Finite-Time Synchronization of Fractional-Order Delayed Fuzzy Cellular Neural Networks With Parameter Uncertainties
The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 31; no. 6; pp. 1769 - 1779 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V(t)-b</tex-math></inline-formula> is extended to the nonlinear case <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\eta \geq 1</tex-math></inline-formula>, which plays a vital role in the FTS of fractional-order systems. However, for the case of <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula>, a theoretical cornerstone justifying its use is still missing. To fill this research gap, on the basis of the <inline-formula><tex-math notation="LaTeX">C_{p}</tex-math></inline-formula> inequality and the rule for fractional-order derivative of composite function, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula> is developed. Furthermore, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -bV^{-\xi }(t)-a V^{-\eta }(t)</tex-math></inline-formula> is also established. These two novel inequalities provide the new tools for the research on the finite time stability and synchronization of fractional-order systems and can greatly extend the pioneer ones. Next, on the basis of these novel inequalities, the feedback controller is designed and two novel FTS criteria of FODFCNNs with parameter uncertainties are obtained. Finally, two examples are presented to verify the effectiveness of the derived results. |
---|---|
AbstractList | The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V(t)-b</tex-math></inline-formula> is extended to the nonlinear case <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\eta \geq 1</tex-math></inline-formula>, which plays a vital role in the FTS of fractional-order systems. However, for the case of <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula>, a theoretical cornerstone justifying its use is still missing. To fill this research gap, on the basis of the <inline-formula><tex-math notation="LaTeX">C_{p}</tex-math></inline-formula> inequality and the rule for fractional-order derivative of composite function, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula> is developed. Furthermore, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -bV^{-\xi }(t)-a V^{-\eta }(t)</tex-math></inline-formula> is also established. These two novel inequalities provide the new tools for the research on the finite time stability and synchronization of fractional-order systems and can greatly extend the pioneer ones. Next, on the basis of these novel inequalities, the feedback controller is designed and two novel FTS criteria of FODFCNNs with parameter uncertainties are obtained. Finally, two examples are presented to verify the effectiveness of the derived results. The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) [Formula Omitted] is extended to the nonlinear case [Formula Omitted], [Formula Omitted], which plays a vital role in the FTS of fractional-order systems. However, for the case of [Formula Omitted], a theoretical cornerstone justifying its use is still missing. To fill this research gap, on the basis of the [Formula Omitted] inequality and the rule for fractional-order derivative of composite function, a nonlinear FOFTI [Formula Omitted], [Formula Omitted] is developed. Furthermore, a nonlinear FOFTI [Formula Omitted] is also established. These two novel inequalities provide the new tools for the research on the finite time stability and synchronization of fractional-order systems and can greatly extend the pioneer ones. Next, on the basis of these novel inequalities, the feedback controller is designed and two novel FTS criteria of FODFCNNs with parameter uncertainties are obtained. Finally, two examples are presented to verify the effectiveness of the derived results. |
Author | Lu, Jun-Guo Du, Feifei |
Author_xml | – sequence: 1 givenname: Feifei orcidid: 0000-0003-4725-377X surname: Du fullname: Du, Feifei email: qinjin65@126.com organization: Department of Automation, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Jun-Guo orcidid: 0000-0002-5012-5624 surname: Lu fullname: Lu, Jun-Guo email: jglu@sjtu.edu.cn organization: Department of Automation, Shanghai Jiao Tong University, Shanghai, China |
BookMark | eNp9kE1Lw0AQhhdRsFX_gF4WPKfObr6PUo0KYgVbBC9hkp3gaprU3Q3S_nq3Vjx48DTvYZ4Z3mfM9ru-I8ZOBUyEgPxiXixeXiYSpJyEUkSQwh4biTwSAUAY7fsMSRgkKSSHbGztG4CIYpGNmC10px0Fc70k_rTu6lfTd3qDTvcd7xteGKy3GdtgZhQZfkUtrknxYths1nxKbTu0aPgDDQZbP9xnb94tf9bulT-iwSU5Ty26moxD3TlN9pgdNNhaOvmZR2xRXM-nt8H97OZuenkf1DKPXdAkaSJRVVFGUQ5pBXmcUBpllcpqFCpJfb2mEooUVb4yoVIhqCRElam4AQyP2Pnu7sr0HwNZV771g_FVbCkzKVIRezd-S-62atNba6gpV0Yv0axLAeVWbvktt9zKLX_keij7A9XafUtzBnX7P3q2QzUR_f7Kc5HKDMIvmhaMdQ |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_3390_fractalfract7080633 crossref_primary_10_1002_rnc_7739 crossref_primary_10_1109_TFUZZ_2023_3339162 crossref_primary_10_1007_s00034_024_02643_z crossref_primary_10_1016_j_fraope_2025_100215 crossref_primary_10_1016_j_matcom_2025_02_030 crossref_primary_10_1109_TSMC_2024_3520135 crossref_primary_10_1007_s12555_023_0908_3 crossref_primary_10_3934_math_2024935 crossref_primary_10_1007_s12043_025_02891_x crossref_primary_10_1016_j_cnsns_2023_107724 crossref_primary_10_1080_00207721_2024_2421454 crossref_primary_10_1109_ACCESS_2024_3430537 crossref_primary_10_3390_fractalfract8110619 crossref_primary_10_1109_TFUZZ_2024_3365816 crossref_primary_10_3934_math_2024392 crossref_primary_10_1002_rnc_7642 crossref_primary_10_1016_j_ins_2024_120457 crossref_primary_10_1109_TFUZZ_2024_3471793 crossref_primary_10_1007_s40314_024_02701_x crossref_primary_10_1016_j_neucom_2024_128174 |
Cites_doi | 10.1007/s11071-020-05719-y 10.1016/j.jfranklin.2019.09.015 10.1109/TAC.2015.2484328 10.1016/j.fss.2020.07.009 10.1109/TCSI.2021.3115097 10.1016/j.neunet.2020.02.004 10.1109/TFUZZ.2020.3026030 10.1155/2020/4168705 10.1016/j.amc.2020.125079 10.1109/TCYB.2018.2877410 10.1016/j.neunet.2017.02.001 10.1007/s00034-020-01631-3 10.1016/j.jfranklin.2018.04.026 10.1016/j.artmed.2006.08.001 10.1016/j.chaos.2021.111110 10.1016/j.neucom.2018.08.016 10.1109/81.538999 10.1109/TCYB.2019.2946076 10.1016/j.amc.2020.125616 10.1109/TNNLS.2018.2876726 10.1109/TFUZZ.2019.2930032 10.1016/j.amc.2020.125188 10.1109/TNNLS.2021.3083886 10.1088/1674-1056/ab7803 10.1007/3-540-45666-X 10.1109/TSMC.2018.2836952 10.1016/j.neunet.2015.04.006 10.1016/j.jfranklin.2018.05.039 10.1016/j.neucom.2018.09.021 10.1109/TNNLS.2019.2962006 10.1016/j.automatica.2013.11.018 10.1109/ACCESS.2019.2930678 10.1016/j.neucom.2019.11.043 10.1002/asjc.2075 10.1016/j.neucom.2018.11.020 10.1016/j.jfranklin.2019.01.017 10.1016/j.physa.2019.122027 10.1109/TAC.2011.2179869 10.1109/31.7600 10.1080/00207179.2016.1278268 10.1016/j.fss.2019.04.004 10.1016/j.cnsns.2017.11.025 10.1016/j.fss.2018.04.017 10.1016/j.nahs.2020.100888 10.1016/j.fss.2017.04.005 10.1007/s00521-022-06976-1 10.1109/TCYB.2020.3027755 10.1109/TNNLS.2017.2675442 10.1016/j.amc.2018.07.041 10.1016/j.chaos.2018.07.033 10.1016/j.ins.2019.04.007 10.1016/j.amc.2020.125310 10.1016/j.cnsns.2015.06.007 10.1016/j.amc.2021.126377 10.1016/j.fss.2021.11.004 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2022.3214070 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 1779 |
ExternalDocumentID | 10_1109_TFUZZ_2022_3214070 9917280 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2018M641991 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 62073217; 61374030; 61533012 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-f6762adb48e4907b0956e748bd8ca1d67941fb1dedeb140eadd30d63ad8d5f0a3 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Sun Jun 29 16:35:15 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Jul 01 01:55:35 EDT 2025 Wed Aug 27 02:25:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-f6762adb48e4907b0956e748bd8ca1d67941fb1dedeb140eadd30d63ad8d5f0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5012-5624 0000-0003-4725-377X |
PQID | 2821715034 |
PQPubID | 85428 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TFUZZ_2022_3214070 proquest_journals_2821715034 crossref_primary_10_1109_TFUZZ_2022_3214070 ieee_primary_9917280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 khalil (ref55) 2002 kuang (ref47) 2012 ref3 ref5 ref40 podlubny (ref43) 1999 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 bartle (ref48) 2000 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 alshabanat (ref6) 2020; 8 ref60 |
References_xml | – ident: ref11 doi: 10.1007/s11071-020-05719-y – ident: ref51 doi: 10.1016/j.jfranklin.2019.09.015 – year: 2002 ident: ref55 publication-title: Nonlinear Systems 3rd Edition – year: 2012 ident: ref47 publication-title: Applied inequalities – ident: ref22 doi: 10.1109/TAC.2015.2484328 – ident: ref27 doi: 10.1016/j.fss.2020.07.009 – ident: ref42 doi: 10.1109/TCSI.2021.3115097 – ident: ref36 doi: 10.1016/j.neunet.2020.02.004 – ident: ref57 doi: 10.1109/TFUZZ.2020.3026030 – ident: ref32 doi: 10.1155/2020/4168705 – ident: ref25 doi: 10.1016/j.amc.2020.125079 – ident: ref10 doi: 10.1109/TCYB.2018.2877410 – ident: ref53 doi: 10.1016/j.neunet.2017.02.001 – ident: ref29 doi: 10.1007/s00034-020-01631-3 – ident: ref49 doi: 10.1016/j.jfranklin.2018.04.026 – ident: ref4 doi: 10.1016/j.artmed.2006.08.001 – ident: ref9 doi: 10.1016/j.chaos.2021.111110 – ident: ref20 doi: 10.1016/j.neucom.2018.08.016 – ident: ref2 doi: 10.1109/81.538999 – ident: ref17 doi: 10.1109/TCYB.2019.2946076 – ident: ref18 doi: 10.1016/j.amc.2020.125616 – ident: ref37 doi: 10.1109/TNNLS.2018.2876726 – ident: ref14 doi: 10.1109/TFUZZ.2019.2930032 – ident: ref35 doi: 10.1016/j.amc.2020.125188 – ident: ref39 doi: 10.1109/TNNLS.2021.3083886 – ident: ref26 doi: 10.1088/1674-1056/ab7803 – ident: ref59 doi: 10.1007/3-540-45666-X – ident: ref23 doi: 10.1109/TSMC.2018.2836952 – year: 1999 ident: ref43 publication-title: Fractional Differential Equations – ident: ref44 doi: 10.1016/j.neunet.2015.04.006 – ident: ref38 doi: 10.1016/j.jfranklin.2018.05.039 – ident: ref8 doi: 10.1016/j.neucom.2018.09.021 – ident: ref31 doi: 10.1109/TNNLS.2019.2962006 – year: 2000 ident: ref48 publication-title: Introduction to Real Analysis – ident: ref52 doi: 10.1016/j.automatica.2013.11.018 – ident: ref21 doi: 10.1109/ACCESS.2019.2930678 – ident: ref46 doi: 10.1016/j.neucom.2019.11.043 – ident: ref15 doi: 10.1002/asjc.2075 – ident: ref58 doi: 10.1016/j.neucom.2018.11.020 – volume: 8 year: 2020 ident: ref6 article-title: Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits publication-title: Frontiers in Physiology – ident: ref13 doi: 10.1016/j.jfranklin.2019.01.017 – ident: ref34 doi: 10.1016/j.physa.2019.122027 – ident: ref56 doi: 10.1109/TAC.2011.2179869 – ident: ref1 doi: 10.1109/31.7600 – ident: ref24 doi: 10.1080/00207179.2016.1278268 – ident: ref28 doi: 10.1016/j.fss.2019.04.004 – ident: ref19 doi: 10.1016/j.cnsns.2017.11.025 – ident: ref30 doi: 10.1016/j.fss.2018.04.017 – ident: ref40 doi: 10.1016/j.nahs.2020.100888 – ident: ref60 doi: 10.1016/j.fss.2017.04.005 – ident: ref50 doi: 10.1007/s00521-022-06976-1 – ident: ref12 doi: 10.1109/TCYB.2020.3027755 – ident: ref33 doi: 10.1109/TNNLS.2017.2675442 – ident: ref16 doi: 10.1016/j.amc.2018.07.041 – ident: ref7 doi: 10.1016/j.chaos.2018.07.033 – ident: ref3 doi: 10.1016/j.ins.2019.04.007 – ident: ref5 doi: 10.1016/j.amc.2020.125310 – ident: ref54 doi: 10.1016/j.cnsns.2015.06.007 – ident: ref41 doi: 10.1016/j.amc.2021.126377 – ident: ref45 doi: 10.1016/j.fss.2021.11.004 |
SSID | ssj0014518 |
Score | 2.554621 |
Snippet | The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1769 |
SubjectTerms | Adaptive control Artificial neural networks Calculus Cellular communication Cellular neural networks Chaos Composite functions Control systems design Feedback control Finite-time synchronization (FTS) Fractional calculus fractional-order finite-time inequality (FOFTI) fuzzy cellular neural network (FCNN) Fuzzy logic Inequalities Neural networks parameter uncertainties Parameter uncertainty Synchronization time delay Time synchronization Uncertain systems |
Title | Finite-Time Synchronization of Fractional-Order Delayed Fuzzy Cellular Neural Networks With Parameter Uncertainties |
URI | https://ieeexplore.ieee.org/document/9917280 https://www.proquest.com/docview/2821715034 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3Ioz6rLSz70Vrw4G6-TPSIgQpWglcqqiEvkx0RFjXYrNnvY_fV47GSFKEK95WDLlmbGnonn-z6AL_6Ek7KyijuFmkuJOTdOWJ5VWhhb5aayhEa-uVXXY_ntfni_BqcrLAwihuYz7NNneMt3UzunX2VnPpchNaV1WPeFW8RqrV4M5DCJsDeVcpUJ1QFkxOjsrhg_PPhScDDokyyPIGHiF5dQUFX55ygO90uxBTfdzmJbyZ_-vDF9u3xF2vi_W9-Gj22iyc6jZ-zAGk52YasTcWBtTO_C5gtGwj2YFY-UhHJChrCfi4kN3LkRqsmmFSueIhBC1_w7kXayS6z1Ah0r5svlgl1gXVNfKyPOD7_6bWwyn7Ffj81v9kNTJxitPvZLh1YEonPdh3FxdXdxzVtdBm4Ho2HDK-VPUO2MzFH62toQlyFmMjcutzpxyod4UpnEofMXgRTeV10qnEq1y92wEjr9BBuT6QQ_A5Oplog6I3kKKdLM-ILOYuKskShzl_Ug6QxV2pa0nLQz6jIUL2JUBuOWZNyyNW4Pvq7m_I2UHe-O3iNrrUa2hurBUecPZRvVs9KXp0nmM-hUHrw96xA-kBx9bCU7go3maY7HPmlpzEnw1meRveu- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcoAeKLSgBlrwgRs49Wa9Hzmi0lWAJiCRiKqXlT9mRdVVUjWbQ_Lr8di7UQUIcduDLVuasWdmPe89gLfuhpOyMim3KSouJeZcW2F4VimhTZXryhAaeTxJRzP5-TK53IH3WywMIvrmM-zTp3_Ltwuzol9lpy6XITWlB_DQxf0kCmit7ZuBTKIAfEtjnmYi7SAyYng6LWZXV64YHAz6JMwjSJr4Xhjyuip_XMY-whT7MO72FhpLbvqrRvfN5jfaxv_d_FN40qaa7EPwjWewg_MD2O9kHFh7qg9g7x4n4SEsi2tKQzlhQ9j39dx49twA1mSLihV3AQqhav6VaDvZR6zVGi0rVpvNmp1hXVNnKyPWD7f6JLSZL9mP6-Yn-6aoF4xWn7mlfTMCEbo-h1lxPj0b8VaZgZvBMGl4lbo7VFktc5SuutbEZoiZzLXNjYps6g55VOnIonWhQArnrTYWNo2VzW1SCRW_gN35Yo5HwGSsJKLKSKBCijjTrqQzGFmjJcrcZj2IOkOVpqUtJ_WMuvTlixiW3rglGbdsjduDd9s5t4G045-jD8la25GtoXpw3PlD2Z7rZekK1ChzOXQsX_591ht4NJqOL8qLT5Mvr-AxidOHxrJj2G3uVnjiUphGv_ae-wsBqO8H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+Synchronization+of+Fractional-Order+Delayed+Fuzzy+Cellular+Neural+Networks+With+Parameter+Uncertainties&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Du%2C+Feifei&rft.au=Lu%2C+Jun-Guo&rft.date=2023-06-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=31&rft.issue=6&rft.spage=1769&rft.epage=1779&rft_id=info:doi/10.1109%2FTFUZZ.2022.3214070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2022_3214070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |