Synergy-Based Control of Assistive Lower-Limb Exoskeletons by Skill Transfer

Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by transferring the motor skills. The synergy-based robotic controller captures kinesiological information and biological signals from the healthy leg...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 25; no. 2; pp. 705 - 715
Main Authors Wei, Qiang, Li, Zhijun, Zhao, Kuankuan, Kang, Yu, Su, Chun-Yi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by transferring the motor skills. The synergy-based robotic controller captures kinesiological information and biological signals from the healthy leg and generates intended motor patterns for the assisted leg in different gait phases of the slope walking behavior. First, we have developed a computationally efficient stiffness estimation model of the lower-limb joints and identified the experimental parameters in accord with the subject's locomotion behavior. The estimated stiffness matrix at minimum muscular contraction is scaled by cocontraction index and mapped to joint stiffness to be utilized in the control design. Then, we have proposed the impedance matching model and realized human skills transfer by surface electromyography signals. Considering the uncertain dynamics of the human-robot system, we have developed an adaptive fuzzy approximator to estimate robot's dynamic parameters and drive the robot tracking the referenced trajectories. The developed synergy-based control has been verified using three subjects with varying locomotor abilities. Results from these participants have shown a symmetrical and consistent adaptability between two legs with the synergy-based control, while the range of motion of the assisted leg in the affected side is more volitional and individualized.
AbstractList Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by transferring the motor skills. The synergy-based robotic controller captures kinesiological information and biological signals from the healthy leg and generates intended motor patterns for the assisted leg in different gait phases of the slope walking behavior. First, we have developed a computationally efficient stiffness estimation model of the lower-limb joints and identified the experimental parameters in accord with the subject's locomotion behavior. The estimated stiffness matrix at minimum muscular contraction is scaled by cocontraction index and mapped to joint stiffness to be utilized in the control design. Then, we have proposed the impedance matching model and realized human skills transfer by surface electromyography signals. Considering the uncertain dynamics of the human-robot system, we have developed an adaptive fuzzy approximator to estimate robot's dynamic parameters and drive the robot tracking the referenced trajectories. The developed synergy-based control has been verified using three subjects with varying locomotor abilities. Results from these participants have shown a symmetrical and consistent adaptability between two legs with the synergy-based control, while the range of motion of the assisted leg in the affected side is more volitional and individualized.
Author Li, Zhijun
Su, Chun-Yi
Kang, Yu
Wei, Qiang
Zhao, Kuankuan
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-9109-5943
  surname: Wei
  fullname: Wei, Qiang
  email: qiangwei@mail.ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Zhijun
  orcidid: 0000-0002-3909-488X
  surname: Li
  fullname: Li, Zhijun
  email: zjli@ieee.org
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Kuankuan
  surname: Zhao
  fullname: Zhao, Kuankuan
  email: zkk@mail.ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Yu
  orcidid: 0000-0002-8706-3252
  surname: Kang
  fullname: Kang, Yu
  email: kangduyu@ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Chun-Yi
  orcidid: 0000-0002-1869-5563
  surname: Su
  fullname: Su, Chun-Yi
  email: chun-yi.su@concordia.ca
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kD1PwzAURS1UJNrCH4DFEnOKP-I4HktVKFIQQ4vEZjmOjdymcbHDR_49Ka0YGJjeG965T_eMwKDxjQHgEqMJxkjcrB7ns8WEICwmRGSYZfwEDLFIcYJw-jLod5TTJE0pOwOjGNcIoRQjPATFsmtMeO2SWxVNBWe-aYOvobdwGqOLrfswsPCfJiSF25Zw_uXjxtSm9U2EZQeXG1fXcBVUE60J5-DUqjqai-Mcg-e7-Wq2SIqn-4fZtEg0EaxNrCqpKIW2OjO4JLTCSmdU5SXjiFKUM5JSUaVW5xXnjGWE2b4QxRybUmuG6RhcH3J3wb-9m9jKtX8PTf9SEioo54L1VccgP1zp4GMMxkrtWtW6fUXlaomR3LuTP-7k3p08uutR8gfdBbdVofsfujpAzhjzC-SC5ryX_w1tanwi
CODEN IATEFW
CitedBy_id crossref_primary_10_1016_j_mechatronics_2023_102952
crossref_primary_10_1109_TNSRE_2022_3158339
crossref_primary_10_1016_j_conengprac_2023_105774
crossref_primary_10_1109_TMECH_2021_3099815
crossref_primary_10_1109_TMECH_2022_3157848
crossref_primary_10_1016_j_bspc_2022_103557
crossref_primary_10_3390_act12110406
crossref_primary_10_1017_S0263574723001030
crossref_primary_10_3390_s24175684
crossref_primary_10_1109_ACCESS_2020_3044255
crossref_primary_10_1109_TCYB_2023_3253181
crossref_primary_10_1109_TMECH_2024_3370954
crossref_primary_10_1007_s42235_024_00537_z
crossref_primary_10_1109_TMECH_2022_3233434
crossref_primary_10_3390_act13020054
crossref_primary_10_1109_TMECH_2024_3380190
crossref_primary_10_3389_fnbot_2024_1379906
crossref_primary_10_1109_OJIES_2024_3412809
crossref_primary_10_1109_TCST_2021_3107483
crossref_primary_10_1109_TMECH_2022_3156168
crossref_primary_10_1177_09544119241291194
crossref_primary_10_3390_bios11100393
crossref_primary_10_3390_s24237845
crossref_primary_10_1109_TASE_2022_3185706
crossref_primary_10_1109_TMECH_2021_3074800
crossref_primary_10_1016_j_ijmecsci_2021_106942
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_1017_wtc_2024_16
crossref_primary_10_1038_s42256_025_00988_x
crossref_primary_10_1109_TMECH_2021_3061825
crossref_primary_10_1109_THMS_2022_3231703
crossref_primary_10_1007_s42235_023_00339_9
crossref_primary_10_1109_TAI_2021_3091038
crossref_primary_10_1109_TMECH_2020_3044289
Cites_doi 10.1016/j.robot.2014.09.027
10.1109/TSMCB.2012.2222374
10.1016/j.apmr.2007.02.034
10.1177/1545968314554622
10.1109/TMECH.2017.2704665
10.1126/scitranslmed.aai9084
10.1109/TMECH.2017.2718999
10.1109/TNNLS.2017.2665581
10.1109/TOH.2014.2309142
10.1109/IROS.2015.7353495
10.1152/jn.00978.2016
10.1109/TMECH.2013.2264533
10.1177/0278364912464668
10.1109/IROS.2011.6094870
10.1016/j.gaitpost.2016.11.040
10.1109/TBME.2017.2656130
10.1109/TNSRE.2011.2163083
10.1109/TCST.2016.2565385
10.1016/j.jstrokecerebrovasdis.2015.03.026
10.1109/TNSRE.2014.2346193
10.1109/CYBER.2015.7288229
10.1016/0013-4694(87)90003-4
10.1152/jappl.1998.85.3.1044
10.1109/TRO.2016.2572695
10.1109/TIE.2009.2026231
10.1109/TNSRE.2014.2346927
10.1016/j.mechatronics.2010.07.004
10.1109/TNSRE.2018.2832657
10.1109/TIE.2013.2275903
10.1109/ICORR.2007.4428516
10.1109/TMECH.2016.2618888
10.1097/PHM.0b013e318269d9a3
10.1109/MHS.2015.7438305
10.1109/TNSRE.2014.2337914
10.1109/TMECH.2017.2717874
10.1163/016918610X512622
10.1016/j.mechatronics.2018.03.003
10.1109/TRO.2016.2626479
10.1109/TMECH.2016.2551725
10.1016/0021-9290(95)00178-6
10.1109/TMECH.2012.2200498
10.1109/ICORR.2017.8009287
10.1109/LRA.2017.2731524
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TMECH.2019.2961567
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 715
ExternalDocumentID 10_1109_TMECH_2019_2961567
8938708
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2017YFB1302302; 2018YFC2001600; 2018YFC2001602
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61573147; 61625303; 61725304; 61673361; 61751310
  funderid: 10.13039/501100001809
– fundername: Anhui Science and Technology Major Program
  grantid: 17030901029
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-fab39b9cfc6e1b23d1ac63a8b570330852439d4fc8d7755625f5673171ebcc513
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Mon Jun 30 04:22:11 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Tue Jul 01 04:23:18 EDT 2025
Wed Aug 27 02:42:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-fab39b9cfc6e1b23d1ac63a8b570330852439d4fc8d7755625f5673171ebcc513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8706-3252
0000-0002-9109-5943
0000-0002-3909-488X
0000-0002-1869-5563
PQID 2393779544
PQPubID 85420
PageCount 11
ParticipantIDs proquest_journals_2393779544
ieee_primary_8938708
crossref_citationtrail_10_1109_TMECH_2019_2961567
crossref_primary_10_1109_TMECH_2019_2961567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-April
2020-4-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
clauser (ref33) 1971
References_xml – ident: ref18
  doi: 10.1016/j.robot.2014.09.027
– ident: ref20
  doi: 10.1109/TSMCB.2012.2222374
– start-page: 270
  year: 1971
  ident: ref33
  article-title: Weight, volume, and center of mass of segments of the human body
  publication-title: Journal of Occupational and Environmental Medicine
– ident: ref30
  doi: 10.1016/j.apmr.2007.02.034
– ident: ref24
  doi: 10.1177/1545968314554622
– ident: ref17
  doi: 10.1109/TMECH.2017.2704665
– ident: ref31
  doi: 10.1126/scitranslmed.aai9084
– ident: ref1
  doi: 10.1109/TMECH.2017.2718999
– ident: ref19
  doi: 10.1109/TNNLS.2017.2665581
– ident: ref42
  doi: 10.1109/TOH.2014.2309142
– ident: ref32
  doi: 10.1109/IROS.2015.7353495
– ident: ref29
  doi: 10.1152/jn.00978.2016
– ident: ref43
  doi: 10.1109/TMECH.2013.2264533
– ident: ref36
  doi: 10.1177/0278364912464668
– ident: ref21
  doi: 10.1109/IROS.2011.6094870
– ident: ref7
  doi: 10.1016/j.gaitpost.2016.11.040
– ident: ref9
  doi: 10.1109/TBME.2017.2656130
– ident: ref11
  doi: 10.1109/TNSRE.2011.2163083
– ident: ref3
  doi: 10.1109/TCST.2016.2565385
– ident: ref22
  doi: 10.1016/j.jstrokecerebrovasdis.2015.03.026
– ident: ref5
  doi: 10.1109/TNSRE.2014.2346193
– ident: ref38
  doi: 10.1109/CYBER.2015.7288229
– ident: ref25
  doi: 10.1016/0013-4694(87)90003-4
– ident: ref26
  doi: 10.1152/jappl.1998.85.3.1044
– ident: ref35
  doi: 10.1109/TRO.2016.2572695
– ident: ref34
  doi: 10.1152/jappl.1998.85.3.1044
– ident: ref16
  doi: 10.1109/TIE.2009.2026231
– ident: ref15
  doi: 10.1109/TNSRE.2014.2346927
– ident: ref14
  doi: 10.1016/j.mechatronics.2010.07.004
– ident: ref45
  doi: 10.1109/TNSRE.2018.2832657
– ident: ref6
  doi: 10.1109/TIE.2013.2275903
– ident: ref27
  doi: 10.1109/ICORR.2007.4428516
– ident: ref2
  doi: 10.1109/TMECH.2016.2618888
– ident: ref12
  doi: 10.1097/PHM.0b013e318269d9a3
– ident: ref28
  doi: 10.1109/MHS.2015.7438305
– ident: ref39
  doi: 10.1109/TNSRE.2014.2337914
– ident: ref37
  doi: 10.1109/TMECH.2017.2717874
– ident: ref13
  doi: 10.1163/016918610X512622
– ident: ref4
  doi: 10.1016/j.mechatronics.2018.03.003
– ident: ref44
  doi: 10.1109/TRO.2016.2626479
– ident: ref10
  doi: 10.1109/TMECH.2016.2551725
– ident: ref40
  doi: 10.1016/0021-9290(95)00178-6
– ident: ref23
  doi: 10.1109/TMECH.2012.2200498
– ident: ref8
  doi: 10.1109/ICORR.2017.8009287
– ident: ref41
  doi: 10.1109/LRA.2017.2731524
SSID ssj0004101
Score 2.4909883
Snippet Considering neuronal coordination between limbs, this article presents a study on the control of lower-limb exoskeletons for assistance of human gait by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 705
SubjectTerms Adaptive fuzzy control
Adaptive systems
Computational modeling
Electromyography
Exoskeletons
Fuzzy systems
Gait
Human motion
Impedance
Impedance matching
Legged locomotion
Locomotion
lower-limb exoskeletons
Mathematical models
Model matching
Parameter estimation
Parameter identification
Robot kinematics
Robot sensing systems
Robots
skill transfer
Skills
Stiffness matrix
synergy-based control
Trajectory control
variable stiffness
Walking
Title Synergy-Based Control of Assistive Lower-Limb Exoskeletons by Skill Transfer
URI https://ieeexplore.ieee.org/document/8938708
https://www.proquest.com/docview/2393779544
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2zgEidxEo9QFVWoZQEktshPCbW0iLYI-PWcnbQgQIgtgy1Zd-d83yX33QEcmzRPMplLykymaMpZQWUmYqoN59IlJoqUFwr3rrPOXXp1z-8X4HSuhbHWhuIz2_SP4V--Gemp_1R2htiK4VUswiImbpVW61MDycKoY4aUgqbIAWYCmUic3fbarY6v4hLNWCCCh5nynyAUpqr8eBUHfLlcg97sZFVZSb85naimfv_WtPG_R1-H1ZpokvMqMjZgwQ43YeVL-8Et6N68BeUfvUAoM6RVVa2TkSPoNH_3Xyzp-ilqtPvwqEj7dTTuI0ohWxwT9UZu-g-DAQlg5-zzNtxdtm9bHVpPV6A6FnxCnVSJUEI7nVmm4sQwqbNEFsr35EqQicXIVUzqdGHynPs8yaHlkG4wq7TmLNmBpeFoaHeBFDLSUmCqqJHguEhJyTXLlXI8yTRSmAawmblLXbce9xMwBmVIQSJRBheV3kVl7aIGnMz3PFWNN_5cveVtPl9Zm7sBBzOvlvXdHJe-6VueC56me7_v2ofl2GfVoT7nAJYmz1N7iNRjoo5CzH0AM37UMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB0BPRQOUAqIUGj30FvZ4LW9tvcIUVBaHC4EiZu1nxJKSBBJUOmv7-zaCahUiJsPu9JqZtbvjT1vBuC7SfMkk7mkzGSKppwVVGYiptpwLl1iokh5oXD_Mutdp79u-M0KHC-1MNbaUHxm2_4x_Ms3Ez33n8pOEFsxvIpV-IC4z1mt1npWQbIw7JghqaApsoCFRCYSJ4N-t9PzdVyiHQvE8DBV_hmGwlyVVy_jgDDnW9BfnK0uLBm25zPV1n_-adv43sN_gs2GapLTOja2YcWOP8PGiwaEO1BePQXtHz1DMDOkU9etk4kj6DZ_-x8tKf0cNVre3inS_T2ZDhGnkC9OiXoiV8Pb0YgEuHP2YReuz7uDTo828xWojgWfUSdVIpTQTmeWqTgxTOoskYXyXbkS5GIxshWTOl2YPOc-U3JoOSQczCqtOUv2YG08Gdt9IIWMtBSYLGqkOC5SUnLNcqUcTzKNJKYFbGHuSjfNx_0MjFEVkpBIVMFFlXdR1bioBT-We-7r1htvrt7xNl-ubMzdgsOFV6vmdk4r3_YtzwVP04P_7_oGH3uDflmVPy8vvsB67HPsUK1zCGuzh7k9QiIyU19D_P0FcY3XfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergy-Based+Control+of+Assistive+Lower-Limb+Exoskeletons+by+Skill+Transfer&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Wei%2C+Qiang&rft.au=Li%2C+Zhijun&rft.au=Zhao%2C+Kuankuan&rft.au=Kang%2C+Yu&rft.date=2020-04-01&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=25&rft.issue=2&rft.spage=705&rft.epage=715&rft_id=info:doi/10.1109%2FTMECH.2019.2961567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2019_2961567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon