Achieving 100x Acceleration for N-1 Contingency Screening With Uncertain Scenarios Using Deep Convolutional Neural Network
The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios need to be combined with contingency screening. In this letter, a novel data-driven method, similar to image-processing technique, is proposed...
Saved in:
Published in | IEEE transactions on power systems Vol. 34; no. 4; pp. 3303 - 3305 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios need to be combined with contingency screening. In this letter, a novel data-driven method, similar to image-processing technique, is proposed for accelerating N-1 contingency screening of power systems based on the deep convolutional neural network (CNN) method for calculating AC power flows under N-1 contingency and uncertain scenarios. Once the deep CNN is well trained, it has high generalization and works in a nearly computation-free fashion for unseen instances, such as topological changes in the N-1 cases and uncertain renewable scenarios. The proposed deep CNN is implemented on several standard IEEE test systems to verify its accuracy and computational efficiency. The proposed study constitutes a solid demonstration of the considerable potential of the data-driven deep CNN in future online applications. |
---|---|
AbstractList | The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios need to be combined with contingency screening. In this letter, a novel data-driven method, similar to image-processing technique, is proposed for accelerating N-1 contingency screening of power systems based on the deep convolutional neural network (CNN) method for calculating AC power flows under N-1 contingency and uncertain scenarios. Once the deep CNN is well trained, it has high generalization and works in a nearly computation-free fashion for unseen instances, such as topological changes in the N-1 cases and uncertain renewable scenarios. The proposed deep CNN is implemented on several standard IEEE test systems to verify its accuracy and computational efficiency. The proposed study constitutes a solid demonstration of the considerable potential of the data-driven deep CNN in future online applications. |
Author | Li, Fangxing Zheng, Tongxin Du, Yan Li, Jiang |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-4656-240X surname: Du fullname: Du, Yan email: ydu15@vols.utk.edu organization: Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA – sequence: 2 givenname: Fangxing orcidid: 0000-0003-1060-7618 surname: Li fullname: Li, Fangxing email: fli6@utk.edu organization: Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA – sequence: 3 givenname: Jiang orcidid: 0000-0003-0091-6986 surname: Li fullname: Li, Jiang email: JLI@ODU.EDU organization: Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA – sequence: 4 givenname: Tongxin surname: Zheng fullname: Zheng, Tongxin email: tzheng@iso-ne.com organization: ISO New England, Holyoke, MA, USA |
BookMark | eNp9kMtOwzAQRS0EEuXxA7CxxDrFjzixl1V5Sqgg2qrLKHEmYAh2sV1eX0_SIhYsWM3i3jMzOnto2zoLCB1RMqSUqNPZ3eJ-OmSEqiFTNJUZ2UIDKoRMSJarbTQgUopEKkF20V4IT4SQrAsG6GukHw28GfuAKSEfeKQ1tODLaJzFjfN4klA8djZ2DbD6E0-1B7B9f2HiI55bDT6WxnYB2NIbF_A89PEZwLIn31y76reVLZ7Ayq9HfHf--QDtNGUb4PBn7qP5xflsfJXc3F5ej0c3iWZKxKSRlVCa1rJhNeeygqrWuqyYZIKnnNUCGppWKoNKqTyt65QoyXmTCs6VAkr4PjrZ7F1697qCEIsnt_LdP6FgLE25oELlXYttWtq7EDw0xdKbl9J_FpQUveNi7bjoHRc_jjtI_oG0iWt30Zem_R893qAGAH5vyZwILhX_Bt4YjSg |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1016_j_epsr_2022_108200 crossref_primary_10_1109_TPWRS_2020_2969956 crossref_primary_10_3390_electricity3030018 crossref_primary_10_1109_TSG_2020_3009401 crossref_primary_10_1109_TPWRS_2023_3243636 crossref_primary_10_1016_j_ijepes_2024_110082 crossref_primary_10_1109_ACCESS_2019_2958960 crossref_primary_10_1109_ACCESS_2023_3348549 crossref_primary_10_1109_TSG_2022_3160387 crossref_primary_10_1016_j_patter_2022_100640 crossref_primary_10_1109_TPWRS_2024_3445655 crossref_primary_10_1109_TPWRS_2021_3115399 crossref_primary_10_1016_j_epsr_2022_109005 crossref_primary_10_1109_TII_2022_3163142 crossref_primary_10_3390_su142316308 crossref_primary_10_1016_j_epsr_2024_110415 crossref_primary_10_1109_TCYB_2024_3411868 crossref_primary_10_3390_electronics10030255 crossref_primary_10_1080_15325008_2024_2329336 crossref_primary_10_1007_s40866_024_00218_0 crossref_primary_10_1109_TPWRS_2024_3465088 crossref_primary_10_1109_TPWRS_2022_3215510 crossref_primary_10_1109_TPWRS_2023_3258740 crossref_primary_10_1016_j_heliyon_2023_e14524 crossref_primary_10_1109_TPWRS_2024_3382266 crossref_primary_10_1109_TIA_2022_3174190 crossref_primary_10_1109_OAJPE_2021_3093278 crossref_primary_10_1109_OAJPE_2021_3092264 crossref_primary_10_1016_j_apenergy_2020_116117 crossref_primary_10_1109_TSG_2019_2930299 crossref_primary_10_1016_j_epsr_2021_107609 crossref_primary_10_31436_iiumej_v26i1_3537 crossref_primary_10_3390_en14134046 crossref_primary_10_1109_TPWRS_2023_3262851 crossref_primary_10_1109_TPWRS_2022_3199238 crossref_primary_10_1109_ACCESS_2023_3334394 crossref_primary_10_1109_ACCESS_2021_3082001 crossref_primary_10_1016_j_ijepes_2020_105995 crossref_primary_10_1049_gtd2_12890 crossref_primary_10_1109_TSG_2021_3128182 crossref_primary_10_1002_2050_7038_12367 crossref_primary_10_1016_j_rineng_2024_103884 crossref_primary_10_23919_IEN_2023_0010 crossref_primary_10_1109_TSG_2020_2971909 crossref_primary_10_1049_rpg2_12838 crossref_primary_10_1016_j_apenergy_2024_125264 crossref_primary_10_1109_TII_2020_3047607 crossref_primary_10_1038_s44287_024_00018_9 crossref_primary_10_1109_TPWRS_2023_3238377 crossref_primary_10_1016_j_compeleceng_2024_109881 crossref_primary_10_1109_TASE_2024_3389455 crossref_primary_10_1109_TCNS_2021_3063333 crossref_primary_10_1016_j_ijepes_2021_107592 crossref_primary_10_1016_j_apenergy_2021_118361 crossref_primary_10_1016_j_ijepes_2025_110513 crossref_primary_10_1016_j_ijepes_2021_107392 |
Cites_doi | 10.1109/TPWRS.2013.2267557 10.1109/MPE.2017.2779554 10.1109/TPWRS.2017.2686701 10.1109/TPWRS.2016.2523998 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRS.2019.2914860 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 3305 |
ExternalDocumentID | 10_1109_TPWRS_2019_2914860 8705389 |
Genre | orig-research |
GrantInformation_xml | – fundername: CURENT research center – fundername: National Science Foundation grantid: ECCS-1809458 funderid: 10.13039/100000001 – fundername: ISO New England |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c295t-f8b59c1d8f2d338bebdccab28253432d5ef14b96eb9974dd409833f453399e103 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri Jul 25 19:05:07 EDT 2025 Tue Jul 01 01:35:43 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Wed Aug 27 05:56:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-f8b59c1d8f2d338bebdccab28253432d5ef14b96eb9974dd409833f453399e103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0091-6986 0000-0003-1060-7618 0000-0002-4656-240X |
PQID | 2244351597 |
PQPubID | 85441 |
PageCount | 3 |
ParticipantIDs | crossref_primary_10_1109_TPWRS_2019_2914860 proquest_journals_2244351597 ieee_primary_8705389 crossref_citationtrail_10_1109_TPWRS_2019_2914860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-July 2019-7-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-July |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | sunitha (ref5) 2013; 28 goodfellow (ref4) 2016 ref2 ref1 ref3 |
References_xml | – volume: 28 start-page: 4328 year: 2013 ident: ref5 article-title: Online static security assessment module using artificial neural networks publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2267557 – ident: ref1 doi: 10.1109/MPE.2017.2779554 – start-page: 326 year: 2016 ident: ref4 publication-title: Deep Learning – ident: ref3 doi: 10.1109/TPWRS.2017.2686701 – ident: ref2 doi: 10.1109/TPWRS.2016.2523998 |
SSID | ssj0006679 |
Score | 2.560963 |
Snippet | The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3303 |
SubjectTerms | AC power flow Acceleration Artificial neural networks Contingency Convolution data-driven deep convolutional neural network (deep CNN) Feature extraction image processing Kernel Load flow N-1 contingency screening Neural networks Screening Security Training |
Title | Achieving 100x Acceleration for N-1 Contingency Screening With Uncertain Scenarios Using Deep Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/8705389 https://www.proquest.com/docview/2244351597 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED61fWIP_NoQhYL8wBu4teM4jR8r2FQhUU1s1fYWxfZFrUDtRFME_es5O2nFxoT2lEixI0t3tr-zv_sO4F2VC-UJ1nIrHfI0FY6XNvE8SyqFJrMGy8i2mGXTefr5Wl934MMhFwYRI_kMh-E13uX7tduGo7IR-RbNT9OFLgVuTa7WYdXNskZXL881z40W-wQZYUaX51dfLwKLywwTI0PVpVubUKyq8s9SHPeXsyfwZT-yhlbybbit7dDt7og2PnToT-FxCzTZpPGMZ9DB1XM4-kt-8Bh2E7dYYjhRYFKIX2ziHG1CjUswArNsxiUL8lUxAcv9ZhcusHRC-6tlvWBzcphIKKAPuKKge71hkYLAPiHehJ4_W8emgQQVkPiItPMTmJ-dXn6c8rYWA3eJ0TWvcquNkz6vEk9RrUXryfY2ZL6G1FSvsZKpNRlaQxGK9xQ25kpVKaFJY1AK9QJ6q_UKXwKrsFQofSlKI9LUlUYqp5VGq1WFmI77IPfGKVwrVB7qZXwvYsAiTBENWgSDFq1B-_D-0Oemken4b-vjYKFDy9Y4fRjsfaBoZ_KmIIhDiJJA3_jV_b1ew6Pw74bCO4Be_WOLbwio1PZt9NA_FPvl6Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Reigc6AdFLIXiQ2_Uix3HIT6u2qIthRWCXcEtiu2JQKBdBFnU8us7drKrQivUUyLFVizN2PMmefMG4FOVC-UJ1nIrHfI0FY6XNvE8SyqFJrMGy8i2GGT9UXpwrs8X4PO8FgYRI_kMu-E2_sv3EzcNn8p2ybdof5oX8JLivk6aaq35uZtljbJenmueGy1mJTLC7A6Pz05OA4_LdBMjQ9-lR2Eo9lX56zCOEWb_NRzN1tYQS66609p23cMT2cb_XfwbWGmhJus1vvEWFnD8Dpb_ECBchYeeu7jE8E2BSSF-sp5zFIYap2AEZ9mASxYErGIJlvvFTl3g6YTxZ5f1BRuRy0RKAT3AMaXdkzsWSQjsK-JNmHnfujYtJOiAxEsknr-H0f634Zc-b7sxcJcYXfMqt9o46fMq8ZTXWrSerG9D7WsoTvUaK5lak6E1lKN4T4ljrlSVEp40BqVQa7A4noxxHViFpULpS1EakaauNFI5rTRarSrEdK8DcmacwrVS5aFjxnURUxZhimjQIhi0aA3agZ35nJtGqOPZ0avBQvORrXE6sDnzgaLdy3cFgRzClAT79jb-PWsbXvWHR4fF4ffBjw-wFN7TEHo3YbG-neIWwZbafoze-hs7Pukz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+100x+Acceleration+for+N-1+Contingency+Screening+With+Uncertain+Scenarios+Using+Deep+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Du%2C+Yan&rft.au=Li%2C+Fangxing&rft.au=Li%2C+Jiang&rft.au=Zheng%2C+Tongxin&rft.date=2019-07-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=34&rft.issue=4&rft.spage=3303&rft.epage=3305&rft_id=info:doi/10.1109%2FTPWRS.2019.2914860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2019_2914860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |