DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow

We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a gi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 36; no. 3; pp. 1725 - 1735
Main Authors Pan, Xiang, Zhao, Tianyu, Chen, Minghua, Zhang, Shengyu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver.
AbstractList We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver.
We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on [Formula Omitted]-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver.
Author Zhang, Shengyu
Pan, Xiang
Zhao, Tianyu
Chen, Minghua
Author_xml – sequence: 1
  givenname: Xiang
  surname: Pan
  fullname: Pan, Xiang
  email: px018@ie.cuhk.edu.hk
  organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Tianyu
  orcidid: 0000-0002-9541-0197
  surname: Zhao
  fullname: Zhao, Tianyu
  email: zt017@ie.cuhk.edu.hk
  organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Minghua
  orcidid: 0000-0003-4763-0037
  surname: Chen
  fullname: Chen, Minghua
  email: minghua.chen@cityu.edu.hk
  organization: School of Data Science, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Shengyu
  surname: Zhang
  fullname: Zhang, Shengyu
  email: shengyzhang@tencent.com
  organization: Tencent Quantum Laboratory, Hong Kong
BookMark eNp9kMFOwzAMhiM0JLbBC8AlEucOJ2nahNu0MUCa2MQGHKsuTUVHaUqaatrbk7KJAwcOli3Zn-3_H6BeZSqN0CWBESEgb9bLt-fViAKFEQMasVieoD7hXAQQxbKH-iAED4TkcIYGTbMFgMg3-uh1qnW9WM5u8Rh3JX7SrU1Ln9zO2A88rmtrUvWOc2PxSqvWFm4fTEzVOJsWlc7wdIIXtSs-PbQ0O23xrDS7c3Sap2WjL455iF5md-vJQzBf3D9OxvNAUcldkId5FDMVAxEsUwJIKFnIfWSxCnUqM65oGMksZ4SyDWyykDKeRypmuSKxFmyIrg97_ZdfrW5csjWtrfzJhHLCBafgkSEShyllTdNYnSeqcKkrTNWJKBMCSedi8uNi0rmYHF30KP2D1tZrtfv_oasDVGitfwFJgUdhzL4BRqR-Zw
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_epsr_2024_110327
crossref_primary_10_1109_ACCESS_2024_3491914
crossref_primary_10_1016_j_ijepes_2023_109249
crossref_primary_10_1109_OJCSYS_2024_3414221
crossref_primary_10_1049_rpg2_12969
crossref_primary_10_1109_TPWRS_2024_3373399
crossref_primary_10_1016_j_apenergy_2024_124963
crossref_primary_10_1109_ACCESS_2021_3128035
crossref_primary_10_2139_ssrn_4681955
crossref_primary_10_1109_TPWRS_2022_3217407
crossref_primary_10_1109_LCSYS_2023_3287985
crossref_primary_10_1109_TSG_2024_3416369
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_TPWRS_2023_3251724
crossref_primary_10_1631_FITEE_2000719
crossref_primary_10_1109_JSYST_2022_3201041
crossref_primary_10_3390_electronics13040732
crossref_primary_10_1016_j_egyr_2022_10_024
crossref_primary_10_1109_OAJPE_2022_3149308
crossref_primary_10_1016_j_apenergy_2022_119813
crossref_primary_10_1109_TCNS_2021_3124283
crossref_primary_10_1109_TPWRS_2022_3163381
crossref_primary_10_1109_TPWRS_2023_3298735
crossref_primary_10_1016_j_epsr_2024_110692
crossref_primary_10_1109_TPWRS_2023_3333165
crossref_primary_10_1016_j_est_2025_115367
crossref_primary_10_1109_TPWRS_2022_3223418
crossref_primary_10_1109_TPWRS_2023_3317973
crossref_primary_10_2139_ssrn_3919724
crossref_primary_10_1016_j_isatra_2022_12_009
crossref_primary_10_1109_TPWRS_2022_3187218
crossref_primary_10_3390_su16177498
crossref_primary_10_1109_TPWRS_2022_3211397
crossref_primary_10_1109_TPWRS_2024_3448434
crossref_primary_10_1109_TIA_2024_3462658
crossref_primary_10_1016_j_apenergy_2024_124714
crossref_primary_10_1109_ACCESS_2023_3335191
crossref_primary_10_1016_j_ijepes_2024_110277
crossref_primary_10_1016_j_egyr_2023_04_053
crossref_primary_10_1016_j_ijepes_2023_109555
crossref_primary_10_1109_TPWRS_2024_3382266
crossref_primary_10_1016_j_apenergy_2024_122779
crossref_primary_10_1016_j_epsr_2022_108589
crossref_primary_10_1109_TPWRS_2024_3406437
crossref_primary_10_1109_TII_2024_3398058
crossref_primary_10_1109_TSTE_2021_3107848
crossref_primary_10_1016_j_rico_2025_100555
crossref_primary_10_1109_TPWRS_2022_3212925
crossref_primary_10_1016_j_epsr_2024_110822
crossref_primary_10_1109_TPWRS_2021_3085872
crossref_primary_10_1109_TPWRS_2024_3354733
crossref_primary_10_1109_TPWRS_2021_3124726
crossref_primary_10_1016_j_epsr_2023_109715
crossref_primary_10_1016_j_ifacol_2024_07_458
crossref_primary_10_1088_1674_1056_abe232
crossref_primary_10_1016_j_epsr_2024_110661
crossref_primary_10_1016_j_apenergy_2025_125637
crossref_primary_10_1016_j_egyai_2024_100441
crossref_primary_10_1109_TPWRS_2022_3220799
crossref_primary_10_1109_TPWRS_2024_3419894
crossref_primary_10_1109_TPWRS_2023_3289334
crossref_primary_10_1016_j_epsr_2023_109562
crossref_primary_10_1109_TPWRS_2022_3199238
crossref_primary_10_1109_TSTE_2021_3100846
crossref_primary_10_1007_s40866_022_00129_y
crossref_primary_10_1007_s00202_024_02911_w
crossref_primary_10_1109_TPWRS_2021_3114092
crossref_primary_10_1109_JPROC_2022_3175070
crossref_primary_10_1109_TEMPR_2023_3318197
crossref_primary_10_1109_TSG_2023_3251292
crossref_primary_10_1049_rpg2_13048
crossref_primary_10_1109_OAJPE_2022_3140314
crossref_primary_10_1049_rpg2_12830
crossref_primary_10_3390_en17020292
crossref_primary_10_3390_pr12030608
crossref_primary_10_1109_ACCESS_2024_3486354
crossref_primary_10_1109_TSTE_2022_3223764
crossref_primary_10_1109_TETCI_2024_3377671
crossref_primary_10_1016_j_apenergy_2024_124970
crossref_primary_10_3390_computers13070176
crossref_primary_10_1016_j_ynexs_2025_100057
crossref_primary_10_1016_j_trc_2024_104938
crossref_primary_10_1007_s10489_024_05772_9
crossref_primary_10_1109_TPWRS_2023_3317352
crossref_primary_10_1109_TPWRS_2023_3238377
crossref_primary_10_1016_j_epsr_2024_110717
crossref_primary_10_1109_TPWRS_2023_3268684
crossref_primary_10_3390_en17040796
Cites_doi 10.1109/TCNS.2014.2309732
10.1145/2959100.2959190
10.1109/SFCS.1989.63499
10.1109/TCYB.2020.2999556
10.1007/s11081-014-9250-1
10.1006/jagm.1997.0913
10.1109/ALLERTON.2019.8919809
10.1109/5.823997
10.1109/TPWRS.2009.2021235
10.1038/nature16961
10.1016/j.neunet.2017.07.002
10.1016/j.epsr.2016.02.008
10.1016/j.epsr.2011.04.003
10.1109/TPEC48276.2020.9042547
10.1093/bioinformatics/bty543
10.1016/0898-1221(89)90024-2
10.1109/TPWRS.2007.913196
10.1109/JPROC.2020.2988715
10.1109/ICSMC.1989.71294
10.1109/TPWRS.2011.2175455
10.1109/TPWRS.2010.2051168
10.1109/ICGTSPICC.2016.7955308
10.1007/s12667-012-0057-x
10.1109/TPWRS.2010.2045161
10.1016/S0893-6080(98)00116-6
10.1109/TPWRS.2006.887889
10.1007/s12667-012-0056-y
10.3390/en11061497
10.1109/TSP.2019.2926023
10.1109/TPWRS.2010.2050344
10.1109/SmartGridComm.2019.8909795
10.1145/3065386
10.1109/59.260897
10.1016/S0893-6080(05)80131-5
10.1016/0893-6080(91)90009-T
10.1109/CVPR.2014.214
10.1109/TPWRS.2013.2271980
10.1109/TPWRS.2007.901301
10.1007/BF01587086
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2020.3026379
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 1735
ExternalDocumentID 10_1109_TPWRS_2020_3026379
9205647
Genre orig-research
GrantInformation_xml – fundername: Start-up Grant
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-f4f673c70183dc80149345934d7c4ea9d5c2469df3123b0bd4235f6c73fc17e83
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 19:22:08 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Tue Jul 01 01:35:48 EDT 2025
Wed Aug 27 02:30:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f4f673c70183dc80149345934d7c4ea9d5c2469df3123b0bd4235f6c73fc17e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9541-0197
0000-0003-4763-0037
PQID 2515852042
PQPubID 85441
PageCount 11
ParticipantIDs ieee_primary_9205647
proquest_journals_2515852042
crossref_citationtrail_10_1109_TPWRS_2020_3026379
crossref_primary_10_1109_TPWRS_2020_3026379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-May
2021-5-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
johnson (ref8) 1989; 3
ref14
ref52
ref55
ref54
ref10
ref19
ref18
carpentier (ref7) 1962; 3
liang (ref46) 0
ref51
cain (ref11) 2012; 1
zamzam (ref37) 2020; abs 1910 1213
kidger (ref17) 0; 125
babaeinejadsarookolaee (ref48) 0; abs 1908 2788
ref41
ref44
ref43
ref49
(ref50) 2018
ref9
ref4
ref3
ref6
ref40
hinojosa (ref39) 2018; 11
(ref42) 2019
ref35
safran (ref45) 0
ref34
montufar (ref47) 0
ref31
ref30
ref33
ref32
ref1
ref38
goodfellow (ref2) 2016; 1
ref24
ref23
ref26
ref25
ref20
pan (ref36) 2020; abs 2007 1002
ref22
ref21
hanin (ref16) 2017; abs 1710 11278
ref28
ref27
wehenkel (ref29) 2012
telgarsky (ref53) 0; 49
silver (ref5) 2016; 529
References_xml – ident: ref22
  doi: 10.1109/TCNS.2014.2309732
– ident: ref3
  doi: 10.1145/2959100.2959190
– ident: ref52
  doi: 10.1109/SFCS.1989.63499
– ident: ref19
  doi: 10.1109/TCYB.2020.2999556
– ident: ref14
  doi: 10.1007/s11081-014-9250-1
– ident: ref55
  doi: 10.1006/jagm.1997.0913
– volume: abs 1908 2788
  year: 0
  ident: ref48
  article-title: The power grid library for benchmarking ac optimal power flow algorithms
  publication-title: CoRR
– ident: ref33
  doi: 10.1109/ALLERTON.2019.8919809
– ident: ref41
  doi: 10.1109/5.823997
– ident: ref38
  doi: 10.1109/TPWRS.2009.2021235
– year: 2018
  ident: ref50
  article-title: IEEE case300 topology
– volume: 529
  start-page: 484
  year: 2016
  ident: ref5
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref44
  doi: 10.1016/j.neunet.2017.07.002
– volume: 1
  year: 2016
  ident: ref2
  publication-title: Deep Learning
– volume: abs 1910 1213
  year: 2020
  ident: ref37
  article-title: Learning optimal solutions for extremely fast AC optimal power flow
  publication-title: CoRR
– ident: ref26
  doi: 10.1016/j.epsr.2016.02.008
– start-page: 2924
  year: 0
  ident: ref47
  article-title: On the number of linear regions of deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst 27
– ident: ref13
  doi: 10.1016/j.epsr.2011.04.003
– ident: ref31
  doi: 10.1109/TPEC48276.2020.9042547
– ident: ref4
  doi: 10.1093/bioinformatics/bty543
– volume: abs 2007 1002
  year: 2020
  ident: ref36
  article-title: DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems
  publication-title: CoRR
– volume: abs 1710 11278
  year: 2017
  ident: ref16
  article-title: Approximating continuous functions by relu nets of minimal width
  publication-title: CoRR
– ident: ref54
  doi: 10.1016/0898-1221(89)90024-2
– volume: 49
  start-page: 1517
  year: 0
  ident: ref53
  article-title: Benefits of depth in neural networks
  publication-title: Mach Learn Res
– ident: ref24
  doi: 10.1109/TPWRS.2007.913196
– ident: ref34
  doi: 10.1109/JPROC.2020.2988715
– year: 0
  ident: ref46
  article-title: Why deep neural networks for function approximation?
  publication-title: Proc 5th Int Conf Learn Representations (ICLR)
– ident: ref21
  doi: 10.1109/ICSMC.1989.71294
– start-page: 2979
  year: 0
  ident: ref45
  article-title: Depth-width tradeoffs in approximating natural functions with neural networks
  publication-title: Proc Int Conf Mach Learn
– year: 2019
  ident: ref42
  article-title: Gurobi optimizer reference manual
– ident: ref25
  doi: 10.1109/TPWRS.2011.2175455
– ident: ref51
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref27
  doi: 10.1109/ICGTSPICC.2016.7955308
– volume: 3
  year: 1989
  ident: ref8
  publication-title: Electric Circuit Analysis
– year: 2012
  ident: ref29
  publication-title: Automatic Learning Techniques in Power Systems
– ident: ref10
  doi: 10.1007/s12667-012-0057-x
– volume: 125
  start-page: 2306
  year: 0
  ident: ref17
  article-title: Universal approximation with deep narrow networks
  publication-title: Mach Learn Res
– ident: ref32
  doi: 10.1109/TPWRS.2010.2045161
– ident: ref43
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 1
  start-page: 1
  year: 2012
  ident: ref11
  article-title: History of optimal power flow and formulations
  publication-title: Federal Energy Regulatory Commission
– ident: ref49
  doi: 10.1109/TPWRS.2006.887889
– ident: ref9
  doi: 10.1007/s12667-012-0056-y
– volume: 11
  year: 2018
  ident: ref39
  article-title: Preventive security-constrained DCOPF formulation using power transmission distribution factors and line outage distribution factors
  publication-title: Energies
  doi: 10.3390/en11061497
– volume: 3
  start-page: 431
  year: 1962
  ident: ref7
  article-title: Contribution to the economic dispatch problem
  publication-title: Bulletin de la Societe Francoise des Electriciens
– ident: ref28
  doi: 10.1109/TSP.2019.2926023
– ident: ref30
  doi: 10.1109/TPWRS.2010.2050344
– ident: ref35
  doi: 10.1109/SmartGridComm.2019.8909795
– ident: ref1
  doi: 10.1145/3065386
– ident: ref40
  doi: 10.1109/59.260897
– ident: ref15
  doi: 10.1016/S0893-6080(05)80131-5
– ident: ref18
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref6
  doi: 10.1109/CVPR.2014.214
– ident: ref12
  doi: 10.1109/TPWRS.2013.2271980
– ident: ref23
  doi: 10.1109/TPWRS.2007.901301
– ident: ref20
  doi: 10.1007/BF01587086
SSID ssj0006679
Score 2.6754987
Snippet We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1725
SubjectTerms Artificial neural networks
Biological neural networks
Complexity theory
Deep learning
deep neural network
Direct current
Feasibility
Flow equations
Forecasting
Generators
Machine learning
Mapping
Neural networks
optimal power flow
Optimization
Post-processing
Power flow
Power system stability
Security
Title DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow
URI https://ieeexplore.ieee.org/document/9205647
https://www.proquest.com/docview/2515852042
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KQdu0K1rkrbhNm1MCAk2sQG7Vc3rwtgm2ITEr8dJuwkBQhwq5RCrUZzY_lr7M8BZTpXQecqDUCDSYVyrIDWRCKzIJctzTplxxcm3d_H1A7sZ8uEKXCxrYYwxPvnM1NzQ_8vXEzV3n8rqIkJ3zZJVWEXgVtRqLa1uHBe8eim-NxU8XBTIhKI-6D3d9xEKRohQEXJQl7b1xQn5rio_TLH3L50tuF2srEgrea7NZ7KmPr6RNv536duwWQaapFmcjB1YMeNd2PhCP1iBx7Yx026vc0maxA2JY-pAmbsiNZw0S75xgoEt6ZeN7gLX4tM3ljCatFukizbnBYV6rt0a6Ywm73vw0LkatK6Dss9CoCLBZ4FlNk6oSkK83lo5OhlBGcdHJ4qZXGiuIkTR2lJ0czKUGkMwbmOVUKsaiUnpPqyNJ2NzAERY5nhGBW1oyWQjlSLJaaip1ZG0aZpXobHY-EyVJORuyaPMg5FQZF5ZmVNWViqrCudLmWlBwfHn7Irb_eXMcuOrcLzQb1be0rcMYztESxHarcPfpY5gPXI5LD7B8RjWZq9zc4JByEye-tP3CS_Y1ps
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB614UA5UGioCKR0D9yKE9u7a3t7i9pGaZuXSAK5Wd7XhZBEkAiJX8_s2okiQIiDpT3syKud3Zn57JlvAN4XVAldZDwIBSIdxrUKMhOLwIpCsqLglBlXnDwYJr0Ze5jz-RF82NfCGGN88plpuaH_l69Xaus-lbVFjO6apcfwBP0-j8pqrb3dTZKSWS_DN2eCh7sSmVC0p-PPHycIBmPEqAg6qEvcOnBDvq_KH8bYe5juKQx2aysTS760thvZUj9_o23838W_gOdVqEk65dl4CUdmeQbPDggI6_Dp1pj1aNy9Jh3ihsRxdaDMsEwOJ52KcZxgaEsmVau7wDX59K0ljCa3N2SEVucrCo1dwzXSXax-vIJZ92560wuqTguBigXfBJbZJKUqDfGCa-UIZQRlHB-dKmYKobmKEUdrS9HRyVBqDMK4TVRKrYpSk9FzqC1XS_MaiLDMMY0KGmnJZJRJkRY01NTqWNosKxoQ7TY-VxUNuVvyIvdwJBS5V1bulJVXymrA1V5mXZJw_HN23e3-fma18Q1o7vSbV_f0e47RHeKlGC3Xm79LXcLT3nTQz_v3w8e3cBK7jBaf7tiE2ubb1lxgSLKR7_xJ_AWOx9nk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepOPF%3A+A+Deep+Neural+Network+Approach+for+Security-Constrained+DC+Optimal+Power+Flow&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Pan%2C+Xiang&rft.au=Zhao%2C+Tianyu&rft.au=Chen%2C+Minghua&rft.au=Zhang%2C+Shengyu&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=36&rft.issue=3&rft.spage=1725&rft.epage=1735&rft_id=info:doi/10.1109%2FTPWRS.2020.3026379&rft.externalDocID=9205647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon