Utilizing Deep Learning Towards Multi-Modal Bio-Sensing and Vision-Based Affective Computing

In recent years, the use of bio-sensing signals such as electroencephalogram (EEG), electrocardiogram (ECG), etc. have garnered interest towards applications in affective computing. The parallel trend of deep-learning has led to a huge leap in performance towards solving various vision-based researc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 13; no. 1; pp. 96 - 107
Main Authors Siddharth, Jung, Tzyy-Ping, Sejnowski, Terrence J.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the use of bio-sensing signals such as electroencephalogram (EEG), electrocardiogram (ECG), etc. have garnered interest towards applications in affective computing. The parallel trend of deep-learning has led to a huge leap in performance towards solving various vision-based research problems such as object detection. Yet, these advances in deep-learning have not adequately translated into bio-sensing research. This work applies novel deep-learning-based methods to various bio-sensing and video data of four publicly available multi-modal emotion datasets. For each dataset, we first individually evaluate the emotion-classification performance obtained by each modality. We then evaluate the performance obtained by fusing the features from these modalities. We show that our algorithms outperform the results reported by other studies for emotion/valence/arousal/liking classification on DEAP and MAHNOB-HCI datasets and set up benchmarks for the newer AMIGOS and DREAMER datasets. We also evaluate the performance of our algorithms by combining the datasets and by using transfer learning to show that the proposed method overcomes the inconsistencies between the datasets. Hence, we do a thorough analysis of multi-modal affective data from more than 120 subjects and 2,800 trials. Finally, utilizing a convolution-deconvolution network, we propose a new technique towards identifying salient brain regions corresponding to various affective states.
AbstractList In recent years, the use of bio-sensing signals such as electroencephalogram (EEG), electrocardiogram (ECG), etc. have garnered interest towards applications in affective computing. The parallel trend of deep-learning has led to a huge leap in performance towards solving various vision-based research problems such as object detection. Yet, these advances in deep-learning have not adequately translated into bio-sensing research. This work applies novel deep-learning-based methods to various bio-sensing and video data of four publicly available multi-modal emotion datasets. For each dataset, we first individually evaluate the emotion-classification performance obtained by each modality. We then evaluate the performance obtained by fusing the features from these modalities. We show that our algorithms outperform the results reported by other studies for emotion/valence/arousal/liking classification on DEAP and MAHNOB-HCI datasets and set up benchmarks for the newer AMIGOS and DREAMER datasets. We also evaluate the performance of our algorithms by combining the datasets and by using transfer learning to show that the proposed method overcomes the inconsistencies between the datasets. Hence, we do a thorough analysis of multi-modal affective data from more than 120 subjects and 2,800 trials. Finally, utilizing a convolution-deconvolution network, we propose a new technique towards identifying salient brain regions corresponding to various affective states.
Author Sejnowski, Terrence J.
Jung, Tzyy-Ping
Siddharth
Author_xml – sequence: 1
  orcidid: 0000-0002-1001-8218
  surname: Siddharth
  fullname: Siddharth
  email: ssiddhar@eng.ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Tzyy-Ping
  orcidid: 0000-0002-8377-2166
  surname: Jung
  fullname: Jung, Tzyy-Ping
  email: jung@sccn.ucsd.edu
  organization: Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Terrence J.
  orcidid: 0000-0002-0622-7391
  surname: Sejnowski
  fullname: Sejnowski, Terrence J.
  email: terry@salk.edu
  organization: Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
BookMark eNp9kMFOwzAMhiM0JMbYC8ClEueOpGnS-LgNBkibOLBxQqrSNkWZuqYkKQienpZNCHHAF9vy_9nyf4oGtakVQucETwjBcLWeLhbzSYQJTCIgHBN2hIYEYggpjtngV32Cxs5tcReUUh4lQ_S88brSn7p-Ca6VaoKlkrbuu7V5l7ZwwaqtvA5XppBVMNMmfFS16-eyLoIn7bSpw5l0qgimZalyr99UMDe7pvWd6Awdl7JyanzII7RZ3Kznd-Hy4fZ-Pl2GeQTMhyVQoCTBBXAhE44lzguupOCKAJQkBpkJDqJkkPEsF0xAkmScMchJlPGOHqHL_d7GmtdWOZ9uTWvr7mQaccpwHEdJ0qnEXpVb45xVZZprL333gbdSVynBaW9n-m1n2tuZHuzs0OgP2li9k_bjf-hiD2ml1A8gEkIFcPoFp4eBfQ
CODEN ITACBQ
CitedBy_id crossref_primary_10_1016_j_compbiomed_2020_103927
crossref_primary_10_1109_TAFFC_2020_3004114
crossref_primary_10_3390_sym14040687
crossref_primary_10_1109_TBCAS_2022_3187944
crossref_primary_10_3390_s22093248
crossref_primary_10_1016_j_bspc_2024_107462
crossref_primary_10_3390_brainsci13050759
crossref_primary_10_1109_TCDS_2021_3051465
crossref_primary_10_1142_S0129065722500393
crossref_primary_10_1109_TNSE_2023_3271354
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_1109_TSMC_2024_3523342
crossref_primary_10_1109_TNSRE_2022_3192533
crossref_primary_10_1145_3653722
crossref_primary_10_3390_s23052387
crossref_primary_10_1016_j_ipm_2019_102185
crossref_primary_10_1109_JBHI_2022_3224775
crossref_primary_10_1016_j_compbiomed_2022_105303
crossref_primary_10_3389_fnins_2023_1330077
crossref_primary_10_1109_TNSRE_2021_3123969
crossref_primary_10_3390_app12094236
crossref_primary_10_3390_e24101322
crossref_primary_10_1007_s11227_022_05026_w
crossref_primary_10_1007_s12559_024_10361_6
crossref_primary_10_1109_TAFFC_2023_3265433
crossref_primary_10_1109_TAFFC_2020_3014842
crossref_primary_10_3390_s22239102
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1109_TCSS_2024_3405949
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1109_JSEN_2023_3335229
crossref_primary_10_1016_j_engappai_2024_108413
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_3390_app14167165
crossref_primary_10_1109_JSEN_2022_3172133
crossref_primary_10_1109_TNNLS_2023_3238519
crossref_primary_10_1002_widm_1563
crossref_primary_10_1007_s11571_024_10077_1
crossref_primary_10_1109_TAFFC_2021_3114123
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_inffus_2023_102218
crossref_primary_10_1088_1741_2552_abf609
crossref_primary_10_1109_ACCESS_2024_3436556
crossref_primary_10_1016_j_bspc_2024_107089
crossref_primary_10_3390_info15050274
crossref_primary_10_1109_ACCESS_2019_2927768
crossref_primary_10_1007_s12652_021_03462_9
crossref_primary_10_1109_ACCESS_2024_3349552
crossref_primary_10_1007_s11571_023_09968_6
crossref_primary_10_1142_S0129065723500661
crossref_primary_10_1109_JSEN_2021_3135953
crossref_primary_10_1016_j_bspc_2022_103877
crossref_primary_10_1016_j_brainresbull_2024_110901
crossref_primary_10_1088_1757_899X_1187_1_012012
crossref_primary_10_1109_ACCESS_2024_3420103
crossref_primary_10_1016_j_neurot_2024_e00507
crossref_primary_10_1007_s10489_022_04226_4
crossref_primary_10_1016_j_knosys_2025_113238
crossref_primary_10_1109_ACCESS_2024_3506157
crossref_primary_10_1016_j_jestch_2021_03_012
crossref_primary_10_3390_s22239282
crossref_primary_10_1109_TIM_2023_3338676
crossref_primary_10_1109_TAFFC_2023_3329526
crossref_primary_10_1016_j_bspc_2023_104928
crossref_primary_10_12688_f1000research_73255_1
crossref_primary_10_12688_f1000research_73255_2
crossref_primary_10_1039_D3MH01950K
crossref_primary_10_1109_ACCESS_2022_3193768
crossref_primary_10_1007_s12559_023_10171_2
crossref_primary_10_1109_TAFFC_2023_3288118
crossref_primary_10_1108_ACI_05_2021_0130
crossref_primary_10_1109_TCDS_2023_3293321
crossref_primary_10_1109_ACCESS_2021_3051281
crossref_primary_10_1016_j_physa_2022_127700
crossref_primary_10_1016_j_heliyon_2023_e23611
crossref_primary_10_1109_TCDS_2024_3391131
crossref_primary_10_1109_JSEN_2021_3138269
crossref_primary_10_1007_s10439_023_03341_8
crossref_primary_10_1109_TNNLS_2023_3236635
crossref_primary_10_1109_ACCESS_2020_3027026
crossref_primary_10_1109_TCDS_2023_3270170
crossref_primary_10_1038_s41598_019_52891_2
crossref_primary_10_1109_TNSRE_2023_3268751
crossref_primary_10_1109_JSEN_2020_3027181
crossref_primary_10_3390_mti6060047
crossref_primary_10_1186_s40708_024_00242_x
crossref_primary_10_3389_fnins_2022_965871
crossref_primary_10_1016_j_eswa_2024_125089
crossref_primary_10_1109_TIM_2023_3347790
Cites_doi 10.1016/j.intcom.2004.06.009
10.1016/j.foodres.2017.07.021
10.1109/TAFFC.2018.2884461
10.1109/CVPR.2001.990517
10.1109/CW.2012.15
10.1016/j.compbiomed.2013.10.017
10.1007/978-3-319-58628-1_31
10.1016/j.neucom.2005.12.126
10.1109/JBHI.2017.2688239
10.1007/978-3-540-70994-7_6
10.1016/S0735-1097(97)00554-8
10.1016/j.apergo.2011.09.003
10.1145/3132635.3132641
10.1109/T-AFFC.2011.37
10.1109/TAFFC.2017.2712143
10.1145/2522848.2531745
10.1109/T-AFFC.2011.25
10.1006/nimg.2002.1087
10.1109/FG.2015.7284873
10.1136/jnnp.57.12.1518
10.1121/1.2133000
10.1109/TMM.2006.870737
10.1016/j.neunet.2014.10.005
10.1109/34.908962
10.1016/j.imavis.2012.10.002
10.1162/neco.1997.9.8.1735
10.1089/cpb.2006.9993
10.1109/MSP.2012.2211477
10.1016/j.ijhcs.2007.10.011
10.1109/CIBCB.2016.7758108
10.1109/EMBC.2018.8512320
10.1109/CVPR.2016.91
10.1109/EMBC.2016.7591731
10.1109/TBME.2018.2868759
10.1007/978-3-540-30133-2_26
10.5244/C.29.41
10.1007/s11517-010-0592-3
10.1007/s11263-015-0816-y
10.1109/ICME.2014.6890161
10.1007/s10479-011-0841-3
10.1109/CVPRW.2014.131
10.1109/CVPR.2014.240
10.1109/EMBC.2015.7318997
10.1109/EMBC.2013.6609968
10.1016/j.jneumeth.2003.10.009
10.1037/h0077714
10.1145/2818346.2830595
10.1186/1475-925X-12-56
10.1136/hrt.52.4.396
10.1016/j.eswa.2015.10.049
10.1109/TPAMI.2005.159
10.1016/j.camwa.2007.04.035
10.1109/TITB.2010.2042607
10.1109/T-AFFC.2011.15
10.1088/1741-2560/10/4/046003
10.1109/MCSE.2007.55
10.1109/TBME.2004.827086
10.1016/j.jsams.2017.09.498
10.1016/0169-7439(87)80084-9
10.1016/j.cmpb.2016.12.005
10.1109/TIP.2017.2754941
10.1109/TAFFC.2017.2714671
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2019.2916015
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 107
ExternalDocumentID 10_1109_TAFFC_2019_2916015
8713896
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1540943
  funderid: 10.13039/100000001
– fundername: UC San Diego Center for Wearable Sensors
– fundername: Army Research Laboratory
  grantid: W911NF-10-2-0022
  funderid: 10.13039/100006754
– fundername: National Science Foundation
  grantid: NCS-1734883
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-f9393170d968a760a0cd6ea86e199f149ab8698f59b6bc858977b6559c12b6f93
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 03:21:10 EDT 2025
Tue Jul 01 02:57:52 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
Wed Aug 27 02:49:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f9393170d968a760a0cd6ea86e199f149ab8698f59b6bc858977b6559c12b6f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1001-8218
0000-0002-8377-2166
0000-0002-0622-7391
PQID 2635044277
PQPubID 2040414
PageCount 12
ParticipantIDs ieee_primary_8713896
proquest_journals_2635044277
crossref_primary_10_1109_TAFFC_2019_2916015
crossref_citationtrail_10_1109_TAFFC_2019_2916015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.-March-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-March-1
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Lei (ref11) 2017; 2
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Simonyan (ref49) 2014
Bashivan (ref47) 2016
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref66
ref21
ref65
ref28
ref27
ref29
Rangesh (ref52)
Krizhevsky (ref22) 2014
Billauer (ref55) 2012
ref60
ref62
ref61
Wang (ref37) 2013; 3
References_xml – start-page: 2545
  volume-title: Proc. IEEE 19th Int. Conf. Intell. Transp. Syst.
  ident: ref52
  article-title: Driver hand localization and grasp analysis: A vision-based real-time approach
– ident: ref1
  doi: 10.1016/j.intcom.2004.06.009
– ident: ref6
  doi: 10.1016/j.foodres.2017.07.021
– ident: ref31
  doi: 10.1109/TAFFC.2018.2884461
– ident: ref61
  doi: 10.1109/CVPR.2001.990517
– ident: ref28
  doi: 10.1109/CW.2012.15
– ident: ref36
  doi: 10.1016/j.compbiomed.2013.10.017
– ident: ref13
  doi: 10.1007/978-3-319-58628-1_31
– ident: ref65
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref33
  doi: 10.1109/JBHI.2017.2688239
– ident: ref2
  doi: 10.1007/978-3-540-70994-7_6
– ident: ref57
  doi: 10.1016/S0735-1097(97)00554-8
– ident: ref9
  doi: 10.1016/j.apergo.2011.09.003
– year: 2014
  ident: ref22
  article-title: The CIFAR-10 dataset
– ident: ref25
  doi: 10.1145/3132635.3132641
– ident: ref26
  doi: 10.1109/T-AFFC.2011.37
– ident: ref35
  doi: 10.1109/TAFFC.2017.2712143
– year: 2016
  ident: ref47
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: CoRR, abs/1511.06448
– ident: ref18
  doi: 10.1145/2522848.2531745
– ident: ref32
  doi: 10.1109/T-AFFC.2011.25
– ident: ref69
  doi: 10.1006/nimg.2002.1087
– ident: ref20
  doi: 10.1109/FG.2015.7284873
– ident: ref68
  doi: 10.1136/jnnp.57.12.1518
– ident: ref59
  doi: 10.1121/1.2133000
– ident: ref16
  doi: 10.1109/TMM.2006.870737
– ident: ref17
  doi: 10.1016/j.neunet.2014.10.005
– ident: ref14
  doi: 10.1109/34.908962
– year: 2014
  ident: ref49
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– ident: ref39
  doi: 10.1016/j.imavis.2012.10.002
– ident: ref64
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref3
  doi: 10.1089/cpb.2006.9993
– ident: ref23
  doi: 10.1109/MSP.2012.2211477
– ident: ref15
  doi: 10.1016/j.ijhcs.2007.10.011
– ident: ref40
  doi: 10.1109/CIBCB.2016.7758108
– ident: ref46
  doi: 10.1109/EMBC.2018.8512320
– ident: ref21
  doi: 10.1109/CVPR.2016.91
– ident: ref29
  doi: 10.1109/EMBC.2016.7591731
– ident: ref12
  doi: 10.1109/TBME.2018.2868759
– ident: ref60
  doi: 10.1007/978-3-540-30133-2_26
– ident: ref63
  doi: 10.5244/C.29.41
– ident: ref54
  doi: 10.1007/s11517-010-0592-3
– ident: ref50
  doi: 10.1007/s11263-015-0816-y
– ident: ref41
  doi: 10.1109/ICME.2014.6890161
– ident: ref66
  doi: 10.1007/s10479-011-0841-3
– ident: ref51
  doi: 10.1109/CVPRW.2014.131
– ident: ref62
  doi: 10.1109/CVPR.2014.240
– ident: ref42
  doi: 10.1109/EMBC.2015.7318997
– ident: ref43
  doi: 10.1109/EMBC.2013.6609968
– volume: 3
  issue: 5
  year: 2013
  ident: ref37
  article-title: Modeling physiological data with deep belief networks
  publication-title: Int. J. Inf. Educ. Technol.
– ident: ref44
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref27
  doi: 10.1037/h0077714
– volume: 2
  start-page: 53
  issue: 2
  year: 2017
  ident: ref11
  article-title: Identifying correlation between facial expression and heart rate and skin conductance with iMotions biometric platform
  publication-title: J. Emerging Forensic Sci. Res.
– ident: ref19
  doi: 10.1145/2818346.2830595
– ident: ref7
  doi: 10.1186/1475-925X-12-56
– ident: ref56
  doi: 10.1136/hrt.52.4.396
– ident: ref38
  doi: 10.1016/j.eswa.2015.10.049
– ident: ref45
  doi: 10.1109/TPAMI.2005.159
– ident: ref58
  doi: 10.1016/j.camwa.2007.04.035
– ident: ref8
  doi: 10.1109/TITB.2010.2042607
– ident: ref30
  doi: 10.1109/T-AFFC.2011.15
– ident: ref4
  doi: 10.1088/1741-2560/10/4/046003
– year: 2012
  ident: ref55
  article-title: peakdet: Peak detection using MATLAB
  publication-title: Detect Peaks in a Vector
– ident: ref48
  doi: 10.1109/MCSE.2007.55
– ident: ref5
  doi: 10.1109/TBME.2004.827086
– ident: ref10
  doi: 10.1016/j.jsams.2017.09.498
– ident: ref53
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref34
  doi: 10.1016/j.cmpb.2016.12.005
– ident: ref67
  doi: 10.1109/TIP.2017.2754941
– ident: ref24
  doi: 10.1109/TAFFC.2017.2714671
SSID ssj0000333627
Score 2.6001682
Snippet In recent years, the use of bio-sensing signals such as electroencephalogram (EEG), electrocardiogram (ECG), etc. have garnered interest towards applications...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms Affect (Psychology)
Affective computing
Algorithms
Arousal
bio-sensing
Brain-computer interface (BCI)
Classification
computer vision
Datasets
Deep learning
ECG
EEG
Electrocardiography
Electroencephalography
emotion processing
Emotions
Face
Feature extraction
GSR
Machine learning
multi-modality
Object recognition
Performance evaluation
PPG
Support vector machines
Video data
Vision
Title Utilizing Deep Learning Towards Multi-Modal Bio-Sensing and Vision-Based Affective Computing
URI https://ieeexplore.ieee.org/document/8713896
https://www.proquest.com/docview/2635044277
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BJy6lLSBCofKhN3DifXntY6CNUKX0QoJyQFr5WUWNkohsLvx6xt7dqIIK9bbSenYtfbbnm_E8AL75JFOiRCNHeC5pnumcyoIpmlijkZ6XpYgO_fEvfjfNf86K2R5c73JhnHMx-Mz1w2O8y7crsw2usgGSe9SvfB_20XBrcrV2_hSWZXgWl11eDJODyXA0ug3BW7KfIgliofPtX7onNlN5cwJHtTI6gnE3oSaa5E9_W-u-eX5Vq_F_Z_wRPrT8kgybBfEJ9tzyMxx1vRtIu5WP4XFazxfzZ1Rc5Ltza9LWWf1NJjGOdkNiZi4dryx-7Wa-ovch0h3fq6UlDzEhnd6gBrRkGCNC8NAkzV9w0AlMRz8mt3e07bRATSqLmnqZSSQSzEouVMmZYsZypwR3iZQejSilBZfCF1JzbUQhkDVqjsaISVLNUfoUDparpTsDYlLLmMq9F7LIk9RpI423vjSOaadz1YOkw6AybRny0A1jUUVzhMkq4lYF3KoWtx5c7WTWTRGOd0cfByB2I1sMenDRQV21-3RThVI8LM_Tsjz_t9QXOExDwkN0ulzAQf20dZdIQ2r9Na6_FwNK2aQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELaqcoALpRTEQik-wAl56ziJYx84bH9WW9rthV3UA1Lwb7Wi2q3YrBB9Fl6Fd-vYcVYIELdK3CLFThTPaOabyTczCL32Wa5EBUGO8FySItcFkSVVJLNGAzyvKhET-uNzPpoW7y_Kiw30Y10L45yL5DPXD5fxX75dmFVIle0DuAf_yhOF8tR9_wYB2vLdyRFI8w1jw-PJ4YikGQLEMFk2xMtcgoukVnKhKk4VNZY7JbjLpPQQHigtuBS-lJprI0oBeEhzgNkmY5r70GoJDPw9wBkla6vD1hkcmudg_auuEofK_clgODwMdDHZZwC7aJi1-4u3i-Nb_rD50ZENt9DP7gha_sqX_qrRfXPzW3fI__WMHqGHCUHjQavy22jDzR-jrW46BU7Gagd9mjazq9kNuGZ85Nw1Tp1kL_EkMoWXONYek_HCwtMOZgvyIXD54b6aW_wxltyTA_DxFg8i5wXcAm7fAoueoOmdfONTtDlfzN0zhA2zlKrCeyHLImNOG2m89ZVxVDtdqB7KOpnXJjVaD_M-ruoYcFFZRz2pg57USU966O16z3XbZuSfq3eC4Ncrk8x7aLdTrTpZomUdmg3RomBV9fzvu16h-6PJ-Kw-Ozk_fYEesFDeEVNMu2iz-bpyLwF0NXov6j5Gn-9akW4BVy01Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Deep+Learning+Towards+Multi-Modal+Bio-Sensing+and+Vision-Based+Affective+Computing&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Siddharth&rft.au=Jung%2C+Tzyy-Ping&rft.au=Sejnowski%2C+Terrence+J.&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=13&rft.issue=1&rft.spage=96&rft.epage=107&rft_id=info:doi/10.1109%2FTAFFC.2019.2916015&rft.externalDocID=8713896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon