Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance
To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes m...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 183; no. 3; pp. 1011 - 1025 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (
) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes. |
---|---|
AbstractList | Integrated root phenotypes that optimize water use efficiency and overcome mechanical impedance from dry, hard soils are beneficial for drought tolerance in maize.
To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (
Zea mays
) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant–integrated phenotypes merit consideration as breeding ideotypes. To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes. To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (Zea mays) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (Zea mays) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes. |
Author | Schneider, Hannah M. Brown, Kathleen M. Klein, Stephanie P. Lynch, Jonathan P. Perkins, Alden C. |
Author_xml | – sequence: 1 givenname: Stephanie P. orcidid: 0000-0003-4450-6057 surname: Klein fullname: Klein, Stephanie P. organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802 – sequence: 2 givenname: Hannah M. surname: Schneider fullname: Schneider, Hannah M. organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802 – sequence: 3 givenname: Alden C. surname: Perkins fullname: Perkins, Alden C. organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802 – sequence: 4 givenname: Kathleen M. orcidid: 0000-0002-4960-5292 surname: Brown fullname: Brown, Kathleen M. organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802 – sequence: 5 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32332090$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLAzEQxoNUbH2cvMseBWmdPHa7exGKz4KiiJ5Dms62ke0mJlnF_974RMVTkvl-831MZpP0WtsiIbsURpSCOHRuxGAEwChdIwOaczZkuSh7ZACQ7lCWVZ9shvAAAJRTsUH6nHHOoIIBub3qmmhcg9m0jbjwKuI8u7U2ZjdLbG18cRiyicdsEoLV5l1-NnGZTVfO26f0OvG2Wyxjdmcb9KrVuE3Wa9UE3Pk8t8j92end8cXw8vp8ejy5HGpWFXSYI-eqForz-bhmquZ1jZoiL3SOhSqEUDSflXOlsRCaQiqWs5qnKZkCViVwixx9-LputsK5xjZ61UjnzUr5F2mVkb-V1izlwj7JMee8KMfJYP_TwNvHDkOUKxM0No1q0XZBMl6JsoSciYTu_cz6Dvn6yATQD0B7G4LHWmoTVTT2Ldo0koJ8W5Z0TjKQ78tKPQd_er5s_6NfAdpAlpw |
CitedBy_id | crossref_primary_10_1007_s13562_022_00809_x crossref_primary_10_3389_fpls_2023_1084355 crossref_primary_10_1111_eva_13673 crossref_primary_10_1111_tpj_15550 crossref_primary_10_1007_s00122_021_03819_w crossref_primary_10_1093_jxb_eraf006 crossref_primary_10_1186_s12870_022_04001_0 crossref_primary_10_3389_fpls_2022_824720 crossref_primary_10_1016_j_flora_2024_152562 crossref_primary_10_1093_hr_uhac192 crossref_primary_10_12688_f1000research_140649_1 crossref_primary_10_1007_s11104_024_06892_4 crossref_primary_10_3390_plants11172275 crossref_primary_10_1186_s12863_023_01140_7 crossref_primary_10_1111_pce_14035 crossref_primary_10_1111_pce_14552 crossref_primary_10_1002_agj2_21528 crossref_primary_10_1093_jxb_erab406 crossref_primary_10_1002_csc2_20312 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_1073_pnas_2110245119 crossref_primary_10_1002_tpg2_20463 crossref_primary_10_34133_plantphenomics_0252 crossref_primary_10_1111_tpj_15560 crossref_primary_10_1007_s00122_024_04798_4 crossref_primary_10_1016_j_envexpbot_2024_105943 crossref_primary_10_1186_s13007_024_01304_1 crossref_primary_10_1016_j_copbio_2021_07_019 crossref_primary_10_1038_s43017_023_00514_w crossref_primary_10_1007_s11103_021_01173_5 crossref_primary_10_1111_nph_20428 crossref_primary_10_1111_pce_14567 crossref_primary_10_1093_jxb_erae191 crossref_primary_10_1007_s11104_023_06159_4 crossref_primary_10_1016_j_fcr_2022_108603 crossref_primary_10_1007_s10265_021_01348_7 crossref_primary_10_1111_nph_19638 crossref_primary_10_3390_agronomy11010112 crossref_primary_10_3390_horticulturae9121267 crossref_primary_10_1007_s42729_024_02141_w crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1002_pld3_328 crossref_primary_10_1093_plphys_kiac281 crossref_primary_10_1093_plphys_kiab392 crossref_primary_10_1007_s11104_022_05711_y crossref_primary_10_1111_tpj_15774 crossref_primary_10_1007_s00344_022_10807_x crossref_primary_10_1007_s11104_022_05527_w crossref_primary_10_1016_j_chemosphere_2022_135958 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1111_ppl_13415 crossref_primary_10_1016_j_jafr_2023_100911 crossref_primary_10_1016_j_jplph_2022_153657 crossref_primary_10_1111_pce_14256 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1093_aob_mcae198 crossref_primary_10_1111_jac_12646 crossref_primary_10_1002_tpg2_20489 crossref_primary_10_1093_plphys_kiad213 crossref_primary_10_3389_fpls_2024_1383373 crossref_primary_10_3390_agronomy11030552 crossref_primary_10_1016_j_foreco_2023_121570 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_1002_csc2_20838 crossref_primary_10_3390_ijms24021143 crossref_primary_10_1007_s13205_022_03299_9 crossref_primary_10_1111_tpj_16672 crossref_primary_10_1007_s00299_023_02999_7 crossref_primary_10_1002_csc2_20635 crossref_primary_10_1073_pnas_2219668120 crossref_primary_10_1002_fes3_325 crossref_primary_10_1111_tpj_15226 crossref_primary_10_3389_fpls_2022_959629 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_1111_pce_14588 crossref_primary_10_1007_s11104_024_06626_6 crossref_primary_10_1016_j_rhisph_2024_100922 crossref_primary_10_1016_j_fcr_2025_109774 crossref_primary_10_1016_j_plantsci_2025_112453 crossref_primary_10_3389_fpls_2022_1008954 crossref_primary_10_1002_pei3_10117 |
ContentType | Journal Article |
Copyright | 2020 American Society of Plant Biologists. All Rights Reserved. 2020 American Society of Plant Biologists. All Rights Reserved. 2020 |
Copyright_xml | – notice: 2020 American Society of Plant Biologists. All Rights Reserved. – notice: 2020 American Society of Plant Biologists. All Rights Reserved. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1104/pp.20.00211 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1025 |
ExternalDocumentID | PMC7333687 32332090 10_1104_pp_20_00211 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2014–67013–21572; 2017–67013–26192 – fundername: Howard G. Buffet Foundation |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAWDT AAXTN AAYJJ AAYXX ABBHK ABDFA ABEJV ABGNP ABIME ABJNI ABMNT ABPIB ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ABZEO ACBTR ACFRR ACGOD ACHIC ACIPB ACNCT ACPRK ACUFI ACUTJ ACVCV ACZBC ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AEUYN AFAZZ AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGMDO AGORE AGUYK AHGBF AHMBA AHXOZ AICQM AIDAL AIDBO AJBYB AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD APJGH AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CITATION CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH H13 HCIFZ HMCUK HTVGU IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 LU7 M0K M1P M2O M2P M2Q M7P MV1 MVM NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X QZG RHI ROX RPB RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 17:57:49 EDT 2025 Thu Jul 10 17:51:03 EDT 2025 Mon Jul 21 06:02:15 EDT 2025 Tue Jul 01 02:23:30 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2020 American Society of Plant Biologists. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Senior author. www.plantphysiol.org/cgi/doi/10.1104/pp.20.00211 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Jonathan P. Lynch (jpl4@psu.edu). S.P.K. designed the experiments, analyzed the data, and wrote the article with contributions from all authors; H.M.S. designed the experiments and analyzed data; A.C.P. conducted simulations; K.M.B. supervised and provided feedback on data analysis and writing; J.P.L. conceived and supervised the project and contributed to data analysis and writing. |
ORCID | 0000-0002-7265-9790 0000-0003-4450-6057 0000-0002-4960-5292 |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/183/3/1011/37281698/plphys_v183_3_1011.pdf |
PMID | 32332090 |
PQID | 2394880524 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7333687 proquest_miscellaneous_2394880524 pubmed_primary_32332090 crossref_citationtrail_10_1104_pp_20_00211 crossref_primary_10_1104_pp_20_00211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2020 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
SSID | ssj0001314 |
Score | 2.5303094 |
Snippet | To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400... Integrated root phenotypes that optimize water use efficiency and overcome mechanical impedance from dry, hard soils are beneficial for drought tolerance in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1011 |
SubjectTerms | Crops, Agricultural - anatomy & histology Crops, Agricultural - genetics Crops, Agricultural - physiology Dehydration - genetics Dehydration - physiopathology Genetic Variation Genotype Phenotype Plant Roots - anatomy & histology Plant Roots - genetics Plant Roots - physiology Zea mays - genetics Zea mays - physiology |
Title | Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32332090 https://www.proquest.com/docview/2394880524 https://pubmed.ncbi.nlm.nih.gov/PMC7333687 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65aVXlUvVdt01FpZyKcGGXl4-Jk8pp5MqKHCk3tOBFjuSCZeND--v60zqzL3DqQ5MLwrALgvk8-80wD0KORZpyATzUy3N03QCh8IY0yD1gDwlgoBRMZvFPfsTj6_D7TXTT6_3pRC1tm3xQ_N6bV_IQqcIxkCtmyd5DsvaicAD2Qb6wBQnD9r9kPDHRgBem6MPcvarrxp0uRFWjd3XjnqyFlYEJNVeeBPh1Jpv0NO6sXoq1lb_mqtjPqFGuD1WoCcjoKeYHb-a840C4XOp-mTJgDDPW3emg_b6zqLCSlsTFmFcVX7iTQauP0VOv-iEvQQG6I3vKugdMuIeZpj0UYI6aaNamkxSA2krHoWJwn3wC1W4T4Nz1S_qMehh7pRYoo5WpB5Zsuqu2WQefrKOEQcsEnQUdKFS0f7HwQ-xwjFVL0a-mJnVgs_opccMoY9RXTU3v1OaeTkYJYyxOk0fkMQVDRRr1F5eWCwRMVZc3D6UzROHOXzv3PSRPzU126dE_Ns_d0N0OF5o9J8-0EeOcKES-ID1RvSRPTmswNH69IlcGlk4LSwdh6bSwhLnCaWHpICwdA0tHw9KxsHxNrr-dz0ZjT7fu8Ao6jAMvEozxMuSMzZOS8pJhcFIgWFxEIubAwXkQ5emcFyIOC6D4Ik7zkmG7Ae7TIQx8Qw6quhLviEN5kJepH2OxM7AeQk7RhEnyNA84ULCyT76YN5YVuq49tldZZtK-9cNstcooFsGFN90nx3bwSpVz2T_ss3n1Gahb_IbGK1FvNxllQ1zyIhr2yVslCnshI8M-SXaEZAdgKffdM9XtQpZ01yh6_-CZH8hh-9f7SA6a9VYcAV1u8k8SkX8BTZfBfA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Integrated+Root+Phenotypes+Are+Associated+with+Improved+Drought+Tolerance&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Klein%2C+Stephanie+P.&rft.au=Schneider%2C+Hannah+M.&rft.au=Perkins%2C+Alden+C.&rft.au=Brown%2C+Kathleen+M.&rft.date=2020-07-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=183&rft.issue=3&rft.spage=1011&rft.epage=1025&rft_id=info:doi/10.1104%2Fpp.20.00211&rft_id=info%3Apmid%2F32332090&rft.externalDocID=PMC7333687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |