Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance

To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes m...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 183; no. 3; pp. 1011 - 1025
Main Authors Klein, Stephanie P., Schneider, Hannah M., Perkins, Alden C., Brown, Kathleen M., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.
AbstractList Integrated root phenotypes that optimize water use efficiency and overcome mechanical impedance from dry, hard soils are beneficial for drought tolerance in maize. To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( Zea mays ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant–integrated phenotypes merit consideration as breeding ideotypes.
To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.
To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (Zea mays) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (Zea mays) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.
Author Schneider, Hannah M.
Brown, Kathleen M.
Klein, Stephanie P.
Lynch, Jonathan P.
Perkins, Alden C.
Author_xml – sequence: 1
  givenname: Stephanie P.
  orcidid: 0000-0003-4450-6057
  surname: Klein
  fullname: Klein, Stephanie P.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
– sequence: 2
  givenname: Hannah M.
  surname: Schneider
  fullname: Schneider, Hannah M.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
– sequence: 3
  givenname: Alden C.
  surname: Perkins
  fullname: Perkins, Alden C.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
– sequence: 4
  givenname: Kathleen M.
  orcidid: 0000-0002-4960-5292
  surname: Brown
  fullname: Brown, Kathleen M.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
– sequence: 5
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32332090$$D View this record in MEDLINE/PubMed
BookMark eNptkctLAzEQxoNUbH2cvMseBWmdPHa7exGKz4KiiJ5Dms62ke0mJlnF_974RMVTkvl-831MZpP0WtsiIbsURpSCOHRuxGAEwChdIwOaczZkuSh7ZACQ7lCWVZ9shvAAAJRTsUH6nHHOoIIBub3qmmhcg9m0jbjwKuI8u7U2ZjdLbG18cRiyicdsEoLV5l1-NnGZTVfO26f0OvG2Wyxjdmcb9KrVuE3Wa9UE3Pk8t8j92end8cXw8vp8ejy5HGpWFXSYI-eqForz-bhmquZ1jZoiL3SOhSqEUDSflXOlsRCaQiqWs5qnKZkCViVwixx9-LputsK5xjZ61UjnzUr5F2mVkb-V1izlwj7JMee8KMfJYP_TwNvHDkOUKxM0No1q0XZBMl6JsoSciYTu_cz6Dvn6yATQD0B7G4LHWmoTVTT2Ldo0koJ8W5Z0TjKQ78tKPQd_er5s_6NfAdpAlpw
CitedBy_id crossref_primary_10_1007_s13562_022_00809_x
crossref_primary_10_3389_fpls_2023_1084355
crossref_primary_10_1111_eva_13673
crossref_primary_10_1111_tpj_15550
crossref_primary_10_1007_s00122_021_03819_w
crossref_primary_10_1093_jxb_eraf006
crossref_primary_10_1186_s12870_022_04001_0
crossref_primary_10_3389_fpls_2022_824720
crossref_primary_10_1016_j_flora_2024_152562
crossref_primary_10_1093_hr_uhac192
crossref_primary_10_12688_f1000research_140649_1
crossref_primary_10_1007_s11104_024_06892_4
crossref_primary_10_3390_plants11172275
crossref_primary_10_1186_s12863_023_01140_7
crossref_primary_10_1111_pce_14035
crossref_primary_10_1111_pce_14552
crossref_primary_10_1002_agj2_21528
crossref_primary_10_1093_jxb_erab406
crossref_primary_10_1002_csc2_20312
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_1073_pnas_2110245119
crossref_primary_10_1002_tpg2_20463
crossref_primary_10_34133_plantphenomics_0252
crossref_primary_10_1111_tpj_15560
crossref_primary_10_1007_s00122_024_04798_4
crossref_primary_10_1016_j_envexpbot_2024_105943
crossref_primary_10_1186_s13007_024_01304_1
crossref_primary_10_1016_j_copbio_2021_07_019
crossref_primary_10_1038_s43017_023_00514_w
crossref_primary_10_1007_s11103_021_01173_5
crossref_primary_10_1111_nph_20428
crossref_primary_10_1111_pce_14567
crossref_primary_10_1093_jxb_erae191
crossref_primary_10_1007_s11104_023_06159_4
crossref_primary_10_1016_j_fcr_2022_108603
crossref_primary_10_1007_s10265_021_01348_7
crossref_primary_10_1111_nph_19638
crossref_primary_10_3390_agronomy11010112
crossref_primary_10_3390_horticulturae9121267
crossref_primary_10_1007_s42729_024_02141_w
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1002_pld3_328
crossref_primary_10_1093_plphys_kiac281
crossref_primary_10_1093_plphys_kiab392
crossref_primary_10_1007_s11104_022_05711_y
crossref_primary_10_1111_tpj_15774
crossref_primary_10_1007_s00344_022_10807_x
crossref_primary_10_1007_s11104_022_05527_w
crossref_primary_10_1016_j_chemosphere_2022_135958
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1111_ppl_13415
crossref_primary_10_1016_j_jafr_2023_100911
crossref_primary_10_1016_j_jplph_2022_153657
crossref_primary_10_1111_pce_14256
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_1093_aob_mcae198
crossref_primary_10_1111_jac_12646
crossref_primary_10_1002_tpg2_20489
crossref_primary_10_1093_plphys_kiad213
crossref_primary_10_3389_fpls_2024_1383373
crossref_primary_10_3390_agronomy11030552
crossref_primary_10_1016_j_foreco_2023_121570
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_1002_csc2_20838
crossref_primary_10_3390_ijms24021143
crossref_primary_10_1007_s13205_022_03299_9
crossref_primary_10_1111_tpj_16672
crossref_primary_10_1007_s00299_023_02999_7
crossref_primary_10_1002_csc2_20635
crossref_primary_10_1073_pnas_2219668120
crossref_primary_10_1002_fes3_325
crossref_primary_10_1111_tpj_15226
crossref_primary_10_3389_fpls_2022_959629
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_1111_pce_14588
crossref_primary_10_1007_s11104_024_06626_6
crossref_primary_10_1016_j_rhisph_2024_100922
crossref_primary_10_1016_j_fcr_2025_109774
crossref_primary_10_1016_j_plantsci_2025_112453
crossref_primary_10_3389_fpls_2022_1008954
crossref_primary_10_1002_pei3_10117
ContentType Journal Article
Copyright 2020 American Society of Plant Biologists. All Rights Reserved.
2020 American Society of Plant Biologists. All Rights Reserved. 2020
Copyright_xml – notice: 2020 American Society of Plant Biologists. All Rights Reserved.
– notice: 2020 American Society of Plant Biologists. All Rights Reserved. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1104/pp.20.00211
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1025
ExternalDocumentID PMC7333687
32332090
10_1104_pp_20_00211
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2014–67013–21572; 2017–67013–26192
– fundername: Howard G. Buffet Foundation
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
AAYXX
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGOD
ACHIC
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGMDO
AGORE
AGUYK
AHGBF
AHMBA
AHXOZ
AICQM
AIDAL
AIDBO
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CITATION
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HMCUK
HTVGU
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
LU7
M0K
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 17:57:49 EDT 2025
Thu Jul 10 17:51:03 EDT 2025
Mon Jul 21 06:02:15 EDT 2025
Tue Jul 01 02:23:30 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2020 American Society of Plant Biologists. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Senior author.
www.plantphysiol.org/cgi/doi/10.1104/pp.20.00211
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Jonathan P. Lynch (jpl4@psu.edu).
S.P.K. designed the experiments, analyzed the data, and wrote the article with contributions from all authors; H.M.S. designed the experiments and analyzed data; A.C.P. conducted simulations; K.M.B. supervised and provided feedback on data analysis and writing; J.P.L. conceived and supervised the project and contributed to data analysis and writing.
ORCID 0000-0002-7265-9790
0000-0003-4450-6057
0000-0002-4960-5292
OpenAccessLink https://academic.oup.com/plphys/article-pdf/183/3/1011/37281698/plphys_v183_3_1011.pdf
PMID 32332090
PQID 2394880524
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7333687
proquest_miscellaneous_2394880524
pubmed_primary_32332090
crossref_citationtrail_10_1104_pp_20_00211
crossref_primary_10_1104_pp_20_00211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2020
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
SSID ssj0001314
Score 2.5303094
Snippet To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400...
Integrated root phenotypes that optimize water use efficiency and overcome mechanical impedance from dry, hard soils are beneficial for drought tolerance in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1011
SubjectTerms Crops, Agricultural - anatomy & histology
Crops, Agricultural - genetics
Crops, Agricultural - physiology
Dehydration - genetics
Dehydration - physiopathology
Genetic Variation
Genotype
Phenotype
Plant Roots - anatomy & histology
Plant Roots - genetics
Plant Roots - physiology
Zea mays - genetics
Zea mays - physiology
Title Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance
URI https://www.ncbi.nlm.nih.gov/pubmed/32332090
https://www.proquest.com/docview/2394880524
https://pubmed.ncbi.nlm.nih.gov/PMC7333687
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65aVXlUvVdt01FpZyKcGGXl4-Jk8pp5MqKHCk3tOBFjuSCZeND--v60zqzL3DqQ5MLwrALgvk8-80wD0KORZpyATzUy3N03QCh8IY0yD1gDwlgoBRMZvFPfsTj6_D7TXTT6_3pRC1tm3xQ_N6bV_IQqcIxkCtmyd5DsvaicAD2Qb6wBQnD9r9kPDHRgBem6MPcvarrxp0uRFWjd3XjnqyFlYEJNVeeBPh1Jpv0NO6sXoq1lb_mqtjPqFGuD1WoCcjoKeYHb-a840C4XOp-mTJgDDPW3emg_b6zqLCSlsTFmFcVX7iTQauP0VOv-iEvQQG6I3vKugdMuIeZpj0UYI6aaNamkxSA2krHoWJwn3wC1W4T4Nz1S_qMehh7pRYoo5WpB5Zsuqu2WQefrKOEQcsEnQUdKFS0f7HwQ-xwjFVL0a-mJnVgs_opccMoY9RXTU3v1OaeTkYJYyxOk0fkMQVDRRr1F5eWCwRMVZc3D6UzROHOXzv3PSRPzU126dE_Ns_d0N0OF5o9J8-0EeOcKES-ID1RvSRPTmswNH69IlcGlk4LSwdh6bSwhLnCaWHpICwdA0tHw9KxsHxNrr-dz0ZjT7fu8Ao6jAMvEozxMuSMzZOS8pJhcFIgWFxEIubAwXkQ5emcFyIOC6D4Ik7zkmG7Ae7TIQx8Qw6quhLviEN5kJepH2OxM7AeQk7RhEnyNA84ULCyT76YN5YVuq49tldZZtK-9cNstcooFsGFN90nx3bwSpVz2T_ss3n1Gahb_IbGK1FvNxllQ1zyIhr2yVslCnshI8M-SXaEZAdgKffdM9XtQpZ01yh6_-CZH8hh-9f7SA6a9VYcAV1u8k8SkX8BTZfBfA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Integrated+Root+Phenotypes+Are+Associated+with+Improved+Drought+Tolerance&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Klein%2C+Stephanie+P.&rft.au=Schneider%2C+Hannah+M.&rft.au=Perkins%2C+Alden+C.&rft.au=Brown%2C+Kathleen+M.&rft.date=2020-07-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=183&rft.issue=3&rft.spage=1011&rft.epage=1025&rft_id=info:doi/10.1104%2Fpp.20.00211&rft_id=info%3Apmid%2F32332090&rft.externalDocID=PMC7333687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon