An image-computable model of speeded decision-making
Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these...
Saved in:
Published in | eLife Vol. 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
28.02.2025
eLife Sciences Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions. |
---|---|
AbstractList | Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions. Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions. |
Audience | Academic |
Author | Schafer, Robert J Santiago-Reyes, Gustavo X Jaffe, Paul I Poldrack, Russell A Bissett, Patrick G |
Author_xml | – sequence: 1 givenname: Paul I orcidid: 0000-0003-0680-3923 surname: Jaffe fullname: Jaffe, Paul I – sequence: 2 givenname: Gustavo X surname: Santiago-Reyes fullname: Santiago-Reyes, Gustavo X – sequence: 3 givenname: Robert J surname: Schafer fullname: Schafer, Robert J – sequence: 4 givenname: Patrick G orcidid: 0000-0003-0854-9404 surname: Bissett fullname: Bissett, Patrick G – sequence: 5 givenname: Russell A surname: Poldrack fullname: Poldrack, Russell A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40019474$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1r3DAQhkVJaD6aU-_FkEtD8FaSZUs6LqFJFhYKTQq9CX2MjFLb2lg2tP8-ym4ashDpIDE8884M856ggyEOgNBnghe8rtk3WAcPCymqmnxAxxTXuMSC_T548z9CZyk94Hw4E4LIj-iIYUwk4-wYseVQhF63UNrYb-ZJmw6KPjroiuiLtAFw4AoHNqQQh7LXf8LQfkKHXncJzl7eU_Tr-vv91W25_nGzulquS0tlQ0qgTtdUSg5WUCNcxazhkmOJPTaOW8ZNZbDVXtccRNMQR0UDzAtjG5rrVqdotdN1UT-ozZgbHf-pqIPaBuLYKj1OwXagGLZeOA-eesaIaQwlzslKcg91Hlpnra87rc0YH2dIk-pDstB1eoA4J1URTiknnDQZPd-hrc7KYfBxGrV9xtVSUElkLYXI1OIdKl8HfbB5Sz7k-F7CxV5CZib4O7V6Tkmt7n7us19eup1ND-519v-Ly8DlDrBjTGkE_4oQrJ6dobbOUFtnVE9rfaep |
Cites_doi | 10.1093/oso/9780198510697.003.0024 10.1101/214262 10.1109/TVCG.2019.2934659 10.1523/JNEUROSCI.5023-14.2015 10.1109/ICDAR.2003.1227801 10.1016/0001-6918(82)90019-1 10.3758/BF03203267 10.1016/j.neuron.2012.01.010 10.2307/1423029 10.1371/journal.pcbi.1006903 10.1162/neco.2008.12-06-420 10.1073/pnas.1717075115 10.1038/s41593-017-0028-6 10.1017/S0140525X22002813 10.1111/cogs.13226 10.1007/s42113-019-00042-1 10.1523/JNEUROSCI.0309-11.2011 10.1037/0096-1523.20.4.731 10.1038/nn.4042 10.1016/j.cogpsych.2015.02.005 10.1038/nature12742 10.1093/geronj/37.3.342 10.1037/0882-7974.16.2.323 10.7554/eLife.22794 10.1016/j.neuron.2022.01.005 10.1111/1467-9280.00067 10.1073/pnas.1403112111 10.1038/s41586-021-03390-w 10.1016/j.jmp.2009.02.003 10.1162/jocn_a_01544 10.1038/s41593-018-0310-2 10.24033/bsmf.90 10.1037/h0054651 10.1007/s00426-002-0104-7 10.1038/nn.3643 10.1109/PGEC.1965.264137 10.1016/j.celrep.2020.108367 10.1016/j.cogpsych.2011.08.001 10.1002/ail2.48 10.1073/pnas.2015509117 10.1371/journal.pcbi.1006613 10.1371/journal.pone.0113551 10.1371/journal.pcbi.1009572 10.1007/s42113-020-00073-z 10.1037/0033-295x.108.3.550 10.3758/s13414-020-02166-0 10.3389/fnhum.2010.00222 10.1038/s41593-021-00821-9 10.1523/JNEUROSCI.0179-10.2010 10.1146/annurev-vision-082114-035447 10.1038/s41562-024-01914-8 10.1016/j.cub.2017.07.068 10.1371/journal.pcbi.1008215 10.1038/nature12160 10.1037/met0000458 10.20982/tqmp.16.2.p073 10.1016/j.jmp.2020.102368 10.1038/s41598-021-90356-7 10.1177/0963721418801342 10.3758/bf03207468 10.1037/pag0000546 10.1016/j.cell.2020.09.031 10.1073/pnas.1906788116 10.1016/j.cogpsych.2007.12.002 10.1037/0033-295X.85.2.59 10.1109/CVPR.2009.5206848 10.1016/j.cognition.2021.104713 10.1038/nn.4244 10.1038/s41562-022-01510-8 10.1523/JNEUROSCI.0388-18.2018 10.1515/jnum-2013-0013 10.1037/xlm0000968 10.1126/science.1117593 10.1038/s41562-024-01826-7 10.1523/JNEUROSCI.2984-12.2013 10.1038/nn.3433 10.1109/ICCVW.2017.331 10.1126/science.abm0204 10.1016/0160-2896(92)90004-B |
ContentType | Journal Article |
Copyright | 2024, Jaffe et al. COPYRIGHT 2025 eLife Science Publications, Ltd. |
Copyright_xml | – notice: 2024, Jaffe et al. – notice: COPYRIGHT 2025 eLife Science Publications, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 DOA |
DOI | 10.7554/eLife.98351 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Science MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_40cf8dfef2f441b6b21dd9397fe5881a A829195988 40019474 10_7554_eLife_98351 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB PJZUB PUEGO |
ID | FETCH-LOGICAL-c2961-e2da52997ec82b8d34cb797090f0bd7c47b3b0cafa57e8661d286e4f8bc62ede3 |
IEDL.DBID | DOA |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Fri Jul 11 09:19:03 EDT 2025 Tue Jun 17 21:57:06 EDT 2025 Tue Jun 10 21:09:24 EDT 2025 Fri Jun 27 05:15:31 EDT 2025 Mon May 12 02:38:45 EDT 2025 Tue Jul 01 05:25:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | none decision-making neural network modelling neuroscience visual processing |
Language | English |
License | 2024, Jaffe et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2961-e2da52997ec82b8d34cb797090f0bd7c47b3b0cafa57e8661d286e4f8bc62ede3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0854-9404 0000-0003-0680-3923 |
OpenAccessLink | https://doaj.org/article/40cf8dfef2f441b6b21dd9397fe5881a |
PMID | 40019474 |
PQID | 3172271716 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_40cf8dfef2f441b6b21dd9397fe5881a proquest_miscellaneous_3172271716 gale_infotracmisc_A829195988 gale_infotracacademiconefile_A829195988 gale_incontextgauss_ISR_A829195988 pubmed_primary_40019474 crossref_primary_10_7554_eLife_98351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Feb-28 |
PublicationDateYYYYMMDD | 2025-02-28 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2025 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd |
References | DiCarlo (bib16) 2012; 73 Ridderinkhof (bib71) 2002; 66 Kingma (bib41) 2017 Ridderinkhof (bib72) 2022 Dosovitskiy (bib17) 2021 Jha (bib36) 2023; 47 Brown (bib9) 2008; 57 Mante (bib52) 2013; 503 Jaffe (bib34) 2023; 7 Papyan (bib60) 2020; 117 Simard (bib78) 2003 Spoerer (bib81) 2020; 16 Yang (bib98) 2019; 22 Bradbury (bib7) 2018 Eckstein (bib18) 2017; 27 Zhu (bib100) 2013; 21 Taylor (bib87) 2021; 2 Gottsdanker (bib26) 1982; 37 Bernardi (bib5) 2020; 183 Rust (bib75) 2010; 30 Kaufman (bib38) 2014; 17 Usher (bib91) 2001; 108 Koren (bib43) 2020; 33 Servant (bib77) 2020; 35 Evans (bib20) 2020; 16 Sanders (bib76) 2020; 3 De Jong (bib13) 1994; 20 Malhotra (bib51) 2022; 18 Brincat (bib8) 2018; 115 Goetschalckx (bib25) 2023 Meister (bib53) 2013; 33 Sussillo (bib85) 2015; 18 Hung (bib32) 2005; 310 Hohman (bib30) 2020; 26 White (bib94) 2011; 63 Cover (bib11) 1965; 14 Rafiei (bib63) 2024; 8 Muratore (bib54) 2022 Ratcliff (bib68) 2001; 16 Yamins (bib97) 2016; 19 Nettelbeck (bib57) 1992; 16 Bowers (bib6) 2022; 46 Navarro (bib55) 2009; 53 Kingma (bib39) 2013 Flesch (bib22) 2022; 110 Holmes (bib31) 2020; 3 Ritz (bib74) 2024; 8 Kriegeskorte (bib44) 2015; 1 Klambauer (bib42) 2013 Simon (bib79) 1982; 51 Ansuini (bib2) 2019 Deng (bib14) 2009 Pratte (bib62) 2021; 83 Steyvers (bib82) 2019; 116 Jacobs (bib33) 2019; 28 Trueblood (bib88) 2021; 212 Rajalingham (bib64) 2018; 38 Libby (bib47) 2021; 24 Nayebi (bib56) 2018 Kucukelbir (bib45) 2017; 18 Ulyanov (bib90) 2017 Linsley (bib49) 2017 Kumbhar (bib46) 2020 Rigotti (bib73) 2013; 497 Xie (bib95) 2022; 375 Panichello (bib59) 2021; 592 Kingma (bib40) 2015 Ratcliff (bib67) 1998; 9 Tafazoli (bib86) 2017; 6 Annis (bib1) 2021; 47 van den Wildenberg (bib92) 2010; 4 Gunawan (bib28) 2020; 96 Wang (bib93) 2018; 21 Pagan (bib58) 2013; 16 Zeiler (bib99) 2013 Jordan (bib37) 1873; 2 Ratcliff (bib69) 2008; 20 Eriksen (bib19) 1974; 16 Gao (bib24) 2017 Pedregosa (bib61) 2011; 12 Stoffels (bib83) 1988; 44 Jaffe (bib35) 2025 Heidler (bib29) 2022 Güçlü (bib27) 2015; 35 Fel (bib21) 2022 Dao (bib12) 2024; 29 Rangamani (bib65) 2023 Dezfouli (bib15) 2019; 15 Stroop (bib84) 1935; 18 Rezende (bib70) 2014 Lindsay (bib48) 2021; 33 Cohen (bib10) 1992; 105 Yamins (bib96) 2014; 111 Ulrich (bib89) 2015; 78 Ben-David (bib4) 2014; 9 Baker (bib3) 2018; 14 Simonyan (bib80) 2015 Ratcliff (bib66) 1978; 85 Forstmann (bib23) 2011; 31 Lo (bib50) 2021; 11 |
References_xml | – start-page: 494 volume-title: Common Mechanisms in Perception and Action: Attention and Performance XIX year: 2022 ident: bib72 doi: 10.1093/oso/9780198510697.003.0024 – volume-title: bioRxiv year: 2017 ident: bib24 article-title: A theory of multineuronal dimensionality, dynamics and measurement doi: 10.1101/214262 – volume: 26 start-page: 1096 year: 2020 ident: bib30 article-title: Summit: scaling deep learning interpretability by visualizing activation and attribution summarizations publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2019.2934659 – volume: 35 start-page: 10005 year: 2015 ident: bib27 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5023-14.2015 – start-page: 958 year: 2003 ident: bib78 article-title: Best practices for convolutional neural networks applied to visual document analysis doi: 10.1109/ICDAR.2003.1227801 – volume: 51 start-page: 61 year: 1982 ident: bib79 article-title: Effect of an auditory stimulus on the processing of a visual stimulus under single- and dual-tasks conditions publication-title: Acta Psychologica doi: 10.1016/0001-6918(82)90019-1 – volume-title: Github year: 2018 ident: bib7 article-title: JAX: composable transformations of python+numpy programs – volume-title: arXiv year: 2015 ident: bib40 article-title: Variational dropout and the local reparameterization trick – volume-title: Intrinsic Dimension of Data Representations in Deep Neural Networks year: 2019 ident: bib2 – volume: 16 start-page: 143 year: 1974 ident: bib19 article-title: Effects of noise letters upon the identification of a target letter in a nonsearch task publication-title: Perception & Psychophysics doi: 10.3758/BF03203267 – volume: 73 start-page: 415 year: 2012 ident: bib16 article-title: How does the brain solve visual object recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – volume: 105 start-page: 239 year: 1992 ident: bib10 article-title: A parallel distributed processing approach to automaticity publication-title: The American Journal of Psychology doi: 10.2307/1423029 – volume: 15 year: 2019 ident: bib15 article-title: Models that learn how humans learn: the case of decision-making and its disorders publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006903 – volume: 20 start-page: 873 year: 2008 ident: bib69 article-title: The diffusion decision model: theory and data for two-choice decision tasks publication-title: Neural Computation doi: 10.1162/neco.2008.12-06-420 – volume: 115 start-page: E7202 year: 2018 ident: bib8 article-title: Gradual progression from sensory to task-related processing in cerebral cortex publication-title: PNAS doi: 10.1073/pnas.1717075115 – volume: 21 start-page: 102 year: 2018 ident: bib93 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nature Neuroscience doi: 10.1038/s41593-017-0028-6 – volume-title: arXiv year: 2013 ident: bib99 article-title: Visualizing and understanding convolutional networks – volume: 46 start-page: 1 year: 2022 ident: bib6 article-title: Deep problems with neural network models of human vision publication-title: The Behavioral and Brain Sciences doi: 10.1017/S0140525X22002813 – start-page: 28729 year: 2023 ident: bib65 article-title: Feature learning in deep classifiers through intermediate neural collapse – volume: 47 year: 2023 ident: bib36 article-title: Extracting low-dimensional psychological representations from convolutional neural networks publication-title: Cognitive Science doi: 10.1111/cogs.13226 – volume: 3 start-page: 1 year: 2020 ident: bib31 article-title: A joint deep neural network and evidence accumulation modeling approach to human decision-making with naturalistic images publication-title: Computational Brain & Behavior doi: 10.1007/s42113-019-00042-1 – volume: 31 start-page: 17242 year: 2011 ident: bib23 article-title: The speed-accuracy tradeoff in the elderly brain: A structural model-based approach publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0309-11.2011 – volume: 20 start-page: 731 year: 1994 ident: bib13 article-title: Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus-response correspondence publication-title: Journal of Experimental Psychology doi: 10.1037/0096-1523.20.4.731 – volume: 18 start-page: 1025 year: 2015 ident: bib85 article-title: A neural network that finds A naturalistic solution for the production of muscle activity publication-title: Nature Neuroscience doi: 10.1038/nn.4042 – volume: 12 start-page: 2825 year: 2011 ident: bib61 article-title: Scikit-learn: machine learning in python publication-title: Journal of Machine Learning Research – volume-title: arXiv year: 2017 ident: bib90 article-title: Instance normalization: the missing ingredient for fast stylization – volume: 78 start-page: 148 year: 2015 ident: bib89 article-title: Automatic and controlled stimulus processing in conflict tasks: superimposed diffusion processes and delta functions publication-title: Cognitive Psychology doi: 10.1016/j.cogpsych.2015.02.005 – volume: 503 start-page: 78 year: 2013 ident: bib52 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 37 start-page: 342 year: 1982 ident: bib26 article-title: Age and simple reaction time publication-title: Journal of Gerontology doi: 10.1093/geronj/37.3.342 – volume: 16 start-page: 323 year: 2001 ident: bib68 article-title: The effects of aging on reaction time in a signal detection task publication-title: Psychology and Aging doi: 10.1037/0882-7974.16.2.323 – volume: 6 year: 2017 ident: bib86 article-title: Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex publication-title: eLife doi: 10.7554/eLife.22794 – volume: 110 start-page: 1258 year: 2022 ident: bib22 article-title: Orthogonal representations for robust context-dependent task performance in brains and neural networks publication-title: Neuron doi: 10.1016/j.neuron.2022.01.005 – volume-title: arXiv year: 2013 ident: bib39 article-title: Auto-encoding variational bayes – volume: 9 start-page: 347 year: 1998 ident: bib67 article-title: Modeling response times for two-choice decisions publication-title: Psychological Science doi: 10.1111/1467-9280.00067 – volume: 111 start-page: 8619 year: 2014 ident: bib96 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: PNAS doi: 10.1073/pnas.1403112111 – volume: 592 start-page: 601 year: 2021 ident: bib59 article-title: Shared mechanisms underlie the control of working memory and attention publication-title: Nature doi: 10.1038/s41586-021-03390-w – volume: 53 start-page: 222 year: 2009 ident: bib55 article-title: Fast and accurate calculations for first-passage times in Wiener diffusion models publication-title: Journal of Mathematical Psychology doi: 10.1016/j.jmp.2009.02.003 – volume: 33 start-page: 2017 year: 2021 ident: bib48 article-title: Convolutional neural networks as a model of the visual system: past, present, and future publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_01544 – volume: 22 start-page: 297 year: 2019 ident: bib98 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0310-2 – volume: 2 start-page: 103 year: 1873 ident: bib37 article-title: Essai Sur La Géométrie à n dimensions publication-title: Bulletin de La Société Mathématique de France doi: 10.24033/bsmf.90 – volume: 18 start-page: 643 year: 1935 ident: bib84 article-title: Studies of interference in serial verbal reactions publication-title: Journal of Experimental Psychology doi: 10.1037/h0054651 – volume: 66 start-page: 312 year: 2002 ident: bib71 article-title: Micro- and macro-adjustments of task set: activation and suppression in conflict tasks publication-title: Psychological Research doi: 10.1007/s00426-002-0104-7 – volume: 17 start-page: 440 year: 2014 ident: bib38 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nature Neuroscience doi: 10.1038/nn.3643 – volume: 14 start-page: 326 year: 1965 ident: bib11 article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition publication-title: IEEE Transactions on Electronic Computers doi: 10.1109/PGEC.1965.264137 – volume-title: arXiv year: 2020 ident: bib46 article-title: Anytime prediction as a model of human reaction time – volume: 33 year: 2020 ident: bib43 article-title: Pairwise synchrony and correlations depend on the structure of the population code in visual cortex publication-title: Cell Reports doi: 10.1016/j.celrep.2020.108367 – start-page: 9432 year: 2022 ident: bib21 article-title: Harmonizing the object recognition strategies of deep neural networks with humans – volume: 63 start-page: 210 year: 2011 ident: bib94 article-title: Diffusion models of the flanker task: discrete versus gradual attentional selection publication-title: Cognitive Psychology doi: 10.1016/j.cogpsych.2011.08.001 – volume: 2 year: 2021 ident: bib87 article-title: Neural response time analysis: explainable artificial intelligence using only a stopwatch publication-title: Applied AI Letters doi: 10.1002/ail2.48 – start-page: 14338 year: 2023 ident: bib25 article-title: Computing a human-like reaction time metric from stable recurrent vision models – volume: 117 start-page: 24652 year: 2020 ident: bib60 article-title: Prevalence of neural collapse during the terminal phase of deep learning training publication-title: PNAS doi: 10.1073/pnas.2015509117 – volume: 14 year: 2018 ident: bib3 article-title: Deep convolutional networks do not classify based on global object shape publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006613 – volume: 9 year: 2014 ident: bib4 article-title: Effects of aging and distractors on detection of redundant visual targets and capacity: do older adults integrate visual targets differently than younger adults? publication-title: PLOS ONE doi: 10.1371/journal.pone.0113551 – volume: 18 year: 2022 ident: bib51 article-title: Feature blindness: A challenge for understanding and modelling visual object recognition publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1009572 – volume: 3 start-page: 229 year: 2020 ident: bib76 article-title: Training deep networks to construct a psychological feature space for a natural-object category domain publication-title: Computational Brain & Behavior doi: 10.1007/s42113-020-00073-z – volume: 108 start-page: 550 year: 2001 ident: bib91 article-title: The time course of perceptual choice: the leaky, competing accumulator model publication-title: Psychological Review doi: 10.1037/0033-295x.108.3.550 – volume: 83 start-page: 685 year: 2021 ident: bib62 article-title: Eriksen flanker delta plot shapes depend on the stimulus publication-title: Attention, Perception & Psychophysics doi: 10.3758/s13414-020-02166-0 – volume-title: Stochastic Backpropagation and Approximate Inference in Deep Generative Models year: 2014 ident: bib70 – volume: 4 year: 2010 ident: bib92 article-title: To head or to heed? beyond the surface of selective action inhibition: a review publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2010.00222 – volume: 24 start-page: 715 year: 2021 ident: bib47 article-title: Rotational dynamics reduce interference between sensory and memory representations publication-title: Nature Neuroscience doi: 10.1038/s41593-021-00821-9 – volume-title: arXiv year: 2018 ident: bib56 article-title: Task-driven convolutional recurrent models of the visual system – volume: 30 start-page: 12978 year: 2010 ident: bib75 article-title: Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0179-10.2010 – volume: 1 start-page: 417 year: 2015 ident: bib44 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annual Review of Vision Science doi: 10.1146/annurev-vision-082114-035447 – volume: 8 start-page: 1752 year: 2024 ident: bib63 article-title: The neural network RTNet exhibits the signatures of human perceptual decision-making publication-title: Nature Human Behaviour doi: 10.1038/s41562-024-01914-8 – volume: 27 start-page: 2827 year: 2017 ident: bib18 article-title: Humans, but not deep neural networks, often miss giant targets in scenes publication-title: Current Biology doi: 10.1016/j.cub.2017.07.068 – volume: 16 year: 2020 ident: bib81 article-title: Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1008215 – volume: 497 start-page: 585 year: 2013 ident: bib73 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature doi: 10.1038/nature12160 – volume-title: arXiv year: 2013 ident: bib42 article-title: Self-normalizing neural networks – volume: 29 start-page: 219 year: 2024 ident: bib12 article-title: Efficient selection between hierarchical cognitive models: cross-validation with variational Bayes publication-title: Psychological Methods doi: 10.1037/met0000458 – volume: 16 start-page: 73 year: 2020 ident: bib20 article-title: Evidence accumulation models: current limitations and future directions publication-title: The Quantitative Methods for Psychology doi: 10.20982/tqmp.16.2.p073 – volume: 96 year: 2020 ident: bib28 article-title: New estimation approaches for the hierarchical linear ballistic accumulator model publication-title: Journal of Mathematical Psychology doi: 10.1016/j.jmp.2020.102368 – volume: 11 year: 2021 ident: bib50 article-title: Modified leaky competing accumulator model of decision making with multiple alternatives: the Lie-algebraic approach publication-title: Scientific Reports doi: 10.1038/s41598-021-90356-7 – volume: 28 start-page: 34 year: 2019 ident: bib33 article-title: Comparing the visual representations and performance of humans and deep neural networks publication-title: Current Directions in Psychological Science doi: 10.1177/0963721418801342 – volume: 44 start-page: 7 year: 1988 ident: bib83 article-title: Effects of visual and auditory noise on visual choice reaction time in a continuous-flow paradigm publication-title: Perception & Psychophysics doi: 10.3758/bf03207468 – volume: 35 start-page: 831 year: 2020 ident: bib77 article-title: A diffusion model analysis of the effects of aging in the Flanker Task publication-title: Psychology and Aging doi: 10.1037/pag0000546 – volume-title: Software Heritage year: 2025 ident: bib35 article-title: Vam – volume: 183 start-page: 954 year: 2020 ident: bib5 article-title: The geometry of abstraction in the hippocampus and prefrontal cortex publication-title: Cell doi: 10.1016/j.cell.2020.09.031 – volume: 116 start-page: 17735 year: 2019 ident: bib82 article-title: A large-scale analysis of task switching practice effects across the lifespan publication-title: PNAS doi: 10.1073/pnas.1906788116 – volume: 57 start-page: 153 year: 2008 ident: bib9 article-title: The simplest complete model of choice response time: linear ballistic accumulation publication-title: Cognitive Psychology doi: 10.1016/j.cogpsych.2007.12.002 – year: 2021 ident: bib17 article-title: An image is worth 16x16 words – volume: 85 start-page: 59 year: 1978 ident: bib66 article-title: A theory of memory retrieval publication-title: Psychological Review doi: 10.1037/0033-295X.85.2.59 – start-page: 248 year: 2009 ident: bib14 article-title: ImageNet: a large-scale hierarchical image database doi: 10.1109/CVPR.2009.5206848 – volume: 212 year: 2021 ident: bib88 article-title: Disentangling prevalence induced biases in medical image decision-making publication-title: Cognition doi: 10.1016/j.cognition.2021.104713 – volume: 19 start-page: 356 year: 2016 ident: bib97 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4244 – volume-title: Github year: 2022 ident: bib29 article-title: Augmax – volume: 7 start-page: 986 year: 2023 ident: bib34 article-title: Modelling human behaviour in cognitive tasks with latent dynamical systems publication-title: Nature Human Behaviour doi: 10.1038/s41562-022-01510-8 – volume: 38 start-page: 7255 year: 2018 ident: bib64 article-title: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0388-18.2018 – volume: 21 year: 2013 ident: bib100 article-title: Angles between subspaces and their tangents publication-title: Journal of Numerical Mathematics doi: 10.1515/jnum-2013-0013 – volume-title: arXiv year: 2015 ident: bib80 article-title: Very deep convolutional networks for large-scale image recognition – volume: 18 start-page: 430 year: 2017 ident: bib45 article-title: Automatic differentiation variational inference publication-title: Journal of Machine Learning Research – volume: 47 start-page: 785 year: 2021 ident: bib1 article-title: Combining convolutional neural networks and cognitive models to predict novel object recognition in humans publication-title: Journal of Experimental Psychology. Learning, Memory, and Cognition doi: 10.1037/xlm0000968 – volume-title: arXiv year: 2022 ident: bib54 article-title: Prune and distill: similar reformatting of image information along rat visual cortex and deep neural networks – volume: 310 start-page: 863 year: 2005 ident: bib32 article-title: Fast readout of object identity from macaque inferior temporal cortex publication-title: Science doi: 10.1126/science.1117593 – volume: 8 start-page: 945 year: 2024 ident: bib74 article-title: Orthogonal neural encoding of targets and distractors supports multivariate cognitive control publication-title: Nature Human Behaviour doi: 10.1038/s41562-024-01826-7 – volume: 33 start-page: 2254 year: 2013 ident: bib53 article-title: Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2984-12.2013 – volume: 16 start-page: 1132 year: 2013 ident: bib58 article-title: Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information publication-title: Nature Neuroscience doi: 10.1038/nn.3433 – start-page: 2706 year: 2017 ident: bib49 article-title: What are the visual features underlying human versus machine vision? doi: 10.1109/ICCVW.2017.331 – volume: 375 start-page: 632 year: 2022 ident: bib95 article-title: Geometry of sequence working memory in macaque prefrontal cortex publication-title: Science doi: 10.1126/science.abm0204 – volume-title: arXiv year: 2017 ident: bib41 article-title: Adam: a method for stochastic optimization – volume: 16 start-page: 189 year: 1992 ident: bib57 article-title: Aging, cognitive performance, and mental publication-title: Intelligence doi: 10.1016/0160-2896(92)90004-B |
SSID | ssj0000748819 |
Score | 2.4002428 |
Snippet | Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
SubjectTerms | Adult Bayes Theorem Computer simulation Computer-generated environments Decision Making - physiology Decision-making Female Humans Male neural network modelling Neural Networks, Computer Optical data processing Reaction Time - physiology Visual Perception - physiology visual processing Young Adult |
Title | An image-computable model of speeded decision-making |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40019474 https://www.proquest.com/docview/3172271716 https://doaj.org/article/40cf8dfef2f441b6b21dd9397fe5881a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB21W1XqpaKl0BRYpQipp4DjOP44LghEq4IQLdLeLH9WHMgidvfQf9-xE1ZsOfTSazJS4hnb71nyvAdwYElCSVzfplW0YszwykrRVLLBCeM5EyEfFC8u-fkN-zZtp0-svtKdsF4euE_cESMuSh9DpBGR23JLa-8VomgMrZR1pkaIeU8OU3kPFjgxa9U35AmEzKPw_TaGQ4WEo16DoKzU_3w__otlZrQ524C3A00sJ_3vvYMXoXsPr3vjyN-bwCZdeXuHW0HlsitD6n8qs6lNOYvl_B4hKfjSD_451V22nPoAN2enP0_Oq8H_oHJU8boK1JsW4UIEJ6mVvmHOCiWIIpFYLxwTtrHEmWhaESQCraeSBxaldZzid5otGHWzLnyE0jJrMKAmJCjWcGZah8SIExFFbHgdCjh4TIm-72UuNB4PUuZ0zpzOmSvgOKVrFZK0qfMDrJgeKqb_VbEC9lOydVKf6NL1ll9mOZ_rrz-u9URSldRupCzgyxAUZ4sH48zQLYDDSYJVa5G7a5G4PNza68-PNdXpVbpT1oXZcq6ROVEqklxQAdt9sVcDY4n6MsE-_Y8B78AbmlyDcyP8LowWD8uwh1RmYcfwUkzFGF4dn15eXY_zHP4D_lPxRg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image-computable+model+of+speeded+decision-making&rft.jtitle=eLife&rft.au=Jaffe%2C+Paul+I&rft.au=Santiago-Reyes%2C+Gustavo+X&rft.au=Schafer%2C+Robert+J&rft.au=Bissett%2C+Patrick+G&rft.date=2025-02-28&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.98351&rft_id=info%3Apmid%2F40019474&rft.externalDocID=40019474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |