Synergy-Based Control of Assistive Lower-Limb Exoskeletons by Skill Transfer
Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by transferring the motor skills. The synergy-based robotic controller captures kinesiological information and biological signals from the healthy leg...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 25; no. 2; pp. 705 - 715 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by transferring the motor skills. The synergy-based robotic controller captures kinesiological information and biological signals from the healthy leg and generates intended motor patterns for the assisted leg in different gait phases of the slope walking behavior. First, we have developed a computationally efficient stiffness estimation model of the lower-limb joints and identified the experimental parameters in accord with the subject's locomotion behavior. The estimated stiffness matrix at minimum muscular contraction is scaled by cocontraction index and mapped to joint stiffness to be utilized in the control design. Then, we have proposed the impedance matching model and realized human skills transfer by surface electromyography signals. Considering the uncertain dynamics of the human-robot system, we have developed an adaptive fuzzy approximator to estimate robot's dynamic parameters and drive the robot tracking the referenced trajectories. The developed synergy-based control has been verified using three subjects with varying locomotor abilities. Results from these participants have shown a symmetrical and consistent adaptability between two legs with the synergy-based control, while the range of motion of the assisted leg in the affected side is more volitional and individualized. |
---|---|
AbstractList | Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by transferring the motor skills. The synergy-based robotic controller captures kinesiological information and biological signals from the healthy leg and generates intended motor patterns for the assisted leg in different gait phases of the slope walking behavior. First, we have developed a computationally efficient stiffness estimation model of the lower-limb joints and identified the experimental parameters in accord with the subject's locomotion behavior. The estimated stiffness matrix at minimum muscular contraction is scaled by cocontraction index and mapped to joint stiffness to be utilized in the control design. Then, we have proposed the impedance matching model and realized human skills transfer by surface electromyography signals. Considering the uncertain dynamics of the human-robot system, we have developed an adaptive fuzzy approximator to estimate robot's dynamic parameters and drive the robot tracking the referenced trajectories. The developed synergy-based control has been verified using three subjects with varying locomotor abilities. Results from these participants have shown a symmetrical and consistent adaptability between two legs with the synergy-based control, while the range of motion of the assisted leg in the affected side is more volitional and individualized. |
Author | Li, Zhijun Su, Chun-Yi Kang, Yu Wei, Qiang Zhao, Kuankuan |
Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0002-9109-5943 surname: Wei fullname: Wei, Qiang email: qiangwei@mail.ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Zhijun orcidid: 0000-0002-3909-488X surname: Li fullname: Li, Zhijun email: zjli@ieee.org organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Kuankuan surname: Zhao fullname: Zhao, Kuankuan email: zkk@mail.ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Yu orcidid: 0000-0002-8706-3252 surname: Kang fullname: Kang, Yu email: kangduyu@ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 5 givenname: Chun-Yi orcidid: 0000-0002-1869-5563 surname: Su fullname: Su, Chun-Yi email: chun-yi.su@concordia.ca organization: School of Automation, Guangdong University of Technology, Guangzhou, China |
BookMark | eNp9kD1PwzAURS1UJNrCH4DFEnOKP-I4HktVKFIQQ4vEZjmOjdymcbHDR_49Ka0YGJjeG965T_eMwKDxjQHgEqMJxkjcrB7ns8WEICwmRGSYZfwEDLFIcYJw-jLod5TTJE0pOwOjGNcIoRQjPATFsmtMeO2SWxVNBWe-aYOvobdwGqOLrfswsPCfJiSF25Zw_uXjxtSm9U2EZQeXG1fXcBVUE60J5-DUqjqai-Mcg-e7-Wq2SIqn-4fZtEg0EaxNrCqpKIW2OjO4JLTCSmdU5SXjiFKUM5JSUaVW5xXnjGWE2b4QxRybUmuG6RhcH3J3wb-9m9jKtX8PTf9SEioo54L1VccgP1zp4GMMxkrtWtW6fUXlaomR3LuTP-7k3p08uutR8gfdBbdVofsfujpAzhjzC-SC5ryX_w1tanwi |
CODEN | IATEFW |
CitedBy_id | crossref_primary_10_1016_j_mechatronics_2023_102952 crossref_primary_10_1109_TNSRE_2022_3158339 crossref_primary_10_1016_j_conengprac_2023_105774 crossref_primary_10_1109_TMECH_2021_3099815 crossref_primary_10_1109_TMECH_2022_3157848 crossref_primary_10_1016_j_bspc_2022_103557 crossref_primary_10_3390_act12110406 crossref_primary_10_1017_S0263574723001030 crossref_primary_10_3390_s24175684 crossref_primary_10_1109_ACCESS_2020_3044255 crossref_primary_10_1109_TCYB_2023_3253181 crossref_primary_10_1109_TMECH_2024_3370954 crossref_primary_10_1007_s42235_024_00537_z crossref_primary_10_1109_TMECH_2022_3233434 crossref_primary_10_3390_act13020054 crossref_primary_10_1109_TMECH_2024_3380190 crossref_primary_10_3389_fnbot_2024_1379906 crossref_primary_10_1109_OJIES_2024_3412809 crossref_primary_10_1109_TCST_2021_3107483 crossref_primary_10_1109_TMECH_2022_3156168 crossref_primary_10_1177_09544119241291194 crossref_primary_10_3390_bios11100393 crossref_primary_10_3390_s24237845 crossref_primary_10_1109_TASE_2022_3185706 crossref_primary_10_1109_TMECH_2021_3074800 crossref_primary_10_1016_j_ijmecsci_2021_106942 crossref_primary_10_1186_s12984_021_00906_3 crossref_primary_10_1017_wtc_2024_16 crossref_primary_10_1038_s42256_025_00988_x crossref_primary_10_1109_TMECH_2021_3061825 crossref_primary_10_1109_THMS_2022_3231703 crossref_primary_10_1007_s42235_023_00339_9 crossref_primary_10_1109_TAI_2021_3091038 crossref_primary_10_1109_TMECH_2020_3044289 |
Cites_doi | 10.1016/j.robot.2014.09.027 10.1109/TSMCB.2012.2222374 10.1016/j.apmr.2007.02.034 10.1177/1545968314554622 10.1109/TMECH.2017.2704665 10.1126/scitranslmed.aai9084 10.1109/TMECH.2017.2718999 10.1109/TNNLS.2017.2665581 10.1109/TOH.2014.2309142 10.1109/IROS.2015.7353495 10.1152/jn.00978.2016 10.1109/TMECH.2013.2264533 10.1177/0278364912464668 10.1109/IROS.2011.6094870 10.1016/j.gaitpost.2016.11.040 10.1109/TBME.2017.2656130 10.1109/TNSRE.2011.2163083 10.1109/TCST.2016.2565385 10.1016/j.jstrokecerebrovasdis.2015.03.026 10.1109/TNSRE.2014.2346193 10.1109/CYBER.2015.7288229 10.1016/0013-4694(87)90003-4 10.1152/jappl.1998.85.3.1044 10.1109/TRO.2016.2572695 10.1109/TIE.2009.2026231 10.1109/TNSRE.2014.2346927 10.1016/j.mechatronics.2010.07.004 10.1109/TNSRE.2018.2832657 10.1109/TIE.2013.2275903 10.1109/ICORR.2007.4428516 10.1109/TMECH.2016.2618888 10.1097/PHM.0b013e318269d9a3 10.1109/MHS.2015.7438305 10.1109/TNSRE.2014.2337914 10.1109/TMECH.2017.2717874 10.1163/016918610X512622 10.1016/j.mechatronics.2018.03.003 10.1109/TRO.2016.2626479 10.1109/TMECH.2016.2551725 10.1016/0021-9290(95)00178-6 10.1109/TMECH.2012.2200498 10.1109/ICORR.2017.8009287 10.1109/LRA.2017.2731524 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TMECH.2019.2961567 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 715 |
ExternalDocumentID | 10_1109_TMECH_2019_2961567 8938708 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFB1302302; 2018YFC2001600; 2018YFC2001602 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61573147; 61625303; 61725304; 61673361; 61751310 funderid: 10.13039/501100001809 – fundername: Anhui Science and Technology Major Program grantid: 17030901029 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-fab39b9cfc6e1b23d1ac63a8b570330852439d4fc8d7755625f5673171ebcc513 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Mon Jun 30 04:22:11 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Tue Jul 01 04:23:18 EDT 2025 Wed Aug 27 02:42:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-fab39b9cfc6e1b23d1ac63a8b570330852439d4fc8d7755625f5673171ebcc513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8706-3252 0000-0002-9109-5943 0000-0002-3909-488X 0000-0002-1869-5563 |
PQID | 2393779544 |
PQPubID | 85420 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2393779544 ieee_primary_8938708 crossref_citationtrail_10_1109_TMECH_2019_2961567 crossref_primary_10_1109_TMECH_2019_2961567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-April 2020-4-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-April |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 clauser (ref33) 1971 |
References_xml | – ident: ref18 doi: 10.1016/j.robot.2014.09.027 – ident: ref20 doi: 10.1109/TSMCB.2012.2222374 – start-page: 270 year: 1971 ident: ref33 article-title: Weight, volume, and center of mass of segments of the human body publication-title: Journal of Occupational and Environmental Medicine – ident: ref30 doi: 10.1016/j.apmr.2007.02.034 – ident: ref24 doi: 10.1177/1545968314554622 – ident: ref17 doi: 10.1109/TMECH.2017.2704665 – ident: ref31 doi: 10.1126/scitranslmed.aai9084 – ident: ref1 doi: 10.1109/TMECH.2017.2718999 – ident: ref19 doi: 10.1109/TNNLS.2017.2665581 – ident: ref42 doi: 10.1109/TOH.2014.2309142 – ident: ref32 doi: 10.1109/IROS.2015.7353495 – ident: ref29 doi: 10.1152/jn.00978.2016 – ident: ref43 doi: 10.1109/TMECH.2013.2264533 – ident: ref36 doi: 10.1177/0278364912464668 – ident: ref21 doi: 10.1109/IROS.2011.6094870 – ident: ref7 doi: 10.1016/j.gaitpost.2016.11.040 – ident: ref9 doi: 10.1109/TBME.2017.2656130 – ident: ref11 doi: 10.1109/TNSRE.2011.2163083 – ident: ref3 doi: 10.1109/TCST.2016.2565385 – ident: ref22 doi: 10.1016/j.jstrokecerebrovasdis.2015.03.026 – ident: ref5 doi: 10.1109/TNSRE.2014.2346193 – ident: ref38 doi: 10.1109/CYBER.2015.7288229 – ident: ref25 doi: 10.1016/0013-4694(87)90003-4 – ident: ref26 doi: 10.1152/jappl.1998.85.3.1044 – ident: ref35 doi: 10.1109/TRO.2016.2572695 – ident: ref34 doi: 10.1152/jappl.1998.85.3.1044 – ident: ref16 doi: 10.1109/TIE.2009.2026231 – ident: ref15 doi: 10.1109/TNSRE.2014.2346927 – ident: ref14 doi: 10.1016/j.mechatronics.2010.07.004 – ident: ref45 doi: 10.1109/TNSRE.2018.2832657 – ident: ref6 doi: 10.1109/TIE.2013.2275903 – ident: ref27 doi: 10.1109/ICORR.2007.4428516 – ident: ref2 doi: 10.1109/TMECH.2016.2618888 – ident: ref12 doi: 10.1097/PHM.0b013e318269d9a3 – ident: ref28 doi: 10.1109/MHS.2015.7438305 – ident: ref39 doi: 10.1109/TNSRE.2014.2337914 – ident: ref37 doi: 10.1109/TMECH.2017.2717874 – ident: ref13 doi: 10.1163/016918610X512622 – ident: ref4 doi: 10.1016/j.mechatronics.2018.03.003 – ident: ref44 doi: 10.1109/TRO.2016.2626479 – ident: ref10 doi: 10.1109/TMECH.2016.2551725 – ident: ref40 doi: 10.1016/0021-9290(95)00178-6 – ident: ref23 doi: 10.1109/TMECH.2012.2200498 – ident: ref8 doi: 10.1109/ICORR.2017.8009287 – ident: ref41 doi: 10.1109/LRA.2017.2731524 |
SSID | ssj0004101 |
Score | 2.4909883 |
Snippet | Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 705 |
SubjectTerms | Adaptive fuzzy control Adaptive systems Computational modeling Electromyography Exoskeletons Fuzzy systems Gait Human motion Impedance Impedance matching Legged locomotion Locomotion lower-limb exoskeletons Mathematical models Model matching Parameter estimation Parameter identification Robot kinematics Robot sensing systems Robots skill transfer Skills Stiffness matrix synergy-based control Trajectory control variable stiffness Walking |
Title | Synergy-Based Control of Assistive Lower-Limb Exoskeletons by Skill Transfer |
URI | https://ieeexplore.ieee.org/document/8938708 https://www.proquest.com/docview/2393779544 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2zgEidxEo9QFVWoZQEktshPCbW0iLYI-PWcnbQgQIgtgy1Zd-d83yX33QEcmzRPMplLykymaMpZQWUmYqoN59IlJoqUFwr3rrPOXXp1z-8X4HSuhbHWhuIz2_SP4V--Gemp_1R2htiK4VUswiImbpVW61MDycKoY4aUgqbIAWYCmUic3fbarY6v4hLNWCCCh5nynyAUpqr8eBUHfLlcg97sZFVZSb85naimfv_WtPG_R1-H1ZpokvMqMjZgwQ43YeVL-8Et6N68BeUfvUAoM6RVVa2TkSPoNH_3Xyzp-ilqtPvwqEj7dTTuI0ohWxwT9UZu-g-DAQlg5-zzNtxdtm9bHVpPV6A6FnxCnVSJUEI7nVmm4sQwqbNEFsr35EqQicXIVUzqdGHynPs8yaHlkG4wq7TmLNmBpeFoaHeBFDLSUmCqqJHguEhJyTXLlXI8yTRSmAawmblLXbce9xMwBmVIQSJRBheV3kVl7aIGnMz3PFWNN_5cveVtPl9Zm7sBBzOvlvXdHJe-6VueC56me7_v2ofl2GfVoT7nAJYmz1N7iNRjoo5CzH0AM37UMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB0BPRQOUAqIUGj30FvZ4LW9tvcIUVBaHC4EiZu1nxJKSBBJUOmv7-zaCahUiJsPu9JqZtbvjT1vBuC7SfMkk7mkzGSKppwVVGYiptpwLl1iokh5oXD_Mutdp79u-M0KHC-1MNbaUHxm2_4x_Ms3Ez33n8pOEFsxvIpV-IC4z1mt1npWQbIw7JghqaApsoCFRCYSJ4N-t9PzdVyiHQvE8DBV_hmGwlyVVy_jgDDnW9BfnK0uLBm25zPV1n_-adv43sN_gs2GapLTOja2YcWOP8PGiwaEO1BePQXtHz1DMDOkU9etk4kj6DZ_-x8tKf0cNVre3inS_T2ZDhGnkC9OiXoiV8Pb0YgEuHP2YReuz7uDTo828xWojgWfUSdVIpTQTmeWqTgxTOoskYXyXbkS5GIxshWTOl2YPOc-U3JoOSQczCqtOUv2YG08Gdt9IIWMtBSYLGqkOC5SUnLNcqUcTzKNJKYFbGHuSjfNx_0MjFEVkpBIVMFFlXdR1bioBT-We-7r1htvrt7xNl-ubMzdgsOFV6vmdk4r3_YtzwVP04P_7_oGH3uDflmVPy8vvsB67HPsUK1zCGuzh7k9QiIyU19D_P0FcY3XfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergy-Based+Control+of+Assistive+Lower-Limb+Exoskeletons+by+Skill+Transfer&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Wei%2C+Qiang&rft.au=Li%2C+Zhijun&rft.au=Zhao%2C+Kuankuan&rft.au=Kang%2C+Yu&rft.date=2020-04-01&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=25&rft.issue=2&rft.spage=705&rft.epage=715&rft_id=info:doi/10.1109%2FTMECH.2019.2961567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2019_2961567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |