Learned Regularizations for Multi‐Parameter Elastic Full Waveform Inversion Using Diffusion Models

Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded in the commonly used acoustic FWI. However, EFWI usually requires a more sophisticated recording apparatus (beyond the usual single‐component data...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 1
Main Authors Taufik, Mohammad H., Wang, Fu, Alkhalifah, Tariq
Format Journal Article
LanguageEnglish
Published Wiley 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded in the commonly used acoustic FWI. However, EFWI usually requires a more sophisticated recording apparatus (beyond the usual single‐component data). Even in the presence of multicomponent recordings, an empirical formulation that relates the elastic parameters is usually employed. Such approximations, thus, render the inverted elastic parameters (and their relationship) hostage to our assumptions. To overcome these limitations, we introduce learned regularization using diffusion models. Specifically, we first train the (unsupervised) diffusion model to understand the coupling relationship of the distribution of the elastic parameters and use the trained model in the inversion process with a negligible additional computational cost. To fully realize the effect of our regularization and to mimic a realistic scenario, the vertical component of the particle velocity is used to invert the elastic parameters. Unlike other learned (deep) regularizers, diffusion models offer a unique conditional capability that suits the nature of an FWI process (going from low to high frequency) while maintaining the problem‐agnostic feature of such regularizers. Numerical experiments, ranging from synthetic to land field data, show that our framework solves the illumination effects from an imperfect acquisition setup and provides more realistic elastic parameter ratios than the conventional EFWI. We also empirically demonstrate that, unlike traditional regularization schemes, our framework converges to better model estimates that fit the observed data better. Plain Language Summary Full waveform inversion (FWI) attempts to utilize the complete information of the recorded seismic waves to estimate the Earth's properties by iteratively minimizing the difference between the recorded and simulated data. Often, in practice, the acoustic assumption of the Earth is made, and we invert for a single parameter. This has worked well with offshore data. However, for land data, the acoustic assumption has not fared well, and often we end up with poor results. To account for a more representative simulation, the elastic assumption can be employed during the simulation yielding an elastic variant of FWI (EFWI). Practically, however, EFWI often encounters many challenges. First, EFWI requires a more sophisticated recording apparatus. Even in the presence of multi‐component recordings, empirical formulations that relate the elastic parameters are usually needed to avoid parameter trade‐offs. Moreover, inadequacy in accounting for this relationship causes interdependency between the parameters. To overcome these limitations, we introduce an adaptive regularization framework using generative deep learning models. Numerical experiments, ranging from synthetic to land field data, show that our framework solves imperfect acquisition setups, provides more realistic elastic parameter ratios compared to the conventional EFWI, and converges to better model estimates fitting the observed data better. Key Points Introduce a novel regularization for multi‐parameter elastic full waveform inversion that also improves the data fitting accuracy Demonstrate that the proposed regularization preserves the elastic parameter structure and relationship with negligible additional cost Showcase the proposed regularization on regional land seismic data
AbstractList Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded in the commonly used acoustic FWI. However, EFWI usually requires a more sophisticated recording apparatus (beyond the usual single‐component data). Even in the presence of multicomponent recordings, an empirical formulation that relates the elastic parameters is usually employed. Such approximations, thus, render the inverted elastic parameters (and their relationship) hostage to our assumptions. To overcome these limitations, we introduce learned regularization using diffusion models. Specifically, we first train the (unsupervised) diffusion model to understand the coupling relationship of the distribution of the elastic parameters and use the trained model in the inversion process with a negligible additional computational cost. To fully realize the effect of our regularization and to mimic a realistic scenario, the vertical component of the particle velocity is used to invert the elastic parameters. Unlike other learned (deep) regularizers, diffusion models offer a unique conditional capability that suits the nature of an FWI process (going from low to high frequency) while maintaining the problem‐agnostic feature of such regularizers. Numerical experiments, ranging from synthetic to land field data, show that our framework solves the illumination effects from an imperfect acquisition setup and provides more realistic elastic parameter ratios than the conventional EFWI. We also empirically demonstrate that, unlike traditional regularization schemes, our framework converges to better model estimates that fit the observed data better. Plain Language Summary Full waveform inversion (FWI) attempts to utilize the complete information of the recorded seismic waves to estimate the Earth's properties by iteratively minimizing the difference between the recorded and simulated data. Often, in practice, the acoustic assumption of the Earth is made, and we invert for a single parameter. This has worked well with offshore data. However, for land data, the acoustic assumption has not fared well, and often we end up with poor results. To account for a more representative simulation, the elastic assumption can be employed during the simulation yielding an elastic variant of FWI (EFWI). Practically, however, EFWI often encounters many challenges. First, EFWI requires a more sophisticated recording apparatus. Even in the presence of multi‐component recordings, empirical formulations that relate the elastic parameters are usually needed to avoid parameter trade‐offs. Moreover, inadequacy in accounting for this relationship causes interdependency between the parameters. To overcome these limitations, we introduce an adaptive regularization framework using generative deep learning models. Numerical experiments, ranging from synthetic to land field data, show that our framework solves imperfect acquisition setups, provides more realistic elastic parameter ratios compared to the conventional EFWI, and converges to better model estimates fitting the observed data better. Key Points Introduce a novel regularization for multi‐parameter elastic full waveform inversion that also improves the data fitting accuracy Demonstrate that the proposed regularization preserves the elastic parameter structure and relationship with negligible additional cost Showcase the proposed regularization on regional land seismic data
Abstract Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded in the commonly used acoustic FWI. However, EFWI usually requires a more sophisticated recording apparatus (beyond the usual single‐component data). Even in the presence of multicomponent recordings, an empirical formulation that relates the elastic parameters is usually employed. Such approximations, thus, render the inverted elastic parameters (and their relationship) hostage to our assumptions. To overcome these limitations, we introduce learned regularization using diffusion models. Specifically, we first train the (unsupervised) diffusion model to understand the coupling relationship of the distribution of the elastic parameters and use the trained model in the inversion process with a negligible additional computational cost. To fully realize the effect of our regularization and to mimic a realistic scenario, the vertical component of the particle velocity is used to invert the elastic parameters. Unlike other learned (deep) regularizers, diffusion models offer a unique conditional capability that suits the nature of an FWI process (going from low to high frequency) while maintaining the problem‐agnostic feature of such regularizers. Numerical experiments, ranging from synthetic to land field data, show that our framework solves the illumination effects from an imperfect acquisition setup and provides more realistic elastic parameter ratios than the conventional EFWI. We also empirically demonstrate that, unlike traditional regularization schemes, our framework converges to better model estimates that fit the observed data better.
Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded in the commonly used acoustic FWI. However, EFWI usually requires a more sophisticated recording apparatus (beyond the usual single‐component data). Even in the presence of multicomponent recordings, an empirical formulation that relates the elastic parameters is usually employed. Such approximations, thus, render the inverted elastic parameters (and their relationship) hostage to our assumptions. To overcome these limitations, we introduce learned regularization using diffusion models. Specifically, we first train the (unsupervised) diffusion model to understand the coupling relationship of the distribution of the elastic parameters and use the trained model in the inversion process with a negligible additional computational cost. To fully realize the effect of our regularization and to mimic a realistic scenario, the vertical component of the particle velocity is used to invert the elastic parameters. Unlike other learned (deep) regularizers, diffusion models offer a unique conditional capability that suits the nature of an FWI process (going from low to high frequency) while maintaining the problem‐agnostic feature of such regularizers. Numerical experiments, ranging from synthetic to land field data, show that our framework solves the illumination effects from an imperfect acquisition setup and provides more realistic elastic parameter ratios than the conventional EFWI. We also empirically demonstrate that, unlike traditional regularization schemes, our framework converges to better model estimates that fit the observed data better. Full waveform inversion (FWI) attempts to utilize the complete information of the recorded seismic waves to estimate the Earth's properties by iteratively minimizing the difference between the recorded and simulated data. Often, in practice, the acoustic assumption of the Earth is made, and we invert for a single parameter. This has worked well with offshore data. However, for land data, the acoustic assumption has not fared well, and often we end up with poor results. To account for a more representative simulation, the elastic assumption can be employed during the simulation yielding an elastic variant of FWI (EFWI). Practically, however, EFWI often encounters many challenges. First, EFWI requires a more sophisticated recording apparatus. Even in the presence of multi‐component recordings, empirical formulations that relate the elastic parameters are usually needed to avoid parameter trade‐offs. Moreover, inadequacy in accounting for this relationship causes interdependency between the parameters. To overcome these limitations, we introduce an adaptive regularization framework using generative deep learning models. Numerical experiments, ranging from synthetic to land field data, show that our framework solves imperfect acquisition setups, provides more realistic elastic parameter ratios compared to the conventional EFWI, and converges to better model estimates fitting the observed data better. Introduce a novel regularization for multi‐parameter elastic full waveform inversion that also improves the data fitting accuracy Demonstrate that the proposed regularization preserves the elastic parameter structure and relationship with negligible additional cost Showcase the proposed regularization on regional land seismic data
Author Taufik, Mohammad H.
Wang, Fu
Alkhalifah, Tariq
Author_xml – sequence: 1
  givenname: Mohammad H.
  orcidid: 0000-0002-6336-7614
  surname: Taufik
  fullname: Taufik, Mohammad H.
  email: mohammad.taufik@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Fu
  orcidid: 0000-0002-1753-1436
  surname: Wang
  fullname: Wang, Fu
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Tariq
  surname: Alkhalifah
  fullname: Alkhalifah, Tariq
  organization: King Abdullah University of Science and Technology
BookMark eNp9kMtKAzEUhoNU8NadD5AHsDaXmUyyFG1tpUURi8uQmZwpkXRGkmmlrnwEn9EncdoqiKCrc-H7f875j1CnqitA6JSSc0qY6jPCkpsRIYSydA8dMqV4L2WUdH70B6gb41PLcM6IJNkhshMwoQKL72G-9Ca4V9O4uoq4rAOeLn3jPt7e70wwC2gg4IE3sXEFHi69x49mBS22wONqBSG2MjyLrprjK1eWy-08rS34eIL2S-MjdL_qMZoNBw-Xo97k9np8eTHpFUwJ0RNKQb55QFKVyzylIDmotBBcWskFoVkmk8wKYqzMLeEskyAVyEwZwUXB-DEa73xtbZ70c3ALE9a6Nk5vF3WYaxPa8z3oxEBRWkqoSkiiUqsYhcSmlGapSjmI1ovtvIpQxxig1IVrttk0wTivKdGb2PXP2FvR2S_R9xF_4P0d_uI8rP9l9c31PRX8E684khM
CitedBy_id crossref_primary_10_1088_2632_2153_ad95dd
crossref_primary_10_1093_gji_ggae437
crossref_primary_10_1190_geo2024_0483_1
crossref_primary_10_1029_2024JH000542
Cites_doi 10.5281/zenodo.8189232
10.1190/geo2017‐0775.1
10.2118/452‐pa
10.1190/1.3215771
10.1109/tpami.2021.3088914
10.1109/tgrs.2023.3322964
10.5281/zenodo.10827047
10.1190/geo2015‐0537.1
10.1190/1.1441933
10.1109/tgrs.2023.3337014
10.1093/gji/ggab162
10.3997/2214-4609.201601292
10.1109/GlobalSIP.2013.6737048
10.1016/B978-0-12-822295-9.00009-1
10.1109/ICCV.2017.198
10.1109/lsp.2017.2763583
10.1093/gji/ggaa330
10.1190/1.1441754
10.1093/gji/ggy113
10.1190/geo2013‐0055.1
10.1190/1.1443880
10.1190/1.1440465
10.1190/tle32091030.1
10.1111/j.1365‐246x.2012.05633.x
10.1109/tip.2017.2662206
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000125
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4aecfd101940495d921e4d51175953e6
10_1029_2024JH000125
JGR16
Genre researchArticle
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAYXX
CITATION
GROUPED_DOAJ
M~E
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
WIN
ID FETCH-LOGICAL-c2966-699eb0001819b8b51e83e95c638d8360177847d60ad8bd03278e89e879a636c23
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:24:58 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
Tue Jul 01 03:43:12 EDT 2025
Wed Jan 22 16:12:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2966-699eb0001819b8b51e83e95c638d8360177847d60ad8bd03278e89e879a636c23
ORCID 0000-0002-6336-7614
0000-0002-1753-1436
OpenAccessLink https://doaj.org/article/4aecfd101940495d921e4d51175953e6
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_4aecfd101940495d921e4d51175953e6
crossref_citationtrail_10_1029_2024JH000125
crossref_primary_10_1029_2024JH000125
wiley_primary_10_1029_2024JH000125_JGR16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 44
2017; 26
1984; 49
2021; 226
2017; 24
2016; 2016
2018; 83
2020; 33
2020; 223
2023; 61
1974; 39
1963; 15
2009; 74
1995; 60
2021; 34
2023
2013; 32
2022
2012; 191
1963; 3
2018; 213
2018
2017
2014; 79
1983
2016; 81
1985; 50
2013
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Liu J. (e_1_2_9_16_1) 2021; 34
e_1_2_9_3_1
e_1_2_9_2_1
Aster R. C. (e_1_2_9_4_1) 2018
Feng S. (e_1_2_9_9_1) 2023
Ho J. (e_1_2_9_11_1) 2020; 33
Menke W. (e_1_2_9_18_1) 2018
Lailly P. (e_1_2_9_14_1) 1983
Tikhonov A. N. (e_1_2_9_25_1) 1963; 3
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 50
  start-page: 571
  issue: 4
  year: 1985
  end-page: 581
  article-title: Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks
  publication-title: Geophysics
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– volume: 24
  start-page: 1872
  issue: 12
  year: 2017
  end-page: 1876
  article-title: A plug‐and‐play priors approach for solving nonlinear imaging inverse problems
  publication-title: IEEE Signal Processing Letters
– volume: 191
  start-page: 325
  issue: 1
  year: 2012
  end-page: 345
  article-title: On the influence of model parametrization in elastic full waveform tomography
  publication-title: Geophysical Journal International
– volume: 61
  start-page: 1
  year: 2023
  end-page: 11
  article-title: A prior regularized full waveform inversion using generative diffusion models
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 223
  start-page: 1007
  issue: 2
  year: 2020
  end-page: 1039
  article-title: Time‐domain elastic gauss–Newton full‐waveform inversion: A matrix‐free approach
  publication-title: Geophysical Journal International
– volume: 49
  start-page: 1259
  issue: 8
  year: 1984
  end-page: 1266
  article-title: Inversion of seismic reflection data in the acoustic approximation
  publication-title: Geophysics
– year: 2018
– start-page: 945
  year: 2013
  end-page: 948
– start-page: 219
  year: 2022
  end-page: 250
– volume: 34
  start-page: 5921
  year: 2021
  end-page: 5933
  article-title: Recovery analysis for plug‐and‐play priors using the restricted eigenvalue condition
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 659
  issue: 06
  year: 1963
  end-page: 667
  article-title: Acoustic character logs and their applications in formation evaluation
  publication-title: Journal of Petroleum Technology
– year: 2023
  article-title: Deepwave
  publication-title: Zenodo
– volume: 44
  start-page: 6360
  issue: 10
  year: 2021
  end-page: 6376
  article-title: Plug‐and‐play image restoration with deep denoiser prior
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 83
  start-page: R597
  issue: 6
  year: 2018
  end-page: R610
  article-title: Full model wavenumber inversion: Identifying sources of information for the elusive middle model wavenumbers
  publication-title: Geophysics
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 3
– volume: 3
  start-page: 501
  year: 1963
  end-page: 504
  article-title: On the solution of ill‐posed problems and the method of regularization
  publication-title: Doklady akademii nauk
– volume: 74
  start-page: WCC105
  issue: 6
  year: 2009
  end-page: WCC118
  article-title: Seismic imaging of complex onshore structures by 2d elastic frequency‐domain full‐waveform inversion
  publication-title: Geophysics
– volume: 79
  start-page: R63
  issue: 2
  year: 2014
  end-page: R77
  article-title: Elastic full‐waveform inversion application using multicomponent measurements of seismic data collection
  publication-title: Geophysics
– volume: 226
  start-page: 1322
  issue: 2
  year: 2021
  end-page: 1335
  article-title: Deep‐learning assisted regularized elastic full waveform inversion using the velocity distribution information from wells
  publication-title: Geophysical Journal International
– volume: 60
  start-page: 1457
  issue: 5
  year: 1995
  end-page: 1473
  article-title: Multiscale seismic waveform inversion
  publication-title: Geophysics
– start-page: 1781
  year: 2017
  end-page: 1790
– year: 2023
– volume: 32
  start-page: 1030
  issue: 9
  year: 2013
  end-page: 1038
  article-title: Multiparameter full‐waveform inversion: Marine and land examples
  publication-title: Geophysics
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Transactions on Image Processing
– start-page: 206
  year: 1983
  end-page: 220
– volume: 39
  start-page: 770
  issue: 6
  year: 1974
  end-page: 780
  article-title: Formation velocity and density—The diagnostic basics for stratigraphic traps
  publication-title: Geophysics
– volume: 61
  start-page: 1
  year: 2023
  end-page: 15
  article-title: Full‐waveform inversion using a learned regularization
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 81
  start-page: R89
  issue: 3
  year: 2016
  end-page: R98
  article-title: Full‐model wavenumber inversion: An emphasis on the appropriate wavenumber continuation
  publication-title: Geophysics
– volume: 213
  start-page: 2112
  issue: 3
  year: 2018
  end-page: 2127
  article-title: Multiparameter elastic full waveform inversion with facies‐based constraints
  publication-title: Geophysical Journal International
– ident: e_1_2_9_21_1
  doi: 10.5281/zenodo.8189232
– ident: e_1_2_9_3_1
  doi: 10.1190/geo2017‐0775.1
– ident: e_1_2_9_19_1
  doi: 10.2118/452‐pa
– volume: 3
  start-page: 501
  year: 1963
  ident: e_1_2_9_25_1
  article-title: On the solution of ill‐posed problems and the method of regularization
  publication-title: Doklady akademii nauk
– ident: e_1_2_9_5_1
  doi: 10.1190/1.3215771
– ident: e_1_2_9_30_1
  doi: 10.1109/tpami.2021.3088914
– ident: e_1_2_9_22_1
  doi: 10.1109/tgrs.2023.3322964
– volume-title: Parameter estimation and inverse problems
  year: 2018
  ident: e_1_2_9_4_1
– ident: e_1_2_9_24_1
  doi: 10.5281/zenodo.10827047
– volume-title: Efwi: Multi‐parameter benchmark datasets for elastic full waveform inversion of geophysical properties
  year: 2023
  ident: e_1_2_9_9_1
– ident: e_1_2_9_2_1
  doi: 10.1190/geo2015‐0537.1
– ident: e_1_2_9_7_1
  doi: 10.1190/1.1441933
– volume: 34
  start-page: 5921
  year: 2021
  ident: e_1_2_9_16_1
  article-title: Recovery analysis for plug‐and‐play priors using the restricted eigenvalue condition
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_28_1
  doi: 10.1109/tgrs.2023.3337014
– volume-title: Geophysical data analysis: Discrete inverse theory
  year: 2018
  ident: e_1_2_9_18_1
– ident: e_1_2_9_15_1
  doi: 10.1093/gji/ggab162
– ident: e_1_2_9_29_1
  doi: 10.3997/2214-4609.201601292
– ident: e_1_2_9_26_1
  doi: 10.1109/GlobalSIP.2013.6737048
– ident: e_1_2_9_32_1
  doi: 10.1016/B978-0-12-822295-9.00009-1
– ident: e_1_2_9_17_1
  doi: 10.1109/ICCV.2017.198
– volume: 33
  start-page: 6840
  year: 2020
  ident: e_1_2_9_11_1
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_12_1
  doi: 10.1109/lsp.2017.2763583
– ident: e_1_2_9_8_1
  doi: 10.1093/gji/ggaa330
– ident: e_1_2_9_23_1
  doi: 10.1190/1.1441754
– start-page: 206
  volume-title: Conference on inverse scattering—theory and application
  year: 1983
  ident: e_1_2_9_14_1
– ident: e_1_2_9_33_1
  doi: 10.1093/gji/ggy113
– ident: e_1_2_9_27_1
  doi: 10.1190/geo2013‐0055.1
– ident: e_1_2_9_6_1
  doi: 10.1190/1.1443880
– ident: e_1_2_9_10_1
  doi: 10.1190/1.1440465
– ident: e_1_2_9_20_1
  doi: 10.1190/tle32091030.1
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1365‐246x.2012.05633.x
– ident: e_1_2_9_31_1
  doi: 10.1109/tip.2017.2662206
SSID ssj0003320807
Score 2.3011708
Snippet Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded in the...
Abstract Elastic full waveform inversion (EFWI) promises to account for the Earth's elastic nature and corresponding reflectivity, which is often disregarded...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms coherent scattering radar
equatorial electrojet
equatorial spread F
E‐region irregularities
F‐region irregularities
occurrence rate
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Ll5EUXF9kYOCIMU2SdPk6GPXZQ-yLIreStLMirDsyvo4-xP8jf4SZ9LuogfFY8O0hUkn88105hvGDhVCbGdsngTpZaJ84RNrwCVaD7VIQZHPomqLa929Vb37_L5JuFEvTM0PMU-4kWXE85oM3PnnhmyAODIxale9bsyk5ItsmbpriTtfqP48xyKlSOuOaUFlauip0qb2HR9x-v0BP7xSJO__CVajt-mssdUGJvKzel_X2QKMN1iIZKgQ-CAOkJ_OWig5Ak8eO2k_3z_6jsqtUFu8jcAYb-cUZfI79waETzkRa8QUGY_VAvzycTh8jdc0Fm30vMluO-2bi27STElIKoGxSqKthQjV0Ld74_MMjASbV2hYgTo0sqJADxR06oLxIZWiMGAsmMI6LXUl5BZbGk_GsM24E0D0L9YKBIUesWFlMg1WVpkMlRdZi53MtFRWDYU4TbIYlfFXtrDld5222NFc-qmmzvhF7pwUPpchwuu4MJk-lI39lMpBNQx4fliFMU0erMhAhZyIRm0uQbfYcdyuP99U9q4Gmd75v-guW6HFuuZsjy29TF9hH0HIiz-IX9oX6hPQag
  priority: 102
  providerName: Wiley-Blackwell
Title Learned Regularizations for Multi‐Parameter Elastic Full Waveform Inversion Using Diffusion Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000125
https://doaj.org/article/4aecfd101940495d921e4d51175953e6
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF7UkxdRVKx_7EFBkGCyu9nsHv1pLQWlFIu9hWx2CkKpUqtH8RF8Rp_EmU0q7UG9eAkkTLLLzCbzzWbmG8aOFELswtg08tLJSLnMRdZAEWk91CIGRT6Lsi1udbuvOoN0MNfqi3LCKnrgSnFnqoBy6HHhWIVgNvVWJKB8SgyTNpUQyLbR580FU_QNllIgFMrqTPdYWAryVacdNl7SBR8UqPoXoWnwLa11tlaDQn5eTWaDLcF4k_lAfQqe90K7-MmsYJIjzOShbvbz_aNbUHIV6oY3EQbj7ZxiSn5fvAKhUU40GmFDjIfcAH71MBy-hHNqgjZ63mL9VvPush3VPRGiUmBkEmlrIQAz9OTOuDQBI8GmJb5GnuoxkixDf-N1XHjjfCxFZsBYMJkttNSlkNtsZfw4hh3GCwFE9mKtQAjoEAmWJtFgZZlIXzqRNNjpTEt5WROGU9-KUR5-XAubz-u0wY6_pZ8qoowf5C5I4d8yRG8dLqDR89ro-V9Gb7CTYK5fR8o7171E7_7HeHtslZ5c5Z7ts5Xp5AUOEIxM3SFbFqp7GFYfHm_eml_cLdiW
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-DnoRRcX1mYOCIMU2SdPk6HtdVxFR9FaaZlaEZVfW1bM_wd_oL3Emrct6UDy2TFOYdDLfTGe-YWxbIcQujE0jL52MlMtcZA0UkdYdLWJQ5LOo2uJKN-9U6yF9qOecUi9MxQ8xSriRZYTzmgycEtI12wCRZGLYrlrNkEpJJ9m00iIjyxTqepRkkVLEVcu0oDo1dFVxXfyOS-yPL_DDLQX2_p9oNbib03k2V-NEflBt7AKbgN4i84ENFTy_CRPkB989lByRJw-ttJ_vH9cF1VuhuvgJImN8nFOYye-LNyCAyolZI-TIeCgX4MdPnc5ruKa5aN2XJXZ3enJ71IzqMQlRKTBYibS1ELAaOndnXJqAkWDTEi3LU4tGkmXogryOC2-cj6XIDBgLJrOFlroUcplN9fo9WGG8EED8L9YKRIUOwWFpEg1Wlon0pRNJg-19aykvaw5xGmXRzcO_bGHzcZ022M5I-rnizvhF7pAUPpIhxutwoz94zGsDylUBZcfjAWIVBjWptyIB5VNiGrWpBN1gu2G7_nxT3jq7SfTq_0W32Ezz9rKdt8-vLtbYLAlUBWjrbGo4eIUNRCRDtxm-ui9AvtPW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsQwEA7-gHgRRcX1NwcFQYptkqbJUV3XdRVZRNFbaZqpCLLK6nr2EXxGn8SZtC56UDy2naYw6WS-mcx8YWxbIcQujE0jL52MlMtcZA0UkdaVFjEo8llUbXGhu9eqd5veNgk36oWp-SHGCTeyjLBek4E_-aohGyCOTIzaVa8bMinpJJsO-33E7Kz64xyLlCKuO6YFlamhp4qb2nccYv_7AD-8UiDv_wlWg7fpzLO5Bibyg3peF9gEDBaZD2So4PllOEB--NVCyRF48tBJ-_H23i-o3Aq1xY8RGOPrnKJMflO8AuFTTsQaIUXGQ7UAb99X1Shc07FoD89L7LpzfHXUjZpTEqJSYKwSaWshQDX07c64NAEjwaYlGpanDo0ky1AzXseFN87HUmQGjAWT2UJLXQq5zKYGjwNYYbwQQPQv1goEhQ6xYWkSDVaWifSlE0mL7X1pKS8bCnE6yeIhD1vZwubfddpiO2Ppp5o64xe5Q1L4WIYIr8ONx-Fd3thPrgooK4_rh1UY06TeigSUT4lo1KYSdIvthun680t57-Qy0av_F91iM_12Jz8_vThbY7P0vC4_W2dTL8MRbCAeeXGb4af7BCHs0wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learned+Regularizations+for+Multi%E2%80%90Parameter+Elastic+Full+Waveform+Inversion+Using+Diffusion+Models&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Taufik%2C+Mohammad+H.&rft.au=Wang%2C+Fu&rft.au=Alkhalifah%2C+Tariq&rft.date=2024-03-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1029%2F2024JH000125&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon