An image-computable model of speeded decision-making

Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 13
Main Authors Jaffe, Paul I, Santiago-Reyes, Gustavo X, Schafer, Robert J, Bissett, Patrick G, Poldrack, Russell A
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 28.02.2025
eLife Sciences Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.
AbstractList Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.
Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.
Audience Academic
Author Schafer, Robert J
Santiago-Reyes, Gustavo X
Jaffe, Paul I
Poldrack, Russell A
Bissett, Patrick G
Author_xml – sequence: 1
  givenname: Paul I
  orcidid: 0000-0003-0680-3923
  surname: Jaffe
  fullname: Jaffe, Paul I
– sequence: 2
  givenname: Gustavo X
  surname: Santiago-Reyes
  fullname: Santiago-Reyes, Gustavo X
– sequence: 3
  givenname: Robert J
  surname: Schafer
  fullname: Schafer, Robert J
– sequence: 4
  givenname: Patrick G
  orcidid: 0000-0003-0854-9404
  surname: Bissett
  fullname: Bissett, Patrick G
– sequence: 5
  givenname: Russell A
  surname: Poldrack
  fullname: Poldrack, Russell A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40019474$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQhkVJaD6aU-_FkEtD8FaSZUs6LqFJFhYKTQq9CX2MjFLb2lg2tP8-ym4ashDpIDE8884M856ggyEOgNBnghe8rtk3WAcPCymqmnxAxxTXuMSC_T548z9CZyk94Hw4E4LIj-iIYUwk4-wYseVQhF63UNrYb-ZJmw6KPjroiuiLtAFw4AoHNqQQh7LXf8LQfkKHXncJzl7eU_Tr-vv91W25_nGzulquS0tlQ0qgTtdUSg5WUCNcxazhkmOJPTaOW8ZNZbDVXtccRNMQR0UDzAtjG5rrVqdotdN1UT-ozZgbHf-pqIPaBuLYKj1OwXagGLZeOA-eesaIaQwlzslKcg91Hlpnra87rc0YH2dIk-pDstB1eoA4J1URTiknnDQZPd-hrc7KYfBxGrV9xtVSUElkLYXI1OIdKl8HfbB5Sz7k-F7CxV5CZib4O7V6Tkmt7n7us19eup1ND-519v-Ly8DlDrBjTGkE_4oQrJ6dobbOUFtnVE9rfaep
Cites_doi 10.1093/oso/9780198510697.003.0024
10.1101/214262
10.1109/TVCG.2019.2934659
10.1523/JNEUROSCI.5023-14.2015
10.1109/ICDAR.2003.1227801
10.1016/0001-6918(82)90019-1
10.3758/BF03203267
10.1016/j.neuron.2012.01.010
10.2307/1423029
10.1371/journal.pcbi.1006903
10.1162/neco.2008.12-06-420
10.1073/pnas.1717075115
10.1038/s41593-017-0028-6
10.1017/S0140525X22002813
10.1111/cogs.13226
10.1007/s42113-019-00042-1
10.1523/JNEUROSCI.0309-11.2011
10.1037/0096-1523.20.4.731
10.1038/nn.4042
10.1016/j.cogpsych.2015.02.005
10.1038/nature12742
10.1093/geronj/37.3.342
10.1037/0882-7974.16.2.323
10.7554/eLife.22794
10.1016/j.neuron.2022.01.005
10.1111/1467-9280.00067
10.1073/pnas.1403112111
10.1038/s41586-021-03390-w
10.1016/j.jmp.2009.02.003
10.1162/jocn_a_01544
10.1038/s41593-018-0310-2
10.24033/bsmf.90
10.1037/h0054651
10.1007/s00426-002-0104-7
10.1038/nn.3643
10.1109/PGEC.1965.264137
10.1016/j.celrep.2020.108367
10.1016/j.cogpsych.2011.08.001
10.1002/ail2.48
10.1073/pnas.2015509117
10.1371/journal.pcbi.1006613
10.1371/journal.pone.0113551
10.1371/journal.pcbi.1009572
10.1007/s42113-020-00073-z
10.1037/0033-295x.108.3.550
10.3758/s13414-020-02166-0
10.3389/fnhum.2010.00222
10.1038/s41593-021-00821-9
10.1523/JNEUROSCI.0179-10.2010
10.1146/annurev-vision-082114-035447
10.1038/s41562-024-01914-8
10.1016/j.cub.2017.07.068
10.1371/journal.pcbi.1008215
10.1038/nature12160
10.1037/met0000458
10.20982/tqmp.16.2.p073
10.1016/j.jmp.2020.102368
10.1038/s41598-021-90356-7
10.1177/0963721418801342
10.3758/bf03207468
10.1037/pag0000546
10.1016/j.cell.2020.09.031
10.1073/pnas.1906788116
10.1016/j.cogpsych.2007.12.002
10.1037/0033-295X.85.2.59
10.1109/CVPR.2009.5206848
10.1016/j.cognition.2021.104713
10.1038/nn.4244
10.1038/s41562-022-01510-8
10.1523/JNEUROSCI.0388-18.2018
10.1515/jnum-2013-0013
10.1037/xlm0000968
10.1126/science.1117593
10.1038/s41562-024-01826-7
10.1523/JNEUROSCI.2984-12.2013
10.1038/nn.3433
10.1109/ICCVW.2017.331
10.1126/science.abm0204
10.1016/0160-2896(92)90004-B
ContentType Journal Article
Copyright 2024, Jaffe et al.
COPYRIGHT 2025 eLife Science Publications, Ltd.
Copyright_xml – notice: 2024, Jaffe et al.
– notice: COPYRIGHT 2025 eLife Science Publications, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
DOA
DOI 10.7554/eLife.98351
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_40cf8dfef2f441b6b21dd9397fe5881a
A829195988
40019474
10_7554_eLife_98351
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
PQGLB
PJZUB
PUEGO
ID FETCH-LOGICAL-c2961-e2da52997ec82b8d34cb797090f0bd7c47b3b0cafa57e8661d286e4f8bc62ede3
IEDL.DBID DOA
ISSN 2050-084X
IngestDate Wed Aug 27 01:30:55 EDT 2025
Fri Jul 11 09:19:03 EDT 2025
Tue Jun 17 21:57:06 EDT 2025
Tue Jun 10 21:09:24 EDT 2025
Fri Jun 27 05:15:31 EDT 2025
Mon May 12 02:38:45 EDT 2025
Tue Jul 01 05:25:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords none
decision-making
neural network modelling
neuroscience
visual processing
Language English
License 2024, Jaffe et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2961-e2da52997ec82b8d34cb797090f0bd7c47b3b0cafa57e8661d286e4f8bc62ede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0854-9404
0000-0003-0680-3923
OpenAccessLink https://doaj.org/article/40cf8dfef2f441b6b21dd9397fe5881a
PMID 40019474
PQID 3172271716
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_40cf8dfef2f441b6b21dd9397fe5881a
proquest_miscellaneous_3172271716
gale_infotracmisc_A829195988
gale_infotracacademiconefile_A829195988
gale_incontextgauss_ISR_A829195988
pubmed_primary_40019474
crossref_primary_10_7554_eLife_98351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Feb-28
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2025
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
References DiCarlo (bib16) 2012; 73
Ridderinkhof (bib71) 2002; 66
Kingma (bib41) 2017
Ridderinkhof (bib72) 2022
Dosovitskiy (bib17) 2021
Jha (bib36) 2023; 47
Brown (bib9) 2008; 57
Mante (bib52) 2013; 503
Jaffe (bib34) 2023; 7
Papyan (bib60) 2020; 117
Simard (bib78) 2003
Spoerer (bib81) 2020; 16
Yang (bib98) 2019; 22
Bradbury (bib7) 2018
Eckstein (bib18) 2017; 27
Zhu (bib100) 2013; 21
Taylor (bib87) 2021; 2
Gottsdanker (bib26) 1982; 37
Bernardi (bib5) 2020; 183
Rust (bib75) 2010; 30
Kaufman (bib38) 2014; 17
Usher (bib91) 2001; 108
Koren (bib43) 2020; 33
Servant (bib77) 2020; 35
Evans (bib20) 2020; 16
Sanders (bib76) 2020; 3
De Jong (bib13) 1994; 20
Malhotra (bib51) 2022; 18
Brincat (bib8) 2018; 115
Goetschalckx (bib25) 2023
Meister (bib53) 2013; 33
Sussillo (bib85) 2015; 18
Hung (bib32) 2005; 310
Hohman (bib30) 2020; 26
White (bib94) 2011; 63
Cover (bib11) 1965; 14
Rafiei (bib63) 2024; 8
Muratore (bib54) 2022
Ratcliff (bib68) 2001; 16
Yamins (bib97) 2016; 19
Nettelbeck (bib57) 1992; 16
Bowers (bib6) 2022; 46
Navarro (bib55) 2009; 53
Kingma (bib39) 2013
Flesch (bib22) 2022; 110
Holmes (bib31) 2020; 3
Ritz (bib74) 2024; 8
Kriegeskorte (bib44) 2015; 1
Klambauer (bib42) 2013
Simon (bib79) 1982; 51
Ansuini (bib2) 2019
Deng (bib14) 2009
Pratte (bib62) 2021; 83
Steyvers (bib82) 2019; 116
Jacobs (bib33) 2019; 28
Trueblood (bib88) 2021; 212
Rajalingham (bib64) 2018; 38
Libby (bib47) 2021; 24
Nayebi (bib56) 2018
Kucukelbir (bib45) 2017; 18
Ulyanov (bib90) 2017
Linsley (bib49) 2017
Kumbhar (bib46) 2020
Rigotti (bib73) 2013; 497
Xie (bib95) 2022; 375
Panichello (bib59) 2021; 592
Kingma (bib40) 2015
Ratcliff (bib67) 1998; 9
Tafazoli (bib86) 2017; 6
Annis (bib1) 2021; 47
van den Wildenberg (bib92) 2010; 4
Gunawan (bib28) 2020; 96
Wang (bib93) 2018; 21
Pagan (bib58) 2013; 16
Zeiler (bib99) 2013
Jordan (bib37) 1873; 2
Ratcliff (bib69) 2008; 20
Eriksen (bib19) 1974; 16
Gao (bib24) 2017
Pedregosa (bib61) 2011; 12
Stoffels (bib83) 1988; 44
Jaffe (bib35) 2025
Heidler (bib29) 2022
Güçlü (bib27) 2015; 35
Fel (bib21) 2022
Dao (bib12) 2024; 29
Rangamani (bib65) 2023
Dezfouli (bib15) 2019; 15
Stroop (bib84) 1935; 18
Rezende (bib70) 2014
Lindsay (bib48) 2021; 33
Cohen (bib10) 1992; 105
Yamins (bib96) 2014; 111
Ulrich (bib89) 2015; 78
Ben-David (bib4) 2014; 9
Baker (bib3) 2018; 14
Simonyan (bib80) 2015
Ratcliff (bib66) 1978; 85
Forstmann (bib23) 2011; 31
Lo (bib50) 2021; 11
References_xml – start-page: 494
  volume-title: Common Mechanisms in Perception and Action: Attention and Performance XIX
  year: 2022
  ident: bib72
  doi: 10.1093/oso/9780198510697.003.0024
– volume-title: bioRxiv
  year: 2017
  ident: bib24
  article-title: A theory of multineuronal dimensionality, dynamics and measurement
  doi: 10.1101/214262
– volume: 26
  start-page: 1096
  year: 2020
  ident: bib30
  article-title: Summit: scaling deep learning interpretability by visualizing activation and attribution summarizations
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2019.2934659
– volume: 35
  start-page: 10005
  year: 2015
  ident: bib27
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5023-14.2015
– start-page: 958
  year: 2003
  ident: bib78
  article-title: Best practices for convolutional neural networks applied to visual document analysis
  doi: 10.1109/ICDAR.2003.1227801
– volume: 51
  start-page: 61
  year: 1982
  ident: bib79
  article-title: Effect of an auditory stimulus on the processing of a visual stimulus under single- and dual-tasks conditions
  publication-title: Acta Psychologica
  doi: 10.1016/0001-6918(82)90019-1
– volume-title: Github
  year: 2018
  ident: bib7
  article-title: JAX: composable transformations of python+numpy programs
– volume-title: arXiv
  year: 2015
  ident: bib40
  article-title: Variational dropout and the local reparameterization trick
– volume-title: Intrinsic Dimension of Data Representations in Deep Neural Networks
  year: 2019
  ident: bib2
– volume: 16
  start-page: 143
  year: 1974
  ident: bib19
  article-title: Effects of noise letters upon the identification of a target letter in a nonsearch task
  publication-title: Perception & Psychophysics
  doi: 10.3758/BF03203267
– volume: 73
  start-page: 415
  year: 2012
  ident: bib16
  article-title: How does the brain solve visual object recognition?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.01.010
– volume: 105
  start-page: 239
  year: 1992
  ident: bib10
  article-title: A parallel distributed processing approach to automaticity
  publication-title: The American Journal of Psychology
  doi: 10.2307/1423029
– volume: 15
  year: 2019
  ident: bib15
  article-title: Models that learn how humans learn: the case of decision-making and its disorders
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006903
– volume: 20
  start-page: 873
  year: 2008
  ident: bib69
  article-title: The diffusion decision model: theory and data for two-choice decision tasks
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.12-06-420
– volume: 115
  start-page: E7202
  year: 2018
  ident: bib8
  article-title: Gradual progression from sensory to task-related processing in cerebral cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1717075115
– volume: 21
  start-page: 102
  year: 2018
  ident: bib93
  article-title: Flexible timing by temporal scaling of cortical responses
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-017-0028-6
– volume-title: arXiv
  year: 2013
  ident: bib99
  article-title: Visualizing and understanding convolutional networks
– volume: 46
  start-page: 1
  year: 2022
  ident: bib6
  article-title: Deep problems with neural network models of human vision
  publication-title: The Behavioral and Brain Sciences
  doi: 10.1017/S0140525X22002813
– start-page: 28729
  year: 2023
  ident: bib65
  article-title: Feature learning in deep classifiers through intermediate neural collapse
– volume: 47
  year: 2023
  ident: bib36
  article-title: Extracting low-dimensional psychological representations from convolutional neural networks
  publication-title: Cognitive Science
  doi: 10.1111/cogs.13226
– volume: 3
  start-page: 1
  year: 2020
  ident: bib31
  article-title: A joint deep neural network and evidence accumulation modeling approach to human decision-making with naturalistic images
  publication-title: Computational Brain & Behavior
  doi: 10.1007/s42113-019-00042-1
– volume: 31
  start-page: 17242
  year: 2011
  ident: bib23
  article-title: The speed-accuracy tradeoff in the elderly brain: A structural model-based approach
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0309-11.2011
– volume: 20
  start-page: 731
  year: 1994
  ident: bib13
  article-title: Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus-response correspondence
  publication-title: Journal of Experimental Psychology
  doi: 10.1037/0096-1523.20.4.731
– volume: 18
  start-page: 1025
  year: 2015
  ident: bib85
  article-title: A neural network that finds A naturalistic solution for the production of muscle activity
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4042
– volume: 12
  start-page: 2825
  year: 2011
  ident: bib61
  article-title: Scikit-learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– volume-title: arXiv
  year: 2017
  ident: bib90
  article-title: Instance normalization: the missing ingredient for fast stylization
– volume: 78
  start-page: 148
  year: 2015
  ident: bib89
  article-title: Automatic and controlled stimulus processing in conflict tasks: superimposed diffusion processes and delta functions
  publication-title: Cognitive Psychology
  doi: 10.1016/j.cogpsych.2015.02.005
– volume: 503
  start-page: 78
  year: 2013
  ident: bib52
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 37
  start-page: 342
  year: 1982
  ident: bib26
  article-title: Age and simple reaction time
  publication-title: Journal of Gerontology
  doi: 10.1093/geronj/37.3.342
– volume: 16
  start-page: 323
  year: 2001
  ident: bib68
  article-title: The effects of aging on reaction time in a signal detection task
  publication-title: Psychology and Aging
  doi: 10.1037/0882-7974.16.2.323
– volume: 6
  year: 2017
  ident: bib86
  article-title: Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex
  publication-title: eLife
  doi: 10.7554/eLife.22794
– volume: 110
  start-page: 1258
  year: 2022
  ident: bib22
  article-title: Orthogonal representations for robust context-dependent task performance in brains and neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.01.005
– volume-title: arXiv
  year: 2013
  ident: bib39
  article-title: Auto-encoding variational bayes
– volume: 9
  start-page: 347
  year: 1998
  ident: bib67
  article-title: Modeling response times for two-choice decisions
  publication-title: Psychological Science
  doi: 10.1111/1467-9280.00067
– volume: 111
  start-page: 8619
  year: 2014
  ident: bib96
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1403112111
– volume: 592
  start-page: 601
  year: 2021
  ident: bib59
  article-title: Shared mechanisms underlie the control of working memory and attention
  publication-title: Nature
  doi: 10.1038/s41586-021-03390-w
– volume: 53
  start-page: 222
  year: 2009
  ident: bib55
  article-title: Fast and accurate calculations for first-passage times in Wiener diffusion models
  publication-title: Journal of Mathematical Psychology
  doi: 10.1016/j.jmp.2009.02.003
– volume: 33
  start-page: 2017
  year: 2021
  ident: bib48
  article-title: Convolutional neural networks as a model of the visual system: past, present, and future
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_01544
– volume: 22
  start-page: 297
  year: 2019
  ident: bib98
  article-title: Task representations in neural networks trained to perform many cognitive tasks
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0310-2
– volume: 2
  start-page: 103
  year: 1873
  ident: bib37
  article-title: Essai Sur La Géométrie à n dimensions
  publication-title: Bulletin de La Société Mathématique de France
  doi: 10.24033/bsmf.90
– volume: 18
  start-page: 643
  year: 1935
  ident: bib84
  article-title: Studies of interference in serial verbal reactions
  publication-title: Journal of Experimental Psychology
  doi: 10.1037/h0054651
– volume: 66
  start-page: 312
  year: 2002
  ident: bib71
  article-title: Micro- and macro-adjustments of task set: activation and suppression in conflict tasks
  publication-title: Psychological Research
  doi: 10.1007/s00426-002-0104-7
– volume: 17
  start-page: 440
  year: 2014
  ident: bib38
  article-title: Cortical activity in the null space: permitting preparation without movement
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3643
– volume: 14
  start-page: 326
  year: 1965
  ident: bib11
  article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
  publication-title: IEEE Transactions on Electronic Computers
  doi: 10.1109/PGEC.1965.264137
– volume-title: arXiv
  year: 2020
  ident: bib46
  article-title: Anytime prediction as a model of human reaction time
– volume: 33
  year: 2020
  ident: bib43
  article-title: Pairwise synchrony and correlations depend on the structure of the population code in visual cortex
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2020.108367
– start-page: 9432
  year: 2022
  ident: bib21
  article-title: Harmonizing the object recognition strategies of deep neural networks with humans
– volume: 63
  start-page: 210
  year: 2011
  ident: bib94
  article-title: Diffusion models of the flanker task: discrete versus gradual attentional selection
  publication-title: Cognitive Psychology
  doi: 10.1016/j.cogpsych.2011.08.001
– volume: 2
  year: 2021
  ident: bib87
  article-title: Neural response time analysis: explainable artificial intelligence using only a stopwatch
  publication-title: Applied AI Letters
  doi: 10.1002/ail2.48
– start-page: 14338
  year: 2023
  ident: bib25
  article-title: Computing a human-like reaction time metric from stable recurrent vision models
– volume: 117
  start-page: 24652
  year: 2020
  ident: bib60
  article-title: Prevalence of neural collapse during the terminal phase of deep learning training
  publication-title: PNAS
  doi: 10.1073/pnas.2015509117
– volume: 14
  year: 2018
  ident: bib3
  article-title: Deep convolutional networks do not classify based on global object shape
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006613
– volume: 9
  year: 2014
  ident: bib4
  article-title: Effects of aging and distractors on detection of redundant visual targets and capacity: do older adults integrate visual targets differently than younger adults?
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0113551
– volume: 18
  year: 2022
  ident: bib51
  article-title: Feature blindness: A challenge for understanding and modelling visual object recognition
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1009572
– volume: 3
  start-page: 229
  year: 2020
  ident: bib76
  article-title: Training deep networks to construct a psychological feature space for a natural-object category domain
  publication-title: Computational Brain & Behavior
  doi: 10.1007/s42113-020-00073-z
– volume: 108
  start-page: 550
  year: 2001
  ident: bib91
  article-title: The time course of perceptual choice: the leaky, competing accumulator model
  publication-title: Psychological Review
  doi: 10.1037/0033-295x.108.3.550
– volume: 83
  start-page: 685
  year: 2021
  ident: bib62
  article-title: Eriksen flanker delta plot shapes depend on the stimulus
  publication-title: Attention, Perception & Psychophysics
  doi: 10.3758/s13414-020-02166-0
– volume-title: Stochastic Backpropagation and Approximate Inference in Deep Generative Models
  year: 2014
  ident: bib70
– volume: 4
  year: 2010
  ident: bib92
  article-title: To head or to heed? beyond the surface of selective action inhibition: a review
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2010.00222
– volume: 24
  start-page: 715
  year: 2021
  ident: bib47
  article-title: Rotational dynamics reduce interference between sensory and memory representations
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-021-00821-9
– volume-title: arXiv
  year: 2018
  ident: bib56
  article-title: Task-driven convolutional recurrent models of the visual system
– volume: 30
  start-page: 12978
  year: 2010
  ident: bib75
  article-title: Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0179-10.2010
– volume: 1
  start-page: 417
  year: 2015
  ident: bib44
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annual Review of Vision Science
  doi: 10.1146/annurev-vision-082114-035447
– volume: 8
  start-page: 1752
  year: 2024
  ident: bib63
  article-title: The neural network RTNet exhibits the signatures of human perceptual decision-making
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-024-01914-8
– volume: 27
  start-page: 2827
  year: 2017
  ident: bib18
  article-title: Humans, but not deep neural networks, often miss giant targets in scenes
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.07.068
– volume: 16
  year: 2020
  ident: bib81
  article-title: Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008215
– volume: 497
  start-page: 585
  year: 2013
  ident: bib73
  article-title: The importance of mixed selectivity in complex cognitive tasks
  publication-title: Nature
  doi: 10.1038/nature12160
– volume-title: arXiv
  year: 2013
  ident: bib42
  article-title: Self-normalizing neural networks
– volume: 29
  start-page: 219
  year: 2024
  ident: bib12
  article-title: Efficient selection between hierarchical cognitive models: cross-validation with variational Bayes
  publication-title: Psychological Methods
  doi: 10.1037/met0000458
– volume: 16
  start-page: 73
  year: 2020
  ident: bib20
  article-title: Evidence accumulation models: current limitations and future directions
  publication-title: The Quantitative Methods for Psychology
  doi: 10.20982/tqmp.16.2.p073
– volume: 96
  year: 2020
  ident: bib28
  article-title: New estimation approaches for the hierarchical linear ballistic accumulator model
  publication-title: Journal of Mathematical Psychology
  doi: 10.1016/j.jmp.2020.102368
– volume: 11
  year: 2021
  ident: bib50
  article-title: Modified leaky competing accumulator model of decision making with multiple alternatives: the Lie-algebraic approach
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-90356-7
– volume: 28
  start-page: 34
  year: 2019
  ident: bib33
  article-title: Comparing the visual representations and performance of humans and deep neural networks
  publication-title: Current Directions in Psychological Science
  doi: 10.1177/0963721418801342
– volume: 44
  start-page: 7
  year: 1988
  ident: bib83
  article-title: Effects of visual and auditory noise on visual choice reaction time in a continuous-flow paradigm
  publication-title: Perception & Psychophysics
  doi: 10.3758/bf03207468
– volume: 35
  start-page: 831
  year: 2020
  ident: bib77
  article-title: A diffusion model analysis of the effects of aging in the Flanker Task
  publication-title: Psychology and Aging
  doi: 10.1037/pag0000546
– volume-title: Software Heritage
  year: 2025
  ident: bib35
  article-title: Vam
– volume: 183
  start-page: 954
  year: 2020
  ident: bib5
  article-title: The geometry of abstraction in the hippocampus and prefrontal cortex
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.031
– volume: 116
  start-page: 17735
  year: 2019
  ident: bib82
  article-title: A large-scale analysis of task switching practice effects across the lifespan
  publication-title: PNAS
  doi: 10.1073/pnas.1906788116
– volume: 57
  start-page: 153
  year: 2008
  ident: bib9
  article-title: The simplest complete model of choice response time: linear ballistic accumulation
  publication-title: Cognitive Psychology
  doi: 10.1016/j.cogpsych.2007.12.002
– year: 2021
  ident: bib17
  article-title: An image is worth 16x16 words
– volume: 85
  start-page: 59
  year: 1978
  ident: bib66
  article-title: A theory of memory retrieval
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.85.2.59
– start-page: 248
  year: 2009
  ident: bib14
  article-title: ImageNet: a large-scale hierarchical image database
  doi: 10.1109/CVPR.2009.5206848
– volume: 212
  year: 2021
  ident: bib88
  article-title: Disentangling prevalence induced biases in medical image decision-making
  publication-title: Cognition
  doi: 10.1016/j.cognition.2021.104713
– volume: 19
  start-page: 356
  year: 2016
  ident: bib97
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4244
– volume-title: Github
  year: 2022
  ident: bib29
  article-title: Augmax
– volume: 7
  start-page: 986
  year: 2023
  ident: bib34
  article-title: Modelling human behaviour in cognitive tasks with latent dynamical systems
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-022-01510-8
– volume: 38
  start-page: 7255
  year: 2018
  ident: bib64
  article-title: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0388-18.2018
– volume: 21
  year: 2013
  ident: bib100
  article-title: Angles between subspaces and their tangents
  publication-title: Journal of Numerical Mathematics
  doi: 10.1515/jnum-2013-0013
– volume-title: arXiv
  year: 2015
  ident: bib80
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 18
  start-page: 430
  year: 2017
  ident: bib45
  article-title: Automatic differentiation variational inference
  publication-title: Journal of Machine Learning Research
– volume: 47
  start-page: 785
  year: 2021
  ident: bib1
  article-title: Combining convolutional neural networks and cognitive models to predict novel object recognition in humans
  publication-title: Journal of Experimental Psychology. Learning, Memory, and Cognition
  doi: 10.1037/xlm0000968
– volume-title: arXiv
  year: 2022
  ident: bib54
  article-title: Prune and distill: similar reformatting of image information along rat visual cortex and deep neural networks
– volume: 310
  start-page: 863
  year: 2005
  ident: bib32
  article-title: Fast readout of object identity from macaque inferior temporal cortex
  publication-title: Science
  doi: 10.1126/science.1117593
– volume: 8
  start-page: 945
  year: 2024
  ident: bib74
  article-title: Orthogonal neural encoding of targets and distractors supports multivariate cognitive control
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-024-01826-7
– volume: 33
  start-page: 2254
  year: 2013
  ident: bib53
  article-title: Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2984-12.2013
– volume: 16
  start-page: 1132
  year: 2013
  ident: bib58
  article-title: Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3433
– start-page: 2706
  year: 2017
  ident: bib49
  article-title: What are the visual features underlying human versus machine vision?
  doi: 10.1109/ICCVW.2017.331
– volume: 375
  start-page: 632
  year: 2022
  ident: bib95
  article-title: Geometry of sequence working memory in macaque prefrontal cortex
  publication-title: Science
  doi: 10.1126/science.abm0204
– volume-title: arXiv
  year: 2017
  ident: bib41
  article-title: Adam: a method for stochastic optimization
– volume: 16
  start-page: 189
  year: 1992
  ident: bib57
  article-title: Aging, cognitive performance, and mental
  publication-title: Intelligence
  doi: 10.1016/0160-2896(92)90004-B
SSID ssj0000748819
Score 2.4002428
Snippet Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Adult
Bayes Theorem
Computer simulation
Computer-generated environments
Decision Making - physiology
Decision-making
Female
Humans
Male
neural network modelling
Neural Networks, Computer
Optical data processing
Reaction Time - physiology
Visual Perception - physiology
visual processing
Young Adult
Title An image-computable model of speeded decision-making
URI https://www.ncbi.nlm.nih.gov/pubmed/40019474
https://www.proquest.com/docview/3172271716
https://doaj.org/article/40cf8dfef2f441b6b21dd9397fe5881a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB21W1XqpaKl0BRYpQipp4DjOP44LghEq4IQLdLeLH9WHMgidvfQf9-xE1ZsOfTSazJS4hnb71nyvAdwYElCSVzfplW0YszwykrRVLLBCeM5EyEfFC8u-fkN-zZtp0-svtKdsF4euE_cESMuSh9DpBGR23JLa-8VomgMrZR1pkaIeU8OU3kPFjgxa9U35AmEzKPw_TaGQ4WEo16DoKzU_3w__otlZrQ524C3A00sJ_3vvYMXoXsPr3vjyN-bwCZdeXuHW0HlsitD6n8qs6lNOYvl_B4hKfjSD_451V22nPoAN2enP0_Oq8H_oHJU8boK1JsW4UIEJ6mVvmHOCiWIIpFYLxwTtrHEmWhaESQCraeSBxaldZzid5otGHWzLnyE0jJrMKAmJCjWcGZah8SIExFFbHgdCjh4TIm-72UuNB4PUuZ0zpzOmSvgOKVrFZK0qfMDrJgeKqb_VbEC9lOydVKf6NL1ll9mOZ_rrz-u9URSldRupCzgyxAUZ4sH48zQLYDDSYJVa5G7a5G4PNza68-PNdXpVbpT1oXZcq6ROVEqklxQAdt9sVcDY4n6MsE-_Y8B78AbmlyDcyP8LowWD8uwh1RmYcfwUkzFGF4dn15eXY_zHP4D_lPxRg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image-computable+model+of+speeded+decision-making&rft.jtitle=eLife&rft.au=Jaffe%2C+Paul+I&rft.au=Santiago-Reyes%2C+Gustavo+X&rft.au=Schafer%2C+Robert+J&rft.au=Bissett%2C+Patrick+G&rft.date=2025-02-28&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.98351&rft_id=info%3Apmid%2F40019474&rft.externalDocID=40019474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon