Achieving 100x Acceleration for N-1 Contingency Screening With Uncertain Scenarios Using Deep Convolutional Neural Network

The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios need to be combined with contingency screening. In this letter, a novel data-driven method, similar to image-processing technique, is proposed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 34; no. 4; pp. 3303 - 3305
Main Authors Du, Yan, Li, Fangxing, Li, Jiang, Zheng, Tongxin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios need to be combined with contingency screening. In this letter, a novel data-driven method, similar to image-processing technique, is proposed for accelerating N-1 contingency screening of power systems based on the deep convolutional neural network (CNN) method for calculating AC power flows under N-1 contingency and uncertain scenarios. Once the deep CNN is well trained, it has high generalization and works in a nearly computation-free fashion for unseen instances, such as topological changes in the N-1 cases and uncertain renewable scenarios. The proposed deep CNN is implemented on several standard IEEE test systems to verify its accuracy and computational efficiency. The proposed study constitutes a solid demonstration of the considerable potential of the data-driven deep CNN in future online applications.
AbstractList The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios need to be combined with contingency screening. In this letter, a novel data-driven method, similar to image-processing technique, is proposed for accelerating N-1 contingency screening of power systems based on the deep convolutional neural network (CNN) method for calculating AC power flows under N-1 contingency and uncertain scenarios. Once the deep CNN is well trained, it has high generalization and works in a nearly computation-free fashion for unseen instances, such as topological changes in the N-1 cases and uncertain renewable scenarios. The proposed deep CNN is implemented on several standard IEEE test systems to verify its accuracy and computational efficiency. The proposed study constitutes a solid demonstration of the considerable potential of the data-driven deep CNN in future online applications.
Author Li, Fangxing
Zheng, Tongxin
Du, Yan
Li, Jiang
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-4656-240X
  surname: Du
  fullname: Du, Yan
  email: ydu15@vols.utk.edu
  organization: Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
– sequence: 2
  givenname: Fangxing
  orcidid: 0000-0003-1060-7618
  surname: Li
  fullname: Li, Fangxing
  email: fli6@utk.edu
  organization: Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
– sequence: 3
  givenname: Jiang
  orcidid: 0000-0003-0091-6986
  surname: Li
  fullname: Li, Jiang
  email: JLI@ODU.EDU
  organization: Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
– sequence: 4
  givenname: Tongxin
  surname: Zheng
  fullname: Zheng, Tongxin
  email: tzheng@iso-ne.com
  organization: ISO New England, Holyoke, MA, USA
BookMark eNp9kMtOwzAQRS0EEuXxA7CxxDrFjzixl1V5Sqgg2qrLKHEmYAh2sV1eX0_SIhYsWM3i3jMzOnto2zoLCB1RMqSUqNPZ3eJ-OmSEqiFTNJUZ2UIDKoRMSJarbTQgUopEKkF20V4IT4SQrAsG6GukHw28GfuAKSEfeKQ1tODLaJzFjfN4klA8djZ2DbD6E0-1B7B9f2HiI55bDT6WxnYB2NIbF_A89PEZwLIn31y76reVLZ7Ayq9HfHf--QDtNGUb4PBn7qP5xflsfJXc3F5ej0c3iWZKxKSRlVCa1rJhNeeygqrWuqyYZIKnnNUCGppWKoNKqTyt65QoyXmTCs6VAkr4PjrZ7F1697qCEIsnt_LdP6FgLE25oELlXYttWtq7EDw0xdKbl9J_FpQUveNi7bjoHRc_jjtI_oG0iWt30Zem_R893qAGAH5vyZwILhX_Bt4YjSg
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_epsr_2022_108200
crossref_primary_10_1109_TPWRS_2020_2969956
crossref_primary_10_3390_electricity3030018
crossref_primary_10_1109_TSG_2020_3009401
crossref_primary_10_1109_TPWRS_2023_3243636
crossref_primary_10_1016_j_ijepes_2024_110082
crossref_primary_10_1109_ACCESS_2019_2958960
crossref_primary_10_1109_ACCESS_2023_3348549
crossref_primary_10_1109_TSG_2022_3160387
crossref_primary_10_1016_j_patter_2022_100640
crossref_primary_10_1109_TPWRS_2024_3445655
crossref_primary_10_1109_TPWRS_2021_3115399
crossref_primary_10_1016_j_epsr_2022_109005
crossref_primary_10_1109_TII_2022_3163142
crossref_primary_10_3390_su142316308
crossref_primary_10_1016_j_epsr_2024_110415
crossref_primary_10_1109_TCYB_2024_3411868
crossref_primary_10_3390_electronics10030255
crossref_primary_10_1080_15325008_2024_2329336
crossref_primary_10_1007_s40866_024_00218_0
crossref_primary_10_1109_TPWRS_2024_3465088
crossref_primary_10_1109_TPWRS_2022_3215510
crossref_primary_10_1109_TPWRS_2023_3258740
crossref_primary_10_1016_j_heliyon_2023_e14524
crossref_primary_10_1109_TPWRS_2024_3382266
crossref_primary_10_1109_TIA_2022_3174190
crossref_primary_10_1109_OAJPE_2021_3093278
crossref_primary_10_1109_OAJPE_2021_3092264
crossref_primary_10_1016_j_apenergy_2020_116117
crossref_primary_10_1109_TSG_2019_2930299
crossref_primary_10_1016_j_epsr_2021_107609
crossref_primary_10_31436_iiumej_v26i1_3537
crossref_primary_10_3390_en14134046
crossref_primary_10_1109_TPWRS_2023_3262851
crossref_primary_10_1109_TPWRS_2022_3199238
crossref_primary_10_1109_ACCESS_2023_3334394
crossref_primary_10_1109_ACCESS_2021_3082001
crossref_primary_10_1016_j_ijepes_2020_105995
crossref_primary_10_1049_gtd2_12890
crossref_primary_10_1109_TSG_2021_3128182
crossref_primary_10_1002_2050_7038_12367
crossref_primary_10_1016_j_rineng_2024_103884
crossref_primary_10_23919_IEN_2023_0010
crossref_primary_10_1109_TSG_2020_2971909
crossref_primary_10_1049_rpg2_12838
crossref_primary_10_1016_j_apenergy_2024_125264
crossref_primary_10_1109_TII_2020_3047607
crossref_primary_10_1038_s44287_024_00018_9
crossref_primary_10_1109_TPWRS_2023_3238377
crossref_primary_10_1016_j_compeleceng_2024_109881
crossref_primary_10_1109_TASE_2024_3389455
crossref_primary_10_1109_TCNS_2021_3063333
crossref_primary_10_1016_j_ijepes_2021_107592
crossref_primary_10_1016_j_apenergy_2021_118361
crossref_primary_10_1016_j_ijepes_2025_110513
crossref_primary_10_1016_j_ijepes_2021_107392
Cites_doi 10.1109/TPWRS.2013.2267557
10.1109/MPE.2017.2779554
10.1109/TPWRS.2017.2686701
10.1109/TPWRS.2016.2523998
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2019.2914860
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 3305
ExternalDocumentID 10_1109_TPWRS_2019_2914860
8705389
Genre orig-research
GrantInformation_xml – fundername: CURENT research center
– fundername: National Science Foundation
  grantid: ECCS-1809458
  funderid: 10.13039/100000001
– fundername: ISO New England
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-f8b59c1d8f2d338bebdccab28253432d5ef14b96eb9974dd409833f453399e103
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 19:05:07 EDT 2025
Tue Jul 01 01:35:43 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Wed Aug 27 05:56:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f8b59c1d8f2d338bebdccab28253432d5ef14b96eb9974dd409833f453399e103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0091-6986
0000-0003-1060-7618
0000-0002-4656-240X
PQID 2244351597
PQPubID 85441
PageCount 3
ParticipantIDs crossref_primary_10_1109_TPWRS_2019_2914860
proquest_journals_2244351597
ieee_primary_8705389
crossref_citationtrail_10_1109_TPWRS_2019_2914860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-July
2019-7-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References sunitha (ref5) 2013; 28
goodfellow (ref4) 2016
ref2
ref1
ref3
References_xml – volume: 28
  start-page: 4328
  year: 2013
  ident: ref5
  article-title: Online static security assessment module using artificial neural networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2267557
– ident: ref1
  doi: 10.1109/MPE.2017.2779554
– start-page: 326
  year: 2016
  ident: ref4
  publication-title: Deep Learning
– ident: ref3
  doi: 10.1109/TPWRS.2017.2686701
– ident: ref2
  doi: 10.1109/TPWRS.2016.2523998
SSID ssj0006679
Score 2.560963
Snippet The increasing penetration of renewable energy makes the traditional N-1 contingency screening highly challenging when a large number of uncertain scenarios...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3303
SubjectTerms AC power flow
Acceleration
Artificial neural networks
Contingency
Convolution
data-driven
deep convolutional neural network (deep CNN)
Feature extraction
image processing
Kernel
Load flow
N-1 contingency screening
Neural networks
Screening
Security
Training
Title Achieving 100x Acceleration for N-1 Contingency Screening With Uncertain Scenarios Using Deep Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/8705389
https://www.proquest.com/docview/2244351597
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED61fWIP_NoQhYL8wBu4teM4jR8r2FQhUU1s1fYWxfZFrUDtRFME_es5O2nFxoT2lEixI0t3tr-zv_sO4F2VC-UJ1nIrHfI0FY6XNvE8SyqFJrMGy8i2mGXTefr5Wl934MMhFwYRI_kMh-E13uX7tduGo7IR-RbNT9OFLgVuTa7WYdXNskZXL881z40W-wQZYUaX51dfLwKLywwTI0PVpVubUKyq8s9SHPeXsyfwZT-yhlbybbit7dDt7og2PnToT-FxCzTZpPGMZ9DB1XM4-kt-8Bh2E7dYYjhRYFKIX2ziHG1CjUswArNsxiUL8lUxAcv9ZhcusHRC-6tlvWBzcphIKKAPuKKge71hkYLAPiHehJ4_W8emgQQVkPiItPMTmJ-dXn6c8rYWA3eJ0TWvcquNkz6vEk9RrUXryfY2ZL6G1FSvsZKpNRlaQxGK9xQ25kpVKaFJY1AK9QJ6q_UKXwKrsFQofSlKI9LUlUYqp5VGq1WFmI77IPfGKVwrVB7qZXwvYsAiTBENWgSDFq1B-_D-0Oemken4b-vjYKFDy9Y4fRjsfaBoZ_KmIIhDiJJA3_jV_b1ew6Pw74bCO4Be_WOLbwio1PZt9NA_FPvl6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Reigc6AdFLIXiQ2_Uix3HIT6u2qIthRWCXcEtiu2JQKBdBFnU8us7drKrQivUUyLFVizN2PMmefMG4FOVC-UJ1nIrHfI0FY6XNvE8SyqFJrMGy8i2GGT9UXpwrs8X4PO8FgYRI_kMu-E2_sv3EzcNn8p2ybdof5oX8JLivk6aaq35uZtljbJenmueGy1mJTLC7A6Pz05OA4_LdBMjQ9-lR2Eo9lX56zCOEWb_NRzN1tYQS66609p23cMT2cb_XfwbWGmhJus1vvEWFnD8Dpb_ECBchYeeu7jE8E2BSSF-sp5zFIYap2AEZ9mASxYErGIJlvvFTl3g6YTxZ5f1BRuRy0RKAT3AMaXdkzsWSQjsK-JNmHnfujYtJOiAxEsknr-H0f634Zc-b7sxcJcYXfMqt9o46fMq8ZTXWrSerG9D7WsoTvUaK5lak6E1lKN4T4ljrlSVEp40BqVQa7A4noxxHViFpULpS1EakaauNFI5rTRarSrEdK8DcmacwrVS5aFjxnURUxZhimjQIhi0aA3agZ35nJtGqOPZ0avBQvORrXE6sDnzgaLdy3cFgRzClAT79jb-PWsbXvWHR4fF4ffBjw-wFN7TEHo3YbG-neIWwZbafoze-hs7Pukz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+100x+Acceleration+for+N-1+Contingency+Screening+With+Uncertain+Scenarios+Using+Deep+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Du%2C+Yan&rft.au=Li%2C+Fangxing&rft.au=Li%2C+Jiang&rft.au=Zheng%2C+Tongxin&rft.date=2019-07-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=34&rft.issue=4&rft.spage=3303&rft.epage=3305&rft_id=info:doi/10.1109%2FTPWRS.2019.2914860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2019_2914860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon