Finite-Time Synchronization of Fractional-Order Delayed Fuzzy Cellular Neural Networks With Parameter Uncertainties

The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 31; no. 6; pp. 1769 - 1779
Main Authors Du, Feifei, Lu, Jun-Guo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V(t)-b</tex-math></inline-formula> is extended to the nonlinear case <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\eta \geq 1</tex-math></inline-formula>, which plays a vital role in the FTS of fractional-order systems. However, for the case of <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula>, a theoretical cornerstone justifying its use is still missing. To fill this research gap, on the basis of the <inline-formula><tex-math notation="LaTeX">C_{p}</tex-math></inline-formula> inequality and the rule for fractional-order derivative of composite function, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula> is developed. Furthermore, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -bV^{-\xi }(t)-a V^{-\eta }(t)</tex-math></inline-formula> is also established. These two novel inequalities provide the new tools for the research on the finite time stability and synchronization of fractional-order systems and can greatly extend the pioneer ones. Next, on the basis of these novel inequalities, the feedback controller is designed and two novel FTS criteria of FODFCNNs with parameter uncertainties are obtained. Finally, two examples are presented to verify the effectiveness of the derived results.
AbstractList The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V(t)-b</tex-math></inline-formula> is extended to the nonlinear case <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\eta \geq 1</tex-math></inline-formula>, which plays a vital role in the FTS of fractional-order systems. However, for the case of <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula>, a theoretical cornerstone justifying its use is still missing. To fill this research gap, on the basis of the <inline-formula><tex-math notation="LaTeX">C_{p}</tex-math></inline-formula> inequality and the rule for fractional-order derivative of composite function, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -a V^{-\eta }(t)-b</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">0< \eta < 1</tex-math></inline-formula> is developed. Furthermore, a nonlinear FOFTI <inline-formula><tex-math notation="LaTeX">{}^{c}_{t_{0}}D^{p}_{t} V(t)\leq -bV^{-\xi }(t)-a V^{-\eta }(t)</tex-math></inline-formula> is also established. These two novel inequalities provide the new tools for the research on the finite time stability and synchronization of fractional-order systems and can greatly extend the pioneer ones. Next, on the basis of these novel inequalities, the feedback controller is designed and two novel FTS criteria of FODFCNNs with parameter uncertainties are obtained. Finally, two examples are presented to verify the effectiveness of the derived results.
The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter uncertainties. A linear fractional-order finite time inequality (FOFTI) [Formula Omitted] is extended to the nonlinear case [Formula Omitted], [Formula Omitted], which plays a vital role in the FTS of fractional-order systems. However, for the case of [Formula Omitted], a theoretical cornerstone justifying its use is still missing. To fill this research gap, on the basis of the [Formula Omitted] inequality and the rule for fractional-order derivative of composite function, a nonlinear FOFTI [Formula Omitted], [Formula Omitted] is developed. Furthermore, a nonlinear FOFTI [Formula Omitted] is also established. These two novel inequalities provide the new tools for the research on the finite time stability and synchronization of fractional-order systems and can greatly extend the pioneer ones. Next, on the basis of these novel inequalities, the feedback controller is designed and two novel FTS criteria of FODFCNNs with parameter uncertainties are obtained. Finally, two examples are presented to verify the effectiveness of the derived results.
Author Lu, Jun-Guo
Du, Feifei
Author_xml – sequence: 1
  givenname: Feifei
  orcidid: 0000-0003-4725-377X
  surname: Du
  fullname: Du, Feifei
  email: qinjin65@126.com
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Jun-Guo
  orcidid: 0000-0002-5012-5624
  surname: Lu
  fullname: Lu, Jun-Guo
  email: jglu@sjtu.edu.cn
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kE1Lw0AQhhdRsFX_gF4WPKfObr6PUo0KYgVbBC9hkp3gaprU3Q3S_nq3Vjx48DTvYZ4Z3mfM9ru-I8ZOBUyEgPxiXixeXiYSpJyEUkSQwh4biTwSAUAY7fsMSRgkKSSHbGztG4CIYpGNmC10px0Fc70k_rTu6lfTd3qDTvcd7xteGKy3GdtgZhQZfkUtrknxYths1nxKbTu0aPgDDQZbP9xnb94tf9bulT-iwSU5Ty26moxD3TlN9pgdNNhaOvmZR2xRXM-nt8H97OZuenkf1DKPXdAkaSJRVVFGUQ5pBXmcUBpllcpqFCpJfb2mEooUVb4yoVIhqCRElam4AQyP2Pnu7sr0HwNZV771g_FVbCkzKVIRezd-S-62atNba6gpV0Yv0axLAeVWbvktt9zKLX_keij7A9XafUtzBnX7P3q2QzUR_f7Kc5HKDMIvmhaMdQ
CODEN IEFSEV
CitedBy_id crossref_primary_10_3390_fractalfract7080633
crossref_primary_10_1002_rnc_7739
crossref_primary_10_1109_TFUZZ_2023_3339162
crossref_primary_10_1007_s00034_024_02643_z
crossref_primary_10_1016_j_fraope_2025_100215
crossref_primary_10_1016_j_matcom_2025_02_030
crossref_primary_10_1109_TSMC_2024_3520135
crossref_primary_10_1007_s12555_023_0908_3
crossref_primary_10_3934_math_2024935
crossref_primary_10_1007_s12043_025_02891_x
crossref_primary_10_1016_j_cnsns_2023_107724
crossref_primary_10_1080_00207721_2024_2421454
crossref_primary_10_1109_ACCESS_2024_3430537
crossref_primary_10_3390_fractalfract8110619
crossref_primary_10_1109_TFUZZ_2024_3365816
crossref_primary_10_3934_math_2024392
crossref_primary_10_1002_rnc_7642
crossref_primary_10_1016_j_ins_2024_120457
crossref_primary_10_1109_TFUZZ_2024_3471793
crossref_primary_10_1007_s40314_024_02701_x
crossref_primary_10_1016_j_neucom_2024_128174
Cites_doi 10.1007/s11071-020-05719-y
10.1016/j.jfranklin.2019.09.015
10.1109/TAC.2015.2484328
10.1016/j.fss.2020.07.009
10.1109/TCSI.2021.3115097
10.1016/j.neunet.2020.02.004
10.1109/TFUZZ.2020.3026030
10.1155/2020/4168705
10.1016/j.amc.2020.125079
10.1109/TCYB.2018.2877410
10.1016/j.neunet.2017.02.001
10.1007/s00034-020-01631-3
10.1016/j.jfranklin.2018.04.026
10.1016/j.artmed.2006.08.001
10.1016/j.chaos.2021.111110
10.1016/j.neucom.2018.08.016
10.1109/81.538999
10.1109/TCYB.2019.2946076
10.1016/j.amc.2020.125616
10.1109/TNNLS.2018.2876726
10.1109/TFUZZ.2019.2930032
10.1016/j.amc.2020.125188
10.1109/TNNLS.2021.3083886
10.1088/1674-1056/ab7803
10.1007/3-540-45666-X
10.1109/TSMC.2018.2836952
10.1016/j.neunet.2015.04.006
10.1016/j.jfranklin.2018.05.039
10.1016/j.neucom.2018.09.021
10.1109/TNNLS.2019.2962006
10.1016/j.automatica.2013.11.018
10.1109/ACCESS.2019.2930678
10.1016/j.neucom.2019.11.043
10.1002/asjc.2075
10.1016/j.neucom.2018.11.020
10.1016/j.jfranklin.2019.01.017
10.1016/j.physa.2019.122027
10.1109/TAC.2011.2179869
10.1109/31.7600
10.1080/00207179.2016.1278268
10.1016/j.fss.2019.04.004
10.1016/j.cnsns.2017.11.025
10.1016/j.fss.2018.04.017
10.1016/j.nahs.2020.100888
10.1016/j.fss.2017.04.005
10.1007/s00521-022-06976-1
10.1109/TCYB.2020.3027755
10.1109/TNNLS.2017.2675442
10.1016/j.amc.2018.07.041
10.1016/j.chaos.2018.07.033
10.1016/j.ins.2019.04.007
10.1016/j.amc.2020.125310
10.1016/j.cnsns.2015.06.007
10.1016/j.amc.2021.126377
10.1016/j.fss.2021.11.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2022.3214070
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1779
ExternalDocumentID 10_1109_TFUZZ_2022_3214070
9917280
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2018M641991
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 62073217; 61374030; 61533012
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-f6762adb48e4907b0956e748bd8ca1d67941fb1dedeb140eadd30d63ad8d5f0a3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Jun 29 16:35:15 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Tue Jul 01 01:55:35 EDT 2025
Wed Aug 27 02:25:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f6762adb48e4907b0956e748bd8ca1d67941fb1dedeb140eadd30d63ad8d5f0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5012-5624
0000-0003-4725-377X
PQID 2821715034
PQPubID 85428
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TFUZZ_2022_3214070
proquest_journals_2821715034
crossref_primary_10_1109_TFUZZ_2022_3214070
ieee_primary_9917280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
khalil (ref55) 2002
kuang (ref47) 2012
ref3
ref5
ref40
podlubny (ref43) 1999
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
bartle (ref48) 2000
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
alshabanat (ref6) 2020; 8
ref60
References_xml – ident: ref11
  doi: 10.1007/s11071-020-05719-y
– ident: ref51
  doi: 10.1016/j.jfranklin.2019.09.015
– year: 2002
  ident: ref55
  publication-title: Nonlinear Systems 3rd Edition
– year: 2012
  ident: ref47
  publication-title: Applied inequalities
– ident: ref22
  doi: 10.1109/TAC.2015.2484328
– ident: ref27
  doi: 10.1016/j.fss.2020.07.009
– ident: ref42
  doi: 10.1109/TCSI.2021.3115097
– ident: ref36
  doi: 10.1016/j.neunet.2020.02.004
– ident: ref57
  doi: 10.1109/TFUZZ.2020.3026030
– ident: ref32
  doi: 10.1155/2020/4168705
– ident: ref25
  doi: 10.1016/j.amc.2020.125079
– ident: ref10
  doi: 10.1109/TCYB.2018.2877410
– ident: ref53
  doi: 10.1016/j.neunet.2017.02.001
– ident: ref29
  doi: 10.1007/s00034-020-01631-3
– ident: ref49
  doi: 10.1016/j.jfranklin.2018.04.026
– ident: ref4
  doi: 10.1016/j.artmed.2006.08.001
– ident: ref9
  doi: 10.1016/j.chaos.2021.111110
– ident: ref20
  doi: 10.1016/j.neucom.2018.08.016
– ident: ref2
  doi: 10.1109/81.538999
– ident: ref17
  doi: 10.1109/TCYB.2019.2946076
– ident: ref18
  doi: 10.1016/j.amc.2020.125616
– ident: ref37
  doi: 10.1109/TNNLS.2018.2876726
– ident: ref14
  doi: 10.1109/TFUZZ.2019.2930032
– ident: ref35
  doi: 10.1016/j.amc.2020.125188
– ident: ref39
  doi: 10.1109/TNNLS.2021.3083886
– ident: ref26
  doi: 10.1088/1674-1056/ab7803
– ident: ref59
  doi: 10.1007/3-540-45666-X
– ident: ref23
  doi: 10.1109/TSMC.2018.2836952
– year: 1999
  ident: ref43
  publication-title: Fractional Differential Equations
– ident: ref44
  doi: 10.1016/j.neunet.2015.04.006
– ident: ref38
  doi: 10.1016/j.jfranklin.2018.05.039
– ident: ref8
  doi: 10.1016/j.neucom.2018.09.021
– ident: ref31
  doi: 10.1109/TNNLS.2019.2962006
– year: 2000
  ident: ref48
  publication-title: Introduction to Real Analysis
– ident: ref52
  doi: 10.1016/j.automatica.2013.11.018
– ident: ref21
  doi: 10.1109/ACCESS.2019.2930678
– ident: ref46
  doi: 10.1016/j.neucom.2019.11.043
– ident: ref15
  doi: 10.1002/asjc.2075
– ident: ref58
  doi: 10.1016/j.neucom.2018.11.020
– volume: 8
  year: 2020
  ident: ref6
  article-title: Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits
  publication-title: Frontiers in Physiology
– ident: ref13
  doi: 10.1016/j.jfranklin.2019.01.017
– ident: ref34
  doi: 10.1016/j.physa.2019.122027
– ident: ref56
  doi: 10.1109/TAC.2011.2179869
– ident: ref1
  doi: 10.1109/31.7600
– ident: ref24
  doi: 10.1080/00207179.2016.1278268
– ident: ref28
  doi: 10.1016/j.fss.2019.04.004
– ident: ref19
  doi: 10.1016/j.cnsns.2017.11.025
– ident: ref30
  doi: 10.1016/j.fss.2018.04.017
– ident: ref40
  doi: 10.1016/j.nahs.2020.100888
– ident: ref60
  doi: 10.1016/j.fss.2017.04.005
– ident: ref50
  doi: 10.1007/s00521-022-06976-1
– ident: ref12
  doi: 10.1109/TCYB.2020.3027755
– ident: ref33
  doi: 10.1109/TNNLS.2017.2675442
– ident: ref16
  doi: 10.1016/j.amc.2018.07.041
– ident: ref7
  doi: 10.1016/j.chaos.2018.07.033
– ident: ref3
  doi: 10.1016/j.ins.2019.04.007
– ident: ref5
  doi: 10.1016/j.amc.2020.125310
– ident: ref54
  doi: 10.1016/j.cnsns.2015.06.007
– ident: ref41
  doi: 10.1016/j.amc.2021.126377
– ident: ref45
  doi: 10.1016/j.fss.2021.11.004
SSID ssj0014518
Score 2.554621
Snippet The finite-time synchronization (FTS) is studied for a class of fractional-order delayed fuzzy cellular neural networks (FODFCNNs) with parameter...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1769
SubjectTerms Adaptive control
Artificial neural networks
Calculus
Cellular communication
Cellular neural networks
Chaos
Composite functions
Control systems design
Feedback control
Finite-time synchronization (FTS)
Fractional calculus
fractional-order finite-time inequality (FOFTI)
fuzzy cellular neural network (FCNN)
Fuzzy logic
Inequalities
Neural networks
parameter uncertainties
Parameter uncertainty
Synchronization
time delay
Time synchronization
Uncertain systems
Title Finite-Time Synchronization of Fractional-Order Delayed Fuzzy Cellular Neural Networks With Parameter Uncertainties
URI https://ieeexplore.ieee.org/document/9917280
https://www.proquest.com/docview/2821715034
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3Ioz6rLSz70Vrw4G6-TPSIgQpWglcqqiEvkx0RFjXYrNnvY_fV47GSFKEK95WDLlmbGnonn-z6AL_6Ek7KyijuFmkuJOTdOWJ5VWhhb5aayhEa-uVXXY_ntfni_BqcrLAwihuYz7NNneMt3UzunX2VnPpchNaV1WPeFW8RqrV4M5DCJsDeVcpUJ1QFkxOjsrhg_PPhScDDokyyPIGHiF5dQUFX55ygO90uxBTfdzmJbyZ_-vDF9u3xF2vi_W9-Gj22iyc6jZ-zAGk52YasTcWBtTO_C5gtGwj2YFY-UhHJChrCfi4kN3LkRqsmmFSueIhBC1_w7kXayS6z1Ah0r5svlgl1gXVNfKyPOD7_6bWwyn7Ffj81v9kNTJxitPvZLh1YEonPdh3FxdXdxzVtdBm4Ho2HDK-VPUO2MzFH62toQlyFmMjcutzpxyod4UpnEofMXgRTeV10qnEq1y92wEjr9BBuT6QQ_A5Oplog6I3kKKdLM-ILOYuKskShzl_Ug6QxV2pa0nLQz6jIUL2JUBuOWZNyyNW4Pvq7m_I2UHe-O3iNrrUa2hurBUecPZRvVs9KXp0nmM-hUHrw96xA-kBx9bCU7go3maY7HPmlpzEnw1meRveu-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcoAeKLSgBlrwgRs49Wa9Hzmi0lWAJiCRiKqXlT9mRdVVUjWbQ_Lr8di7UQUIcduDLVuasWdmPe89gLfuhpOyMim3KSouJeZcW2F4VimhTZXryhAaeTxJRzP5-TK53IH3WywMIvrmM-zTp3_Ltwuzol9lpy6XITWlB_DQxf0kCmit7ZuBTKIAfEtjnmYi7SAyYng6LWZXV64YHAz6JMwjSJr4Xhjyuip_XMY-whT7MO72FhpLbvqrRvfN5jfaxv_d_FN40qaa7EPwjWewg_MD2O9kHFh7qg9g7x4n4SEsi2tKQzlhQ9j39dx49twA1mSLihV3AQqhav6VaDvZR6zVGi0rVpvNmp1hXVNnKyPWD7f6JLSZL9mP6-Yn-6aoF4xWn7mlfTMCEbo-h1lxPj0b8VaZgZvBMGl4lbo7VFktc5SuutbEZoiZzLXNjYps6g55VOnIonWhQArnrTYWNo2VzW1SCRW_gN35Yo5HwGSsJKLKSKBCijjTrqQzGFmjJcrcZj2IOkOVpqUtJ_WMuvTlixiW3rglGbdsjduDd9s5t4G045-jD8la25GtoXpw3PlD2Z7rZekK1ChzOXQsX_591ht4NJqOL8qLT5Mvr-AxidOHxrJj2G3uVnjiUphGv_ae-wsBqO8H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+Synchronization+of+Fractional-Order+Delayed+Fuzzy+Cellular+Neural+Networks+With+Parameter+Uncertainties&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Du%2C+Feifei&rft.au=Lu%2C+Jun-Guo&rft.date=2023-06-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=31&rft.issue=6&rft.spage=1769&rft.epage=1779&rft_id=info:doi/10.1109%2FTFUZZ.2022.3214070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2022_3214070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon