Benchmarking Micro-Action Recognition: Dataset, Methods, and Applications

Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of individuals and is important for human-oriented applications such as emotion recognition and psychological assessment. However, the identification, di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 34; no. 7; pp. 6238 - 6252
Main Authors Guo, Dan, Li, Kun, Hu, Bin, Zhang, Yan, Wang, Meng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2024.3358415

Cover

Loading…
Abstract Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of individuals and is important for human-oriented applications such as emotion recognition and psychological assessment. However, the identification, differentiation, and understanding of micro-actions pose challenges due to the imperceptible and inaccessible nature of these subtle human behaviors in everyday life. In this study, we innovatively collect a new micro-action dataset designated as Micro-action-52 (MA-52), and propose a benchmark named micro-action network (MANet) for micro-action recognition (MAR) task. Uniquely, MA-52 provides the whole-body perspective including gestures, upper- and lower-limb movements, attempting to reveal comprehensive micro-action cues. In detail, MA-52 contains 52 micro-action categories along with seven body part labels, and encompasses a full array of realistic and natural micro-actions, accounting for 205 participants and 22,422 video instances collated from the psychological interviews. Based on the proposed dataset, we assess MANet and other nine prevalent action recognition methods. MANet incorporates squeeze-and-excitation (SE) and temporal shift module (TSM) into the ResNet architecture for modeling the spatiotemporal characteristics of micro-actions. Then a joint-embedding loss is designed for semantic matching between video and action labels; the loss is used to better distinguish between visually similar yet distinct micro-action categories. The extended application in emotion recognition has demonstrated one of the important values of our proposed dataset and method. In the future, further exploration of human behaviour, emotion, and psychological assessment will be conducted in depth. The dataset and source code are released at https://github.com/VUT-HFUT/Micro-Action .
AbstractList Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of individuals and is important for human-oriented applications such as emotion recognition and psychological assessment. However, the identification, differentiation, and understanding of micro-actions pose challenges due to the imperceptible and inaccessible nature of these subtle human behaviors in everyday life. In this study, we innovatively collect a new micro-action dataset designated as Micro-action-52 (MA-52), and propose a benchmark named micro-action network (MANet) for micro-action recognition (MAR) task. Uniquely, MA-52 provides the whole-body perspective including gestures, upper- and lower-limb movements, attempting to reveal comprehensive micro-action cues. In detail, MA-52 contains 52 micro-action categories along with seven body part labels, and encompasses a full array of realistic and natural micro-actions, accounting for 205 participants and 22,422 video instances collated from the psychological interviews. Based on the proposed dataset, we assess MANet and other nine prevalent action recognition methods. MANet incorporates squeeze-and-excitation (SE) and temporal shift module (TSM) into the ResNet architecture for modeling the spatiotemporal characteristics of micro-actions. Then a joint-embedding loss is designed for semantic matching between video and action labels; the loss is used to better distinguish between visually similar yet distinct micro-action categories. The extended application in emotion recognition has demonstrated one of the important values of our proposed dataset and method. In the future, further exploration of human behaviour, emotion, and psychological assessment will be conducted in depth. The dataset and source code are released at https://github.com/VUT-HFUT/Micro-Action .
Author Li, Kun
Zhang, Yan
Wang, Meng
Hu, Bin
Guo, Dan
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0003-2594-254X
  surname: Guo
  fullname: Guo, Dan
  email: guodan@hfut.edu.cn
  organization: Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, and the School of Computer Science and Information Engineering, Hefei University of Technology (HFUT), Hefei, China
– sequence: 2
  givenname: Kun
  orcidid: 0000-0001-5083-2145
  surname: Li
  fullname: Li, Kun
  email: kunli.hfut@gmail.com
  organization: School of Computer Science and Information Engineering, Hefei University of Technology (HFUT), Hefei, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0003-3514-5413
  surname: Hu
  fullname: Hu, Bin
  email: bh@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
– sequence: 4
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  email: yanzhang.hfut@gmail.com
  organization: School of Computer Science and Information Engineering, Hefei University of Technology (HFUT), Hefei, China
– sequence: 5
  givenname: Meng
  orcidid: 0000-0002-3094-7735
  surname: Wang
  fullname: Wang, Meng
  email: eric.mengwang@gmail.com
  organization: Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, and the School of Computer Science and Information Engineering, Hefei University of Technology (HFUT), Hefei, China
BookMark eNp9kMtOwkAUhicGEwF9AeOiiVuKZ65t3SFeE4iJotvJMD2FQZxipyx8e1tgYVy4Omfxf-fy9UjHlx4JOacwpBSyq9n49X02ZMDEkHOZCiqPSJdKmcaMgew0PUgap4zKE9ILYQVARSqSLnm6QW-Xn6b6cH4RTZ2tynhka1f66AVtufCu7a-jW1ObgPUgmmK9LPMwiIzPo9Fms3bWtJFwSo4Lsw54dqh98nZ_Nxs_xpPnh6fxaBJblqk6pixjjKVGzDMFucEsV6xQPC9YatHmwBGETJTgmcAiKTKDHOw8VUAVJhwU75PL_dxNVX5tMdR6VW4r36zUHBIpmEqANal0n2oeCqHCQltX7w6tK-PWmoJuxemdON2K0wdxDcr-oJvKNYa-_4cu9pBDxF-AoAISxX8AlCB6wQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111402
crossref_primary_10_1145_3700878
crossref_primary_10_1145_3723009
crossref_primary_10_1016_j_cviu_2024_104108
crossref_primary_10_1145_3721981
crossref_primary_10_1145_3663572
crossref_primary_10_1145_3702325
crossref_primary_10_1145_3700596
crossref_primary_10_1109_JIOT_2024_3435371
crossref_primary_10_1145_3655025
crossref_primary_10_1016_j_nanoen_2024_110186
crossref_primary_10_1145_3712602
crossref_primary_10_3390_electronics13163106
crossref_primary_10_1016_j_engappai_2025_110482
crossref_primary_10_1145_3708348
crossref_primary_10_3390_jmse12081383
crossref_primary_10_1016_j_inffus_2024_102898
crossref_primary_10_1109_LSP_2024_3524099
crossref_primary_10_1007_s00530_024_01340_w
Cites_doi 10.1109/TCSVT.2021.3137023
10.1109/ICCV.2015.510
10.1109/TAFFC.2022.3205170
10.1007/s11432-022-3783-3
10.1109/TCSVT.2021.3077512
10.1109/ICCV.2019.01024
10.1109/TIP.2022.3217368
10.1109/ICCV48922.2021.00986
10.1109/TIP.2019.2946102
10.1126/science.1224313
10.1109/CVPR.2014.223
10.1109/ICCV48922.2021.01310
10.1109/CVPR.2016.288
10.1109/ICCV.2019.00718
10.1109/TAFFC.2018.2874986
10.1109/CVPR46437.2021.01049
10.24963/ijcai.2019/105
10.24963/ijcai.2021/178
10.1109/ICCV.2011.6126543
10.1145/3560905.3567763
10.1109/TCSVT.2021.3100842
10.1109/ICIP.2019.8803603
10.1109/CVPR.2017.53
10.1109/ICCV.2019.00630
10.1609/aaai.v32i1.12235
10.48550/arXiv.2102.05095
10.1109/TAFFC.2022.3213509
10.1609/aaai.v35i3.16285
10.1609/aaai.v34i01.5364
10.1609/aaai.v34i03.5646
10.1109/TELFOR.2015.7377568
10.1109/CVPR42600.2020.00269
10.1109/CVPR52688.2022.01968
10.1007/s11263-023-01761-6
10.1109/TIP.2018.2883743
10.1007/978-3-031-19772-7_23
10.1016/j.patcog.2023.109453
10.3115/v1/D14-1162
10.1109/CVPR.2017.502
10.1109/TAFFC.2020.3031841
10.1109/ICCV.2019.00876
10.1109/TCSVT.2021.3082635
10.1109/CVPR46437.2021.00896
10.1109/CVPR52688.2022.00320
10.1016/j.inffus.2022.03.009
10.1609/aaai.v34i07.6872
10.1109/FG.2019.8756513
10.1109/FG47880.2020.00041
10.1109/TPAMI.2018.2868668
10.1007/978-3-030-01231-1_32
10.1109/TMM.2022.3141616
10.1109/CVPR.2018.00745
10.1109/CVPR.2012.6247801
10.1109/ICME.2019.00182
10.1109/ICASSP40776.2020.9053928
10.1145/3503161.3548363
10.1109/CVPR.2016.90
10.1609/aaai.v35i15.17625
10.1007/s11263-019-01215-y
10.1016/j.patcog.2021.108282
10.1109/TCSS.2022.3223251
10.1109/WACV48630.2021.00301
10.1109/LSP.2021.3116513
10.1109/CVPR.2015.7298698
10.48550/ARXIV.1706.03762
10.48550/ARXIV.1212.0402
10.1109/WACV.2016.7477679
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2024.3358415
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Psychology
EISSN 1558-2205
EndPage 6252
ExternalDocumentID 10_1109_TCSVT_2024_3358415
10414076
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62272144; 62020106007; 72188101; U20A20183
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB4500600
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-1292228a4b960dae9d62f63df28cecd03e045764394ef7f9ae30cb86016e73063
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:23:12 EDT 2025
Tue Jul 01 00:41:25 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Wed Aug 27 02:02:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-1292228a4b960dae9d62f63df28cecd03e045764394ef7f9ae30cb86016e73063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5083-2145
0000-0002-3094-7735
0000-0003-3514-5413
0000-0003-2594-254X
PQID 3075426702
PQPubID 85433
PageCount 15
ParticipantIDs proquest_journals_3075426702
ieee_primary_10414076
crossref_citationtrail_10_1109_TCSVT_2024_3358415
crossref_primary_10_1109_TCSVT_2024_3358415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
ref46
ref47
ref42
ref41
ref44
Van der Maaten (ref63) 2008; 9
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Damen (ref37)
ref40
ref35
ref34
ref36
ref31
Xu (ref48) 2023
ref30
ref74
ref33
ref32
ref2
ref39
ref38
Kay (ref19) 2017
ref71
Derogatis (ref1) 2004; 1
ref70
ref73
ref72
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref64
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Li (ref45) 2022
King (ref67) 2009; 10
ref60
ref62
ref61
References_xml – ident: ref29
  doi: 10.1109/TCSVT.2021.3137023
– ident: ref41
  doi: 10.1109/ICCV.2015.510
– start-page: 720
  volume-title: Proc. Eur. Conf. Comput. Vis.
  ident: ref37
  article-title: Scaling egocentric vision: The epic-kitchens dataset
– ident: ref73
  doi: 10.1109/TAFFC.2022.3205170
– ident: ref30
  doi: 10.1007/s11432-022-3783-3
– ident: ref22
  doi: 10.1109/TCSVT.2021.3077512
– ident: ref65
  doi: 10.1109/ICCV.2019.01024
– ident: ref23
  doi: 10.1109/TIP.2022.3217368
– ident: ref49
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref4
  doi: 10.1109/TIP.2019.2946102
– ident: ref15
  doi: 10.1126/science.1224313
– ident: ref20
  doi: 10.1109/CVPR.2014.223
– ident: ref61
  doi: 10.1109/ICCV48922.2021.01310
– ident: ref6
  doi: 10.1109/CVPR.2016.288
– ident: ref39
  doi: 10.1109/ICCV.2019.00718
– ident: ref13
  doi: 10.1109/TAFFC.2018.2874986
– ident: ref17
  doi: 10.1109/CVPR46437.2021.01049
– ident: ref25
  doi: 10.24963/ijcai.2019/105
– ident: ref5
  doi: 10.24963/ijcai.2021/178
– ident: ref26
  doi: 10.1109/ICCV.2011.6126543
– ident: ref52
  doi: 10.1145/3560905.3567763
– volume: 1
  start-page: 4
  year: 2004
  ident: ref1
  article-title: SCL 90
  publication-title: GROUP
– ident: ref21
  doi: 10.1109/TCSVT.2021.3100842
– ident: ref70
  doi: 10.1109/ICIP.2019.8803603
– ident: ref9
  doi: 10.1109/CVPR.2017.53
– ident: ref42
  doi: 10.1109/ICCV.2019.00630
– ident: ref14
  doi: 10.1609/aaai.v32i1.12235
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref63
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.48550/arXiv.2102.05095
– ident: ref55
  doi: 10.1109/TAFFC.2022.3213509
– ident: ref28
  doi: 10.1609/aaai.v35i3.16285
– ident: ref69
  doi: 10.1609/aaai.v34i01.5364
– ident: ref53
  doi: 10.1609/aaai.v34i03.5646
– ident: ref57
  doi: 10.1109/TELFOR.2015.7377568
– ident: ref11
  doi: 10.1109/CVPR42600.2020.00269
– ident: ref12
  doi: 10.1109/CVPR52688.2022.01968
– year: 2017
  ident: ref19
  article-title: The kinetics human action video dataset
  publication-title: arXiv:1705.06950
– ident: ref33
  doi: 10.1007/s11263-023-01761-6
– ident: ref10
  doi: 10.1109/TIP.2018.2883743
– ident: ref47
  doi: 10.1007/978-3-031-19772-7_23
– ident: ref51
  doi: 10.1016/j.patcog.2023.109453
– ident: ref60
  doi: 10.3115/v1/D14-1162
– ident: ref31
  doi: 10.1109/CVPR.2017.502
– volume: 10
  start-page: 1755
  year: 2009
  ident: ref67
  article-title: Dlib-ML: A machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– ident: ref46
  doi: 10.1109/TAFFC.2020.3031841
– ident: ref35
  doi: 10.1109/ICCV.2019.00876
– ident: ref66
  doi: 10.1109/TCSVT.2021.3082635
– ident: ref64
  doi: 10.1109/CVPR46437.2021.00896
– ident: ref43
  doi: 10.1109/CVPR52688.2022.00320
– ident: ref72
  doi: 10.1016/j.inffus.2022.03.009
– ident: ref40
  doi: 10.1609/aaai.v34i07.6872
– ident: ref2
  doi: 10.1109/FG.2019.8756513
– ident: ref3
  doi: 10.1109/FG47880.2020.00041
– ident: ref38
  doi: 10.1109/TPAMI.2018.2868668
– ident: ref32
  doi: 10.1007/978-3-030-01231-1_32
– ident: ref74
  doi: 10.1109/TMM.2022.3141616
– ident: ref58
  doi: 10.1109/CVPR.2018.00745
– ident: ref36
  doi: 10.1109/CVPR.2012.6247801
– ident: ref7
  doi: 10.1109/ICME.2019.00182
– ident: ref24
  doi: 10.1109/ICASSP40776.2020.9053928
– ident: ref34
  doi: 10.1145/3503161.3548363
– ident: ref59
  doi: 10.1109/CVPR.2016.90
– ident: ref71
  doi: 10.1609/aaai.v35i15.17625
– ident: ref54
  doi: 10.1007/s11263-019-01215-y
– year: 2022
  ident: ref45
  article-title: UniFormer: Unified transformer for efficient spatiotemporal representation learning
  publication-title: arXiv:2201.04676
– ident: ref8
  doi: 10.1016/j.patcog.2021.108282
– year: 2023
  ident: ref48
  article-title: Pyramid self-attention polymerization learning for semi-supervised skeleton-based action recognition
  publication-title: arXiv:2302.02327
– ident: ref16
  doi: 10.1109/TCSS.2022.3223251
– ident: ref50
  doi: 10.1109/WACV48630.2021.00301
– ident: ref62
  doi: 10.1109/LSP.2021.3116513
– ident: ref27
  doi: 10.1109/CVPR.2015.7298698
– ident: ref68
  doi: 10.48550/ARXIV.1706.03762
– ident: ref18
  doi: 10.48550/ARXIV.1212.0402
– ident: ref56
  doi: 10.1109/WACV.2016.7477679
SSID ssj0014847
Score 2.6106763
Snippet Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6238
SubjectTerms action analysis
action recognition
Activity recognition
body language
Body parts
Datasets
Emotion recognition
Emotions
Foot
Human behavior
human behavioral analysis
Interviews
Labels
Legged locomotion
Mars
Micro-action
Psychological assessment
Psychology
Semantics
Source code
Task analysis
Title Benchmarking Micro-Action Recognition: Dataset, Methods, and Applications
URI https://ieeexplore.ieee.org/document/10414076
https://www.proquest.com/docview/3075426702
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BpzLwUYooFJSBjaakiWvHbKVQFaR2gBZ1ixzbERKQIpoO8Os5O0lVgUAsUYY4snzne3f23T2AM05kh8sOdanwuUuY8HBLxczlTCXonqPULX_KaEyHU3I3686KYnVbC6O1tslnum1e7V2-msulOSrDHU4wHmB0EzYxcsuLtVZXBiS0bGLoL3TcEIGsrJDx-MWk__A4wVjQJ-0gQMQ1HLhrKGRpVX7YYgswgx0Yl1PL80qe28ssbsvPb10b_z33XdguXE2nl-vGHmzotAZbaw0Ia1Bd2b-Pfbi9Qo19ehX29NwZmUw9t2fLHpz7Ms1onl461yJD6MtazsiyTy9ajkiV01u7Ca_DdHAz6Q_dgmnBlT6nmYugb06CBIkxoFFCc0X9hAYq8UOppfICjZ4fM84L0QlLuNCBJ-PQtHLRaCJocACVdJ7qQ3AY4n8QE5WgBuCzyxWnIZMBUbFWfiwa0ClXPpJFG3LDhvES2XDE45GVVmSkFRXSasD5asxb3oTjz6_rZvnXvsxXvgHNUsJRsVEXEZq4LjopzPOPfhl2DFXz9zxFtwmV7H2pT9ARyeJTq4BfeZzW7g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBRwFRKJCBDVLSxLVjtlKoWmg7QEFskWM7QgJSBOkAv56zk1QVCMQSZYgVy3e--86-uw_giBPZ4LJBXSp87hImPNxSMXM5UwnCc5S65U8ZDGn3jlw9NB-KYnVbC6O1tslnum5e7V2-GsuJOSrDHU4wHmB0HhbR8ROel2tNLw1IaPnEEDE03BBdWVkj4_HTUfv2foTRoE_qQYA-17DgzvghS6zywxpbF9NZg2E5uTyz5Kk-yeK6_PzWt_Hfs1-H1QJsOq1cOzZgTqcVWJlpQViB5akF_NiE3jnq7OOLsOfnzsDk6rktW_jg3JSJRuP0zLkQGTq_7MQZWP7p9xNHpMppzdyFb8Fd53LU7roF14IrfU4zF92-OQsSJMaQRgnNFfUTGqjED6WWygs0Yj9m4AvRCUu40IEn49A0c9FoJGiwDQvpONU74DBEAEFMVII6gM8mV5yGTAZExVr5sahCo1z5SBaNyA0fxnNkAxKPR1ZakZFWVEirCsfTMa95G44_v94yyz_zZb7yVaiVEo6KrfoeoZFrIkxhnr_7y7BDWOqOBv2o3xte78Gy-VOesFuDhextovcRlmTxgVXGL-0l2j4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Micro-Action+Recognition%3A+Dataset%2C+Methods%2C+and+Applications&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Guo%2C+Dan&rft.au=Li%2C+Kun&rft.au=Hu%2C+Bin&rft.au=Zhang%2C+Yan&rft.date=2024-07-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=7&rft.spage=6238&rft.epage=6252&rft_id=info:doi/10.1109%2FTCSVT.2024.3358415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2024_3358415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon