume: 43
  start-page: 6139
  year: 2008
  ident: D3NR00174A/cit23/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2936-z
– volume: 13
  start-page: 5188
  year: 1976
  ident: D3NR00174A/cit28/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 150
  start-page: 176
  year: 1995
  ident: D3NR00174A/cit35/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(95)80202-N
– volume: 6
  start-page: 190
  year: 1973
  ident: D3NR00174A/cit38/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889873008460
– volume: 105
  start-page: 131
  year: 1988
  ident: D3NR00174A/cit42/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/0025-5416(88)90489-2
– volume: 19
  start-page: 3
  issue: 1
  year: 2004
  ident: D3NR00174A/cit41/1
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2004.19.1.3
– volume: 10
  start-page: 10151
  year: 2020
  ident: D3NR00174A/cit13/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66701-7
– volume: 14
  start-page: 9431
  year: 2022
  ident: D3NR00174A/cit24/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR00180B
– volume: 69
  start-page: 9
  year: 2014
  ident: D3NR00174A/cit15/1
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.030
– volume: 121
  start-page: 13898
  year: 2017
  ident: D3NR00174A/cit22/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03323
– volume: 96
  start-page: 2445
  year: 2016
  ident: D3NR00174A/cit48/1
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2016.1204474
– volume: 17
  start-page: 662
  year: 2008
  ident: D3NR00174A/cit19/1
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-008-9206-8
– volume: 391
  start-page: 561
  year: 1998
  ident: D3NR00174A/cit7/1
  publication-title: Nature
  doi: 10.1038/35328
– volume: 77
  start-page: 3865
  year: 1996
  ident: D3NR00174A/cit26/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 274
  start-page: 128024
  year: 2020
  ident: D3NR00174A/cit9/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.128024
– volume: 17
  start-page: 447
  year: 1989
  ident: D3NR00174A/cit17/1
  publication-title: Microstruct. Sci.
– volume: 139
  start-page: 159
  year: 2017
  ident: D3NR00174A/cit21/1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.06.049
– volume: 579
  start-page: 67
  year: 2020
  ident: D3NR00174A/cit20/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2036-z
– volume: 297
  start-page: 84
  year: 2002
  ident: D3NR00174A/cit39/1
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00906-1
– volume: 355
  start-page: 1292
  year: 2017
  ident: D3NR00174A/cit16/1
  publication-title: Science
  doi: 10.1126/science.aal5166
– volume: 197
  start-page: 212
  year: 2015
  ident: D3NR00174A/cit31/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.07.012
– volume: 11
  start-page: 203
  year: 1999
  ident: D3NR00174A/cit3/1
  publication-title: Nanostruct. Mater.
  doi: 10.1016/S0965-9773(99)00033-1
– volume: 15
  start-page: 5649
  year: 2003
  ident: D3NR00174A/cit36/1
  publication-title: J. Phys.: Condens. Matter
– volume: 24
  start-page: 2319
  year: 1990
  ident: D3NR00174A/cit10/1
  publication-title: Scr. Metall. Mater.
  doi: 10.1016/0956-716X(90)90086-V
– volume: 679
  start-page: 428
  year: 2017
  ident: D3NR00174A/cit12/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2016.10.066
– volume: 493
  start-page: 41
  year: 2008
  ident: D3NR00174A/cit6/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2007.06.097
– volume: 92
  start-page: 20
  issue: 1
  year: 2012
  ident: D3NR00174A/cit45/1
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/09500839.2011.619507
– volume: 12
  start-page: 3083
  year: 2018
  ident: D3NR00174A/cit14/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07380
– volume: 11
  start-page: 9874
  year: 2021
  ident: D3NR00174A/cit8/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA10770K
– volume: 187
  start-page: 345
  year: 2020
  ident: D3NR00174A/cit44/1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.06.047
– volume: 5
  start-page: 073606
  year: 2021
  ident: D3NR00174A/cit5/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.073606
– volume: 42
  start-page: 1694
  year: 2007
  ident: D3NR00174A/cit37/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0968-9
– volume: 77
  start-page: 235303
  year: 2008
  ident: D3NR00174A/cit34/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.77.235303
– volume: 99
  start-page: 083504
  issue: 8
  year: 2006
  ident: D3NR00174A/cit46/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2187417
– volume: 75
  start-page: 115202
  year: 2007
  ident: D3NR00174A/cit33/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.115202
– volume: 19
  start-page: 1275
  year: 2011
  ident: D3NR00174A/cit43/1
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.03.026
– volume: 57
  start-page: 1
  year: 2012
  ident: D3NR00174A/cit18/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.05.001
– volume: 117
  start-page: 1
  year: 1995
  ident: D3NR00174A/cit29/1
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 37
  start-page: 6991
  year: 1988
  ident: D3NR00174A/cit32/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.6991
– volume: 23
  start-page: 345
  year: 1991
  ident: D3NR00174A/cit30/1
  publication-title: ACM Comput. Surv.
  doi: 10.1145/116873.116880
SSID ssj0069363
Score 2.4146147
Snippet Is the inverse Hall-Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk...
Is the inverse Hall–Petch relation in ceramic systems the same as that in metal systems? The premise to explore this subject is the synthesis of a dense bulk...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 7517
SubjectTerms Bulk density
Crystal defects
First principles
Grain boundaries
Grain size
Indium arsenides
Intermetallic compounds
Mechanical properties
Molecular dynamics
Nanocrystals
Nanoindentation
Phase transitions
Single crystals
Synthesis
Title Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide
URI https://www.ncbi.nlm.nih.gov/pubmed/37022013
https://www.proquest.com/docview/2806399798
https://www.proquest.com/docview/2797144945
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4lUIFGQEtyoliR0_jhUUlar0sGylclrZjt1GlKTsbsTj1zN2Nslul0NBkaJoNq_192U8nvGMEXrjKGwJU7FMMhVTadJYqMzGNtVFXmjGqfYO_U8n7PCUHp3lZ0NEN2SXLPSe-f3XvJL_QRVkgKvPkv0HZPubggCOAV_YA8KwvxHG45BU6ydhdklPZbWAY2j53W_W5_QGCK68w33mK6d601A3l193K1XVZvYLTMPLYGf6yHWoeDS3VVmsTQ8C_VvP4TY9A47DBIDPF40qv5cbjuejUv2wvRgY2DpYL8qfjR2kwUE7boCb56t-h4z4EEqbxt-qp8zPRSSkrUG-Z1dlfF2_5qs8WtWWPG_zNpc9L8_bHOgNrZ4QXxT1PTkZ-06V9nVRh9LZ17q0fqJhCLETOR2uvY22MhhRJCO0tX8w-XjcddtMkrDsXv-3ulq2RL4drl63XjaGJGCgzLqFY4KBMrmP7i1HFni_pckDdMtWD9HdlXqTj9CXNcJgIAzuCYMHwuCBMLh22BMGXyMMbgmDO8I8RqcfDibvDuPl2hqxySRbxCmzlqVGyEJoUyRKcOOEKigzWgriitQRYRLJjc0Lp8HIy7hwIrEqzazWlJFtNKrqyj5FOM8Nc5niVjFGhSNay9SlhhcuITZJbIRed202vWpLqEw3cYnQTtec0-UnNp_6sD9Y0FyKCL3qfwYF6KNaqrJ1A-dwyVNKJc0j9KSFoX8M4T6RPCUR2gZcenFBqll4qnp2o3d7ju4MX8AOGi1mjX0BtuhCv1yy6A942Yu5
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rediscovering+the+intrinsic+mechanical+properties+of+bulk+nanocrystalline+indium+arsenide&rft.jtitle=Nanoscale&rft.au=Li%2C+Shuaiqi&rft.au=Zhang%2C+Jiawei&rft.au=Guan%2C+Shixue&rft.au=Guo%2C+Ruiang&rft.date=2023-04-27&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=16&rft.spage=7517&rft.epage=7525&rft_id=info:doi/10.1039%2FD3NR00174A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NR00174A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon