Cross-Day Data Diversity Improves Inter-Individual Emotion Commonality of Spatio-Spectral EEG Signatures Using Independent Component Analysis

Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI frameworks have been demonstrated successfully but deliberated on single-day data, which can be realistically susceptible to psychophysiological chang...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 15; no. 1; pp. 1 - 15
Main Authors Shen, Yi-Wei, Lin, Yuan-Pin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2023.3261867

Cover

Loading…
Abstract Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI frameworks have been demonstrated successfully but deliberated on single-day data, which can be realistically susceptible to psychophysiological changes and further hinder the exploration of inter-individual EEG commonality. This study proposes a multiple-day scenario that learns exclusively from diverse EEG correlates of emotional responses on different days (i.e., enriched data diversity) by using a unified independent components analysis framework. Given an eight-day dataset of 10 subjects ( i.e ., 80 sessions), the results demonstrated that the multiple-day scenario intensified the inter-subject emotion commonality ( i.e ., the percentage of subjects with the same signature) to a certain extent when considering sufficient cross-day sessions, whereas the most commonly adopted single-day analysis (i.e., diversity-confined) led to session-dependent inferior outcomes. Given the best case, the emotional valence dimension was associated with relatively reproducible frontal beta, central midline gamma, and occipital beta modulations with 30%-40% subject commonality, whereas the arousal counterpart suffered more substantially from EEG variability and barely returned representative signatures. These results suggest that EEG signature representation may be substantially compromised by limited data diversity, impeding the efficacy and generalizability of the aBCI model in real-life settings.
AbstractList Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI frameworks have been demonstrated successfully but deliberated on single-day data, which can be realistically susceptible to psychophysiological changes and further hinder the exploration of inter-individual EEG commonality. This study proposes a multiple-day scenario that learns exclusively from diverse EEG correlates of emotional responses on different days (i.e., enriched data diversity) by using a unified independent components analysis framework. Given an eight-day dataset of 10 subjects ( i.e ., 80 sessions), the results demonstrated that the multiple-day scenario intensified the inter-subject emotion commonality ( i.e ., the percentage of subjects with the same signature) to a certain extent when considering sufficient cross-day sessions, whereas the most commonly adopted single-day analysis (i.e., diversity-confined) led to session-dependent inferior outcomes. Given the best case, the emotional valence dimension was associated with relatively reproducible frontal beta, central midline gamma, and occipital beta modulations with 30%-40% subject commonality, whereas the arousal counterpart suffered more substantially from EEG variability and barely returned representative signatures. These results suggest that EEG signature representation may be substantially compromised by limited data diversity, impeding the efficacy and generalizability of the aBCI model in real-life settings.
Author Lin, Yuan-Pin
Shen, Yi-Wei
Author_xml – sequence: 1
  givenname: Yi-Wei
  surname: Shen
  fullname: Shen, Yi-Wei
  organization: Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 2
  givenname: Yuan-Pin
  orcidid: 0000-0002-3434-9118
  surname: Lin
  fullname: Lin, Yuan-Pin
  organization: Department of Electrical Engineering, Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
BookMark eNp9kMtqAyEYhaW00PTyAqWLga4n9RZHl2FyaSDQRZL1YEanWGZ0qiaQh-g712m6KF1UQX_kfAfPuQGX1lkNwAOCY4SgeN5OF4tyjCEmY4IZ4qy4ACMkqMgJpJPLX_M1uA_hHaZFCGG4GIHP0rsQ8pk8ZTMZZTYzR-2Diads1fXeHXXIVjZqn6-sMkejDrLN5p2LxtmsdF3nrGwHtWuyTS_Tc77pdR39IJsvs415szIefLLZBWPfkpnSvU6HjQPfpyRpmiaXUzDhDlw1sg36_ue-BbvFfFu-5OvX5aqcrvMaCxZzxHhBFG1EU0Mq6Z5zyqjkQnCMUHpHSjGhiJpARfcNmjC816QpEOWSQb2vyS14OvumiB8HHWL17g4-fSJUWKRmoGCUJhU_q-qhI6-bqjZxyGhTPtNWCFZD_9V3_9XQf_XTf0LxH7T3ppP-9D_0eIaM1voXkDbHE_IFtZaU4Q
CODEN ITACBQ
CitedBy_id crossref_primary_10_3390_electronics14020251
crossref_primary_10_1145_3712259
crossref_primary_10_1109_TAFFC_2024_3395359
crossref_primary_10_1109_TNSRE_2023_3327740
Cites_doi 10.1080/02699930126048
10.1126/science.272.5259.225
10.1109/TAMD.2015.2431497
10.1109/MSP.2021.3134629
10.1038/nrn3000
10.1109/TAFFC.2020.3013711
10.1016/j.biopsycho.2004.03.007
10.1016/S0304-3940(01)02246-7
10.1093/scan/nsv060
10.1073/pnas.191355898
10.1016/j.brainres.2005.12.065
10.1371/journal.pone.0037665
10.1016/j.tics.2010.01.002
10.1002/hbm.10061
10.1016/j.neuroimage.2020.117350
10.1016/j.neucom.2020.07.123
10.1109/TAFFC.2021.3051332
10.1016/j.jneumeth.2003.10.009
10.1007/978-3-030-20521-8_37
10.1023/B:NEAB.0000038139.39812.eb
10.1109/taffc.2022.3179717
10.1093/cercor/bhr353
10.1093/cercor/bhv130
10.1016/j.neuroimage.2004.12.006
10.3389/fnhum.2019.00366
10.1017/S0048577201393095
10.1016/j.neuroimage.2008.10.057
10.1038/srep18460
10.3389/neuro.09.061.2009
10.1097/WNR.0b013e32833774de
10.1111/1469-8986.3720163
10.1007/978-981-4560-52-8_4-1
10.1109/TAFFC.2018.2885474
10.1109/T-AFFC.2011.25
10.1111/j.1469-8986.2007.00497.x
10.1016/j.brainresrev.2007.07.014
10.1038/nrn3666
10.1093/scan/nsw048
10.1016/j.neuroimage.2013.03.023
10.1109/JBHI.2019.2934172
10.1109/TCYB.2019.2904052
10.1097/00001756-200512190-00002
10.3389/fnhum.2017.00334
10.3390/s19194273
10.1037/0022-3514.85.2.348
10.1371/journal.pone.0029287
10.1038/nrn2152
10.1038/s41598-019-45105-2
10.1109/TAFFC.2020.2994159
10.3389/fncom.2017.00064
10.3389/fnins.2015.00254
10.1016/j.neubiorev.2012.10.003
10.1515/REVNEURO.2004.15.4.241
10.1109/TAFFC.2017.2786207
10.1037/h0077714
10.1109/ACCESS.2019.2917620
10.1016/j.ijpsycho.2006.07.003
10.1016/S0191-8869(03)00129-6
10.1016/j.neulet.2014.05.003
10.1016/S0079-6123(06)59007-7
10.1038/7299
10.3389/fnhum.2016.00219
10.3389/fnbeh.2018.00003
10.1109/TETC.2021.3087174
10.1016/j.ijpsycho.2007.10.002
10.1109/TBME.2019.2897651
10.1523/JNEUROSCI.3907-06.2006
10.1016/j.plrev.2013.05.008
10.1016/j.sigpro.2005.07.007
10.1109/T-AFFC.2011.15
10.1109/TCYB.2018.2797176
10.1006/nimg.2002.1087
10.1002/hbm.1048
10.1016/j.jneumeth.2012.09.029
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2023.3261867
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 15
ExternalDocumentID 10_1109_TAFFC_2023_3261867
10101825
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 106-2628-E-110-002-MY3; MOST 109-2221-E-110-009-MY3; .
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
5VS
AAYXX
AGSQL
CITATION
EJD
RIG
RNI
RZB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-16873d4f9fc04a4b88464a8998211d4f1dd69d3d50d4bf1562be3f7148a60ebc3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Sun Jun 29 16:25:52 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 02:57:55 EDT 2025
Wed Aug 27 02:13:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-16873d4f9fc04a4b88464a8998211d4f1dd69d3d50d4bf1562be3f7148a60ebc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3434-9118
0009-0000-2067-4967
PQID 2933609644
PQPubID 2040414
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TAFFC_2023_3261867
crossref_primary_10_1109_TAFFC_2023_3261867
ieee_primary_10101825
proquest_journals_2933609644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Kothe (ref35) 2015
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref17
  doi: 10.1080/02699930126048
– ident: ref40
  doi: 10.1126/science.272.5259.225
– ident: ref11
  doi: 10.1109/TAMD.2015.2431497
– ident: ref32
  doi: 10.1109/MSP.2021.3134629
– ident: ref28
  doi: 10.1038/nrn3000
– ident: ref70
  doi: 10.1109/TAFFC.2020.3013711
– ident: ref16
  doi: 10.1016/j.biopsycho.2004.03.007
– ident: ref63
  doi: 10.1016/S0304-3940(01)02246-7
– ident: ref45
  doi: 10.1093/scan/nsv060
– ident: ref47
  doi: 10.1073/pnas.191355898
– ident: ref52
  doi: 10.1016/j.brainres.2005.12.065
– ident: ref37
  doi: 10.1371/journal.pone.0037665
– ident: ref46
  doi: 10.1016/j.tics.2010.01.002
– ident: ref36
  doi: 10.1002/hbm.10061
– ident: ref43
  doi: 10.1016/j.neuroimage.2020.117350
– ident: ref68
  doi: 10.1016/j.neucom.2020.07.123
– ident: ref69
  doi: 10.1109/TAFFC.2021.3051332
– ident: ref34
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref65
  doi: 10.1007/978-3-030-20521-8_37
– ident: ref61
  doi: 10.1023/B:NEAB.0000038139.39812.eb
– ident: ref9
  doi: 10.1109/taffc.2022.3179717
– ident: ref44
  doi: 10.1093/cercor/bhr353
– ident: ref49
  doi: 10.1093/cercor/bhv130
– ident: ref57
  doi: 10.1016/j.neuroimage.2004.12.006
– ident: ref1
  doi: 10.3389/fnhum.2019.00366
– ident: ref4
  doi: 10.1017/S0048577201393095
– ident: ref26
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: ref50
  doi: 10.1038/srep18460
– ident: ref22
  doi: 10.3389/neuro.09.061.2009
– ident: ref21
  doi: 10.1097/WNR.0b013e32833774de
– ident: ref23
  doi: 10.1111/1469-8986.3720163
– ident: ref27
  doi: 10.1007/978-981-4560-52-8_4-1
– ident: ref8
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref12
  doi: 10.1109/T-AFFC.2011.25
– ident: ref19
  doi: 10.1111/j.1469-8986.2007.00497.x
– ident: ref38
  doi: 10.1016/j.brainresrev.2007.07.014
– ident: ref42
  doi: 10.1038/nrn3666
– ident: ref20
  doi: 10.1093/scan/nsw048
– ident: ref75
  doi: 10.1016/j.neuroimage.2013.03.023
– ident: ref3
  doi: 10.1109/JBHI.2019.2934172
– ident: ref2
  doi: 10.1109/TCYB.2019.2904052
– ident: ref53
  doi: 10.1097/00001756-200512190-00002
– ident: ref71
  doi: 10.3389/fnhum.2017.00334
– ident: ref72
  doi: 10.3390/s19194273
– ident: ref67
  doi: 10.1037/0022-3514.85.2.348
– ident: ref39
  doi: 10.1371/journal.pone.0029287
– ident: ref54
  doi: 10.1038/nrn2152
– ident: ref55
  doi: 10.1038/s41598-019-45105-2
– ident: ref74
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref15
  doi: 10.3389/fncom.2017.00064
– ident: ref30
  doi: 10.3389/fnins.2015.00254
– ident: ref5
  doi: 10.1016/j.neubiorev.2012.10.003
– ident: ref41
  doi: 10.1515/REVNEURO.2004.15.4.241
– ident: ref7
  doi: 10.1109/TAFFC.2017.2786207
– ident: ref33
  doi: 10.1037/h0077714
– ident: ref31
  doi: 10.1109/ACCESS.2019.2917620
– ident: ref60
  doi: 10.1016/j.ijpsycho.2006.07.003
– year: 2015
  ident: ref35
  article-title: Artifact removal techniques with signal reconstruction
– ident: ref66
  doi: 10.1016/S0191-8869(03)00129-6
– ident: ref18
  doi: 10.1016/j.neulet.2014.05.003
– ident: ref24
  doi: 10.1016/S0079-6123(06)59007-7
– ident: ref51
  doi: 10.1038/7299
– ident: ref6
  doi: 10.3389/fnhum.2016.00219
– ident: ref64
  doi: 10.3389/fnbeh.2018.00003
– ident: ref13
  doi: 10.1109/TETC.2021.3087174
– ident: ref62
  doi: 10.1016/j.ijpsycho.2007.10.002
– ident: ref73
  doi: 10.1109/TBME.2019.2897651
– ident: ref56
  doi: 10.1523/JNEUROSCI.3907-06.2006
– ident: ref58
  doi: 10.1016/j.plrev.2013.05.008
– ident: ref59
  doi: 10.1016/j.sigpro.2005.07.007
– ident: ref10
  doi: 10.1109/T-AFFC.2011.15
– ident: ref14
  doi: 10.1109/TCYB.2018.2797176
– ident: ref48
  doi: 10.1006/nimg.2002.1087
– ident: ref25
  doi: 10.1002/hbm.1048
– ident: ref29
  doi: 10.1016/j.jneumeth.2012.09.029
SSID ssj0000333627
Score 2.3570254
Snippet Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Affective brain-computer interface (aBCI)
Arousal
Brain modeling
Commonality
data diversity
electroencephalogram (EEG)
Electroencephalography
Emotional factors
Emotional responses
Emotions
Human-computer interface
Independent component analysis
Integrated circuits
Modulation
multiple-day independent component analysis (ICA)
Signatures
Task analysis
Variability
Title Cross-Day Data Diversity Improves Inter-Individual Emotion Commonality of Spatio-Spectral EEG Signatures Using Independent Component Analysis
URI https://ieeexplore.ieee.org/document/10101825
https://www.proquest.com/docview/2933609644
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELWAioYbsVxyQYccsrFzuER7cEjQABJdZMc2QqDdFZst4B_4Z2bsZMUhEF0U2Y6l8TFvMvMeIUeZMzbWqsskFwJJtSsmC8MZeMp5kQIkkRqrka-us_M7cXmf3jfF6r4Wxlrrk89shI_-X74ZVzMMlcEOR36pJF0ki4DcQrHWPKAScw6Hcd4WxsTy5PZ0OOxFqA8egZOCzG1fLh-vpvLjCPb3ynCVXLczCukkT9Gs1lH19o2s8d9TXiMrjYdJT8OSWCcLdrRBVlv1Btps5k3y3sM5sr56pX1VK9pvMzRoCDTYKfXhQnYxr9migyD6Q7GspHHh6djRG5-WzVDLHgMndDA4ozePD4E0dEp9WgIM1gru1th_Mh7hU0uKskXuhoPb3jlrxBlYlcisZt2syLkRTroqFkroAhwZoRC9AaSE911jMmm4SWMjtAOUmGjLXQ7oS2Wx1RXfJksj-NIOoVbmSWqVc0o5gSeE5LqAAXRiCrjCbYd0W6uVVcNcjgIaz6VHMLEsvaVLtHTZWLpDjud9JoG348_WW2i6Ty2D1Tpkv10dZbO3pyU4SDwD5CfE7i_d9sgyjC5CpGafLNUvM3sAvkutD_2a_QANSe16
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9lAulNIiFgr4wK1yyMbOw8dqH2xLu5dupd4iO7YrBNqt2OwB_gP_mRk7WUERiFsU2bGl8WNmMt_3AbwrvHWp0UOuhJREqt1wVVnB0VMuqxxDEmUIjXw1L2Y38uI2v-3A6gEL45wLxWcuocfwL9-umg2lynCHE79Ulj-CvZzQuBGutU2ppELgcVz20JhUvV-cTaejhBTCE3RTiLvtt-sn6Kn8cQiHm2V6APN-TrGg5HOyaU3SfH9A1_jfk34KTzofk53FRXEIO275DA56_QbWbecj-DGiOfKx_sbGutVs3NdosJhqcGsWEob8fIvaYpMo-8MIWNI58Wzl2XUozOakZk-pEzaZfGDXn-4ibeiahcIE_FgvudtS__vVkp56WpRjuJlOFqMZ7-QZeJOpouXDoiqFlV75JpVamgpdGakpfsOgEt8PrS2UFTZPrTQe48TMOOFLjL90kTrTiOewu8SRXgBzqsxyp73X2ks6I5QwFX7AZLbCS9wNYNhbrW467nKS0PhShxgmVXWwdE2WrjtLD-B02-c-Mnf8s_Uxme6XltFqAzjpV0fd7e51jS6SKDD2k_LlX7q9hf3Z4uqyvjyff3wFj3EkGfM2J7Dbft241-jJtOZNWL8_AY6W8MI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Day+Data+Diversity+Improves+Inter-Individual+Emotion+Commonality+of+Spatio-Spectral+EEG+Signatures+Using+Independent+Component+Analysis&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Shen%2C+Yi-Wei&rft.au=Lin%2C+Yuan-Pin&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTAFFC.2023.3261867&rft.externalDocID=10101825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon