Cross-Day Data Diversity Improves Inter-Individual Emotion Commonality of Spatio-Spectral EEG Signatures Using Independent Component Analysis
Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI frameworks have been demonstrated successfully but deliberated on single-day data, which can be realistically susceptible to psychophysiological chang...
Saved in:
Published in | IEEE transactions on affective computing Vol. 15; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2023.3261867 |
Cover
Loading…
Abstract | Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI frameworks have been demonstrated successfully but deliberated on single-day data, which can be realistically susceptible to psychophysiological changes and further hinder the exploration of inter-individual EEG commonality. This study proposes a multiple-day scenario that learns exclusively from diverse EEG correlates of emotional responses on different days (i.e., enriched data diversity) by using a unified independent components analysis framework. Given an eight-day dataset of 10 subjects ( i.e ., 80 sessions), the results demonstrated that the multiple-day scenario intensified the inter-subject emotion commonality ( i.e ., the percentage of subjects with the same signature) to a certain extent when considering sufficient cross-day sessions, whereas the most commonly adopted single-day analysis (i.e., diversity-confined) led to session-dependent inferior outcomes. Given the best case, the emotional valence dimension was associated with relatively reproducible frontal beta, central midline gamma, and occipital beta modulations with 30%-40% subject commonality, whereas the arousal counterpart suffered more substantially from EEG variability and barely returned representative signatures. These results suggest that EEG signature representation may be substantially compromised by limited data diversity, impeding the efficacy and generalizability of the aBCI model in real-life settings. |
---|---|
AbstractList | Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI frameworks have been demonstrated successfully but deliberated on single-day data, which can be realistically susceptible to psychophysiological changes and further hinder the exploration of inter-individual EEG commonality. This study proposes a multiple-day scenario that learns exclusively from diverse EEG correlates of emotional responses on different days (i.e., enriched data diversity) by using a unified independent components analysis framework. Given an eight-day dataset of 10 subjects ( i.e ., 80 sessions), the results demonstrated that the multiple-day scenario intensified the inter-subject emotion commonality ( i.e ., the percentage of subjects with the same signature) to a certain extent when considering sufficient cross-day sessions, whereas the most commonly adopted single-day analysis (i.e., diversity-confined) led to session-dependent inferior outcomes. Given the best case, the emotional valence dimension was associated with relatively reproducible frontal beta, central midline gamma, and occipital beta modulations with 30%-40% subject commonality, whereas the arousal counterpart suffered more substantially from EEG variability and barely returned representative signatures. These results suggest that EEG signature representation may be substantially compromised by limited data diversity, impeding the efficacy and generalizability of the aBCI model in real-life settings. |
Author | Lin, Yuan-Pin Shen, Yi-Wei |
Author_xml | – sequence: 1 givenname: Yi-Wei surname: Shen fullname: Shen, Yi-Wei organization: Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 2 givenname: Yuan-Pin orcidid: 0000-0002-3434-9118 surname: Lin fullname: Lin, Yuan-Pin organization: Department of Electrical Engineering, Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan |
BookMark | eNp9kMtqAyEYhaW00PTyAqWLga4n9RZHl2FyaSDQRZL1YEanWGZ0qiaQh-g712m6KF1UQX_kfAfPuQGX1lkNwAOCY4SgeN5OF4tyjCEmY4IZ4qy4ACMkqMgJpJPLX_M1uA_hHaZFCGG4GIHP0rsQ8pk8ZTMZZTYzR-2Diads1fXeHXXIVjZqn6-sMkejDrLN5p2LxtmsdF3nrGwHtWuyTS_Tc77pdR39IJsvs415szIefLLZBWPfkpnSvU6HjQPfpyRpmiaXUzDhDlw1sg36_ue-BbvFfFu-5OvX5aqcrvMaCxZzxHhBFG1EU0Mq6Z5zyqjkQnCMUHpHSjGhiJpARfcNmjC816QpEOWSQb2vyS14OvumiB8HHWL17g4-fSJUWKRmoGCUJhU_q-qhI6-bqjZxyGhTPtNWCFZD_9V3_9XQf_XTf0LxH7T3ppP-9D_0eIaM1voXkDbHE_IFtZaU4Q |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_3390_electronics14020251 crossref_primary_10_1145_3712259 crossref_primary_10_1109_TAFFC_2024_3395359 crossref_primary_10_1109_TNSRE_2023_3327740 |
Cites_doi | 10.1080/02699930126048 10.1126/science.272.5259.225 10.1109/TAMD.2015.2431497 10.1109/MSP.2021.3134629 10.1038/nrn3000 10.1109/TAFFC.2020.3013711 10.1016/j.biopsycho.2004.03.007 10.1016/S0304-3940(01)02246-7 10.1093/scan/nsv060 10.1073/pnas.191355898 10.1016/j.brainres.2005.12.065 10.1371/journal.pone.0037665 10.1016/j.tics.2010.01.002 10.1002/hbm.10061 10.1016/j.neuroimage.2020.117350 10.1016/j.neucom.2020.07.123 10.1109/TAFFC.2021.3051332 10.1016/j.jneumeth.2003.10.009 10.1007/978-3-030-20521-8_37 10.1023/B:NEAB.0000038139.39812.eb 10.1109/taffc.2022.3179717 10.1093/cercor/bhr353 10.1093/cercor/bhv130 10.1016/j.neuroimage.2004.12.006 10.3389/fnhum.2019.00366 10.1017/S0048577201393095 10.1016/j.neuroimage.2008.10.057 10.1038/srep18460 10.3389/neuro.09.061.2009 10.1097/WNR.0b013e32833774de 10.1111/1469-8986.3720163 10.1007/978-981-4560-52-8_4-1 10.1109/TAFFC.2018.2885474 10.1109/T-AFFC.2011.25 10.1111/j.1469-8986.2007.00497.x 10.1016/j.brainresrev.2007.07.014 10.1038/nrn3666 10.1093/scan/nsw048 10.1016/j.neuroimage.2013.03.023 10.1109/JBHI.2019.2934172 10.1109/TCYB.2019.2904052 10.1097/00001756-200512190-00002 10.3389/fnhum.2017.00334 10.3390/s19194273 10.1037/0022-3514.85.2.348 10.1371/journal.pone.0029287 10.1038/nrn2152 10.1038/s41598-019-45105-2 10.1109/TAFFC.2020.2994159 10.3389/fncom.2017.00064 10.3389/fnins.2015.00254 10.1016/j.neubiorev.2012.10.003 10.1515/REVNEURO.2004.15.4.241 10.1109/TAFFC.2017.2786207 10.1037/h0077714 10.1109/ACCESS.2019.2917620 10.1016/j.ijpsycho.2006.07.003 10.1016/S0191-8869(03)00129-6 10.1016/j.neulet.2014.05.003 10.1016/S0079-6123(06)59007-7 10.1038/7299 10.3389/fnhum.2016.00219 10.3389/fnbeh.2018.00003 10.1109/TETC.2021.3087174 10.1016/j.ijpsycho.2007.10.002 10.1109/TBME.2019.2897651 10.1523/JNEUROSCI.3907-06.2006 10.1016/j.plrev.2013.05.008 10.1016/j.sigpro.2005.07.007 10.1109/T-AFFC.2011.15 10.1109/TCYB.2018.2797176 10.1006/nimg.2002.1087 10.1002/hbm.1048 10.1016/j.jneumeth.2012.09.029 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2023.3261867 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TAFFC_2023_3261867 10101825 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 106-2628-E-110-002-MY3; MOST 109-2221-E-110-009-MY3; . |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE 5VS AAYXX AGSQL CITATION EJD RIG RNI RZB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-16873d4f9fc04a4b88464a8998211d4f1dd69d3d50d4bf1562be3f7148a60ebc3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Sun Jun 29 16:25:52 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 02:57:55 EDT 2025 Wed Aug 27 02:13:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-16873d4f9fc04a4b88464a8998211d4f1dd69d3d50d4bf1562be3f7148a60ebc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3434-9118 0009-0000-2067-4967 |
PQID | 2933609644 |
PQPubID | 2040414 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TAFFC_2023_3261867 crossref_primary_10_1109_TAFFC_2023_3261867 ieee_primary_10101825 proquest_journals_2933609644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Kothe (ref35) 2015 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref17 doi: 10.1080/02699930126048 – ident: ref40 doi: 10.1126/science.272.5259.225 – ident: ref11 doi: 10.1109/TAMD.2015.2431497 – ident: ref32 doi: 10.1109/MSP.2021.3134629 – ident: ref28 doi: 10.1038/nrn3000 – ident: ref70 doi: 10.1109/TAFFC.2020.3013711 – ident: ref16 doi: 10.1016/j.biopsycho.2004.03.007 – ident: ref63 doi: 10.1016/S0304-3940(01)02246-7 – ident: ref45 doi: 10.1093/scan/nsv060 – ident: ref47 doi: 10.1073/pnas.191355898 – ident: ref52 doi: 10.1016/j.brainres.2005.12.065 – ident: ref37 doi: 10.1371/journal.pone.0037665 – ident: ref46 doi: 10.1016/j.tics.2010.01.002 – ident: ref36 doi: 10.1002/hbm.10061 – ident: ref43 doi: 10.1016/j.neuroimage.2020.117350 – ident: ref68 doi: 10.1016/j.neucom.2020.07.123 – ident: ref69 doi: 10.1109/TAFFC.2021.3051332 – ident: ref34 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref65 doi: 10.1007/978-3-030-20521-8_37 – ident: ref61 doi: 10.1023/B:NEAB.0000038139.39812.eb – ident: ref9 doi: 10.1109/taffc.2022.3179717 – ident: ref44 doi: 10.1093/cercor/bhr353 – ident: ref49 doi: 10.1093/cercor/bhv130 – ident: ref57 doi: 10.1016/j.neuroimage.2004.12.006 – ident: ref1 doi: 10.3389/fnhum.2019.00366 – ident: ref4 doi: 10.1017/S0048577201393095 – ident: ref26 doi: 10.1016/j.neuroimage.2008.10.057 – ident: ref50 doi: 10.1038/srep18460 – ident: ref22 doi: 10.3389/neuro.09.061.2009 – ident: ref21 doi: 10.1097/WNR.0b013e32833774de – ident: ref23 doi: 10.1111/1469-8986.3720163 – ident: ref27 doi: 10.1007/978-981-4560-52-8_4-1 – ident: ref8 doi: 10.1109/TAFFC.2018.2885474 – ident: ref12 doi: 10.1109/T-AFFC.2011.25 – ident: ref19 doi: 10.1111/j.1469-8986.2007.00497.x – ident: ref38 doi: 10.1016/j.brainresrev.2007.07.014 – ident: ref42 doi: 10.1038/nrn3666 – ident: ref20 doi: 10.1093/scan/nsw048 – ident: ref75 doi: 10.1016/j.neuroimage.2013.03.023 – ident: ref3 doi: 10.1109/JBHI.2019.2934172 – ident: ref2 doi: 10.1109/TCYB.2019.2904052 – ident: ref53 doi: 10.1097/00001756-200512190-00002 – ident: ref71 doi: 10.3389/fnhum.2017.00334 – ident: ref72 doi: 10.3390/s19194273 – ident: ref67 doi: 10.1037/0022-3514.85.2.348 – ident: ref39 doi: 10.1371/journal.pone.0029287 – ident: ref54 doi: 10.1038/nrn2152 – ident: ref55 doi: 10.1038/s41598-019-45105-2 – ident: ref74 doi: 10.1109/TAFFC.2020.2994159 – ident: ref15 doi: 10.3389/fncom.2017.00064 – ident: ref30 doi: 10.3389/fnins.2015.00254 – ident: ref5 doi: 10.1016/j.neubiorev.2012.10.003 – ident: ref41 doi: 10.1515/REVNEURO.2004.15.4.241 – ident: ref7 doi: 10.1109/TAFFC.2017.2786207 – ident: ref33 doi: 10.1037/h0077714 – ident: ref31 doi: 10.1109/ACCESS.2019.2917620 – ident: ref60 doi: 10.1016/j.ijpsycho.2006.07.003 – year: 2015 ident: ref35 article-title: Artifact removal techniques with signal reconstruction – ident: ref66 doi: 10.1016/S0191-8869(03)00129-6 – ident: ref18 doi: 10.1016/j.neulet.2014.05.003 – ident: ref24 doi: 10.1016/S0079-6123(06)59007-7 – ident: ref51 doi: 10.1038/7299 – ident: ref6 doi: 10.3389/fnhum.2016.00219 – ident: ref64 doi: 10.3389/fnbeh.2018.00003 – ident: ref13 doi: 10.1109/TETC.2021.3087174 – ident: ref62 doi: 10.1016/j.ijpsycho.2007.10.002 – ident: ref73 doi: 10.1109/TBME.2019.2897651 – ident: ref56 doi: 10.1523/JNEUROSCI.3907-06.2006 – ident: ref58 doi: 10.1016/j.plrev.2013.05.008 – ident: ref59 doi: 10.1016/j.sigpro.2005.07.007 – ident: ref10 doi: 10.1109/T-AFFC.2011.15 – ident: ref14 doi: 10.1109/TCYB.2018.2797176 – ident: ref48 doi: 10.1006/nimg.2002.1087 – ident: ref25 doi: 10.1002/hbm.1048 – ident: ref29 doi: 10.1016/j.jneumeth.2012.09.029 |
SSID | ssj0000333627 |
Score | 2.3570254 |
Snippet | Electroencephalogram (EEG) variability poses a great challenge to the affective brain-computer interface (aBCI) for practical applications. Most aBCI... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Affective brain-computer interface (aBCI) Arousal Brain modeling Commonality data diversity electroencephalogram (EEG) Electroencephalography Emotional factors Emotional responses Emotions Human-computer interface Independent component analysis Integrated circuits Modulation multiple-day independent component analysis (ICA) Signatures Task analysis Variability |
Title | Cross-Day Data Diversity Improves Inter-Individual Emotion Commonality of Spatio-Spectral EEG Signatures Using Independent Component Analysis |
URI | https://ieeexplore.ieee.org/document/10101825 https://www.proquest.com/docview/2933609644 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELWAioYbsVxyQYccsrFzuER7cEjQABJdZMc2QqDdFZst4B_4Z2bsZMUhEF0U2Y6l8TFvMvMeIUeZMzbWqsskFwJJtSsmC8MZeMp5kQIkkRqrka-us_M7cXmf3jfF6r4Wxlrrk89shI_-X74ZVzMMlcEOR36pJF0ki4DcQrHWPKAScw6Hcd4WxsTy5PZ0OOxFqA8egZOCzG1fLh-vpvLjCPb3ynCVXLczCukkT9Gs1lH19o2s8d9TXiMrjYdJT8OSWCcLdrRBVlv1Btps5k3y3sM5sr56pX1VK9pvMzRoCDTYKfXhQnYxr9migyD6Q7GspHHh6djRG5-WzVDLHgMndDA4ozePD4E0dEp9WgIM1gru1th_Mh7hU0uKskXuhoPb3jlrxBlYlcisZt2syLkRTroqFkroAhwZoRC9AaSE911jMmm4SWMjtAOUmGjLXQ7oS2Wx1RXfJksj-NIOoVbmSWqVc0o5gSeE5LqAAXRiCrjCbYd0W6uVVcNcjgIaz6VHMLEsvaVLtHTZWLpDjud9JoG348_WW2i6Ty2D1Tpkv10dZbO3pyU4SDwD5CfE7i_d9sgyjC5CpGafLNUvM3sAvkutD_2a_QANSe16 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9lAulNIiFgr4wK1yyMbOw8dqH2xLu5dupd4iO7YrBNqt2OwB_gP_mRk7WUERiFsU2bGl8WNmMt_3AbwrvHWp0UOuhJREqt1wVVnB0VMuqxxDEmUIjXw1L2Y38uI2v-3A6gEL45wLxWcuocfwL9-umg2lynCHE79Ulj-CvZzQuBGutU2ppELgcVz20JhUvV-cTaejhBTCE3RTiLvtt-sn6Kn8cQiHm2V6APN-TrGg5HOyaU3SfH9A1_jfk34KTzofk53FRXEIO275DA56_QbWbecj-DGiOfKx_sbGutVs3NdosJhqcGsWEob8fIvaYpMo-8MIWNI58Wzl2XUozOakZk-pEzaZfGDXn-4ibeiahcIE_FgvudtS__vVkp56WpRjuJlOFqMZ7-QZeJOpouXDoiqFlV75JpVamgpdGakpfsOgEt8PrS2UFTZPrTQe48TMOOFLjL90kTrTiOewu8SRXgBzqsxyp73X2ks6I5QwFX7AZLbCS9wNYNhbrW467nKS0PhShxgmVXWwdE2WrjtLD-B02-c-Mnf8s_Uxme6XltFqAzjpV0fd7e51jS6SKDD2k_LlX7q9hf3Z4uqyvjyff3wFj3EkGfM2J7Dbft241-jJtOZNWL8_AY6W8MI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Day+Data+Diversity+Improves+Inter-Individual+Emotion+Commonality+of+Spatio-Spectral+EEG+Signatures+Using+Independent+Component+Analysis&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Shen%2C+Yi-Wei&rft.au=Lin%2C+Yuan-Pin&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTAFFC.2023.3261867&rft.externalDocID=10101825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |