DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow
We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a gi...
Saved in:
Published in | IEEE transactions on power systems Vol. 36; no. 3; pp. 1725 - 1735 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver. |
---|---|
AbstractList | We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver. We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation. DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on [Formula Omitted]-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver. |
Author | Zhang, Shengyu Pan, Xiang Zhao, Tianyu Chen, Minghua |
Author_xml | – sequence: 1 givenname: Xiang surname: Pan fullname: Pan, Xiang email: px018@ie.cuhk.edu.hk organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 2 givenname: Tianyu orcidid: 0000-0002-9541-0197 surname: Zhao fullname: Zhao, Tianyu email: zt017@ie.cuhk.edu.hk organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 3 givenname: Minghua orcidid: 0000-0003-4763-0037 surname: Chen fullname: Chen, Minghua email: minghua.chen@cityu.edu.hk organization: School of Data Science, City University of Hong Kong, Hong Kong – sequence: 4 givenname: Shengyu surname: Zhang fullname: Zhang, Shengyu email: shengyzhang@tencent.com organization: Tencent Quantum Laboratory, Hong Kong |
BookMark | eNp9kMFOwzAMhiM0JLbBC8AlEucOJ2nahNu0MUCa2MQGHKsuTUVHaUqaatrbk7KJAwcOli3Zn-3_H6BeZSqN0CWBESEgb9bLt-fViAKFEQMasVieoD7hXAQQxbKH-iAED4TkcIYGTbMFgMg3-uh1qnW9WM5u8Rh3JX7SrU1Ln9zO2A88rmtrUvWOc2PxSqvWFm4fTEzVOJsWlc7wdIIXtSs-PbQ0O23xrDS7c3Sap2WjL455iF5md-vJQzBf3D9OxvNAUcldkId5FDMVAxEsUwJIKFnIfWSxCnUqM65oGMksZ4SyDWyykDKeRypmuSKxFmyIrg97_ZdfrW5csjWtrfzJhHLCBafgkSEShyllTdNYnSeqcKkrTNWJKBMCSedi8uNi0rmYHF30KP2D1tZrtfv_oasDVGitfwFJgUdhzL4BRqR-Zw |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1016_j_epsr_2024_110327 crossref_primary_10_1109_ACCESS_2024_3491914 crossref_primary_10_1016_j_ijepes_2023_109249 crossref_primary_10_1109_OJCSYS_2024_3414221 crossref_primary_10_1049_rpg2_12969 crossref_primary_10_1109_TPWRS_2024_3373399 crossref_primary_10_1016_j_apenergy_2024_124963 crossref_primary_10_1109_ACCESS_2021_3128035 crossref_primary_10_2139_ssrn_4681955 crossref_primary_10_1109_TPWRS_2022_3217407 crossref_primary_10_1109_LCSYS_2023_3287985 crossref_primary_10_1109_TSG_2024_3416369 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1109_TPWRS_2023_3251724 crossref_primary_10_1631_FITEE_2000719 crossref_primary_10_1109_JSYST_2022_3201041 crossref_primary_10_3390_electronics13040732 crossref_primary_10_1016_j_egyr_2022_10_024 crossref_primary_10_1109_OAJPE_2022_3149308 crossref_primary_10_1016_j_apenergy_2022_119813 crossref_primary_10_1109_TCNS_2021_3124283 crossref_primary_10_1109_TPWRS_2022_3163381 crossref_primary_10_1109_TPWRS_2023_3298735 crossref_primary_10_1016_j_epsr_2024_110692 crossref_primary_10_1109_TPWRS_2023_3333165 crossref_primary_10_1016_j_est_2025_115367 crossref_primary_10_1109_TPWRS_2022_3223418 crossref_primary_10_1109_TPWRS_2023_3317973 crossref_primary_10_2139_ssrn_3919724 crossref_primary_10_1016_j_isatra_2022_12_009 crossref_primary_10_1109_TPWRS_2022_3187218 crossref_primary_10_3390_su16177498 crossref_primary_10_1109_TPWRS_2022_3211397 crossref_primary_10_1109_TPWRS_2024_3448434 crossref_primary_10_1109_TIA_2024_3462658 crossref_primary_10_1016_j_apenergy_2024_124714 crossref_primary_10_1109_ACCESS_2023_3335191 crossref_primary_10_1016_j_ijepes_2024_110277 crossref_primary_10_1016_j_egyr_2023_04_053 crossref_primary_10_1016_j_ijepes_2023_109555 crossref_primary_10_1109_TPWRS_2024_3382266 crossref_primary_10_1016_j_apenergy_2024_122779 crossref_primary_10_1016_j_epsr_2022_108589 crossref_primary_10_1109_TPWRS_2024_3406437 crossref_primary_10_1109_TII_2024_3398058 crossref_primary_10_1109_TSTE_2021_3107848 crossref_primary_10_1016_j_rico_2025_100555 crossref_primary_10_1109_TPWRS_2022_3212925 crossref_primary_10_1016_j_epsr_2024_110822 crossref_primary_10_1109_TPWRS_2021_3085872 crossref_primary_10_1109_TPWRS_2024_3354733 crossref_primary_10_1109_TPWRS_2021_3124726 crossref_primary_10_1016_j_epsr_2023_109715 crossref_primary_10_1016_j_ifacol_2024_07_458 crossref_primary_10_1088_1674_1056_abe232 crossref_primary_10_1016_j_epsr_2024_110661 crossref_primary_10_1016_j_apenergy_2025_125637 crossref_primary_10_1016_j_egyai_2024_100441 crossref_primary_10_1109_TPWRS_2022_3220799 crossref_primary_10_1109_TPWRS_2024_3419894 crossref_primary_10_1109_TPWRS_2023_3289334 crossref_primary_10_1016_j_epsr_2023_109562 crossref_primary_10_1109_TPWRS_2022_3199238 crossref_primary_10_1109_TSTE_2021_3100846 crossref_primary_10_1007_s40866_022_00129_y crossref_primary_10_1007_s00202_024_02911_w crossref_primary_10_1109_TPWRS_2021_3114092 crossref_primary_10_1109_JPROC_2022_3175070 crossref_primary_10_1109_TEMPR_2023_3318197 crossref_primary_10_1109_TSG_2023_3251292 crossref_primary_10_1049_rpg2_13048 crossref_primary_10_1109_OAJPE_2022_3140314 crossref_primary_10_1049_rpg2_12830 crossref_primary_10_3390_en17020292 crossref_primary_10_3390_pr12030608 crossref_primary_10_1109_ACCESS_2024_3486354 crossref_primary_10_1109_TSTE_2022_3223764 crossref_primary_10_1109_TETCI_2024_3377671 crossref_primary_10_1016_j_apenergy_2024_124970 crossref_primary_10_3390_computers13070176 crossref_primary_10_1016_j_ynexs_2025_100057 crossref_primary_10_1016_j_trc_2024_104938 crossref_primary_10_1007_s10489_024_05772_9 crossref_primary_10_1109_TPWRS_2023_3317352 crossref_primary_10_1109_TPWRS_2023_3238377 crossref_primary_10_1016_j_epsr_2024_110717 crossref_primary_10_1109_TPWRS_2023_3268684 crossref_primary_10_3390_en17040796 |
Cites_doi | 10.1109/TCNS.2014.2309732 10.1145/2959100.2959190 10.1109/SFCS.1989.63499 10.1109/TCYB.2020.2999556 10.1007/s11081-014-9250-1 10.1006/jagm.1997.0913 10.1109/ALLERTON.2019.8919809 10.1109/5.823997 10.1109/TPWRS.2009.2021235 10.1038/nature16961 10.1016/j.neunet.2017.07.002 10.1016/j.epsr.2016.02.008 10.1016/j.epsr.2011.04.003 10.1109/TPEC48276.2020.9042547 10.1093/bioinformatics/bty543 10.1016/0898-1221(89)90024-2 10.1109/TPWRS.2007.913196 10.1109/JPROC.2020.2988715 10.1109/ICSMC.1989.71294 10.1109/TPWRS.2011.2175455 10.1109/TPWRS.2010.2051168 10.1109/ICGTSPICC.2016.7955308 10.1007/s12667-012-0057-x 10.1109/TPWRS.2010.2045161 10.1016/S0893-6080(98)00116-6 10.1109/TPWRS.2006.887889 10.1007/s12667-012-0056-y 10.3390/en11061497 10.1109/TSP.2019.2926023 10.1109/TPWRS.2010.2050344 10.1109/SmartGridComm.2019.8909795 10.1145/3065386 10.1109/59.260897 10.1016/S0893-6080(05)80131-5 10.1016/0893-6080(91)90009-T 10.1109/CVPR.2014.214 10.1109/TPWRS.2013.2271980 10.1109/TPWRS.2007.901301 10.1007/BF01587086 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRS.2020.3026379 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 1735 |
ExternalDocumentID | 10_1109_TPWRS_2020_3026379 9205647 |
Genre | orig-research |
GrantInformation_xml | – fundername: Start-up Grant |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c295t-f4f673c70183dc80149345934d7c4ea9d5c2469df3123b0bd4235f6c73fc17e83 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri Jul 25 19:22:08 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Tue Jul 01 01:35:48 EDT 2025 Wed Aug 27 02:30:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-f4f673c70183dc80149345934d7c4ea9d5c2469df3123b0bd4235f6c73fc17e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9541-0197 0000-0003-4763-0037 |
PQID | 2515852042 |
PQPubID | 85441 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9205647 proquest_journals_2515852042 crossref_citationtrail_10_1109_TPWRS_2020_3026379 crossref_primary_10_1109_TPWRS_2020_3026379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-May 2021-5-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 johnson (ref8) 1989; 3 ref14 ref52 ref55 ref54 ref10 ref19 ref18 carpentier (ref7) 1962; 3 liang (ref46) 0 ref51 cain (ref11) 2012; 1 zamzam (ref37) 2020; abs 1910 1213 kidger (ref17) 0; 125 babaeinejadsarookolaee (ref48) 0; abs 1908 2788 ref41 ref44 ref43 ref49 (ref50) 2018 ref9 ref4 ref3 ref6 ref40 hinojosa (ref39) 2018; 11 (ref42) 2019 ref35 safran (ref45) 0 ref34 montufar (ref47) 0 ref31 ref30 ref33 ref32 ref1 ref38 goodfellow (ref2) 2016; 1 ref24 ref23 ref26 ref25 ref20 pan (ref36) 2020; abs 2007 1002 ref22 ref21 hanin (ref16) 2017; abs 1710 11278 ref28 ref27 wehenkel (ref29) 2012 telgarsky (ref53) 0; 49 silver (ref5) 2016; 529 |
References_xml | – ident: ref22 doi: 10.1109/TCNS.2014.2309732 – ident: ref3 doi: 10.1145/2959100.2959190 – ident: ref52 doi: 10.1109/SFCS.1989.63499 – ident: ref19 doi: 10.1109/TCYB.2020.2999556 – ident: ref14 doi: 10.1007/s11081-014-9250-1 – ident: ref55 doi: 10.1006/jagm.1997.0913 – volume: abs 1908 2788 year: 0 ident: ref48 article-title: The power grid library for benchmarking ac optimal power flow algorithms publication-title: CoRR – ident: ref33 doi: 10.1109/ALLERTON.2019.8919809 – ident: ref41 doi: 10.1109/5.823997 – ident: ref38 doi: 10.1109/TPWRS.2009.2021235 – year: 2018 ident: ref50 article-title: IEEE case300 topology – volume: 529 start-page: 484 year: 2016 ident: ref5 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref44 doi: 10.1016/j.neunet.2017.07.002 – volume: 1 year: 2016 ident: ref2 publication-title: Deep Learning – volume: abs 1910 1213 year: 2020 ident: ref37 article-title: Learning optimal solutions for extremely fast AC optimal power flow publication-title: CoRR – ident: ref26 doi: 10.1016/j.epsr.2016.02.008 – start-page: 2924 year: 0 ident: ref47 article-title: On the number of linear regions of deep neural networks publication-title: Proc Adv Neural Inf Process Syst 27 – ident: ref13 doi: 10.1016/j.epsr.2011.04.003 – ident: ref31 doi: 10.1109/TPEC48276.2020.9042547 – ident: ref4 doi: 10.1093/bioinformatics/bty543 – volume: abs 2007 1002 year: 2020 ident: ref36 article-title: DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems publication-title: CoRR – volume: abs 1710 11278 year: 2017 ident: ref16 article-title: Approximating continuous functions by relu nets of minimal width publication-title: CoRR – ident: ref54 doi: 10.1016/0898-1221(89)90024-2 – volume: 49 start-page: 1517 year: 0 ident: ref53 article-title: Benefits of depth in neural networks publication-title: Mach Learn Res – ident: ref24 doi: 10.1109/TPWRS.2007.913196 – ident: ref34 doi: 10.1109/JPROC.2020.2988715 – year: 0 ident: ref46 article-title: Why deep neural networks for function approximation? publication-title: Proc 5th Int Conf Learn Representations (ICLR) – ident: ref21 doi: 10.1109/ICSMC.1989.71294 – start-page: 2979 year: 0 ident: ref45 article-title: Depth-width tradeoffs in approximating natural functions with neural networks publication-title: Proc Int Conf Mach Learn – year: 2019 ident: ref42 article-title: Gurobi optimizer reference manual – ident: ref25 doi: 10.1109/TPWRS.2011.2175455 – ident: ref51 doi: 10.1109/TPWRS.2010.2051168 – ident: ref27 doi: 10.1109/ICGTSPICC.2016.7955308 – volume: 3 year: 1989 ident: ref8 publication-title: Electric Circuit Analysis – year: 2012 ident: ref29 publication-title: Automatic Learning Techniques in Power Systems – ident: ref10 doi: 10.1007/s12667-012-0057-x – volume: 125 start-page: 2306 year: 0 ident: ref17 article-title: Universal approximation with deep narrow networks publication-title: Mach Learn Res – ident: ref32 doi: 10.1109/TPWRS.2010.2045161 – ident: ref43 doi: 10.1016/S0893-6080(98)00116-6 – volume: 1 start-page: 1 year: 2012 ident: ref11 article-title: History of optimal power flow and formulations publication-title: Federal Energy Regulatory Commission – ident: ref49 doi: 10.1109/TPWRS.2006.887889 – ident: ref9 doi: 10.1007/s12667-012-0056-y – volume: 11 year: 2018 ident: ref39 article-title: Preventive security-constrained DCOPF formulation using power transmission distribution factors and line outage distribution factors publication-title: Energies doi: 10.3390/en11061497 – volume: 3 start-page: 431 year: 1962 ident: ref7 article-title: Contribution to the economic dispatch problem publication-title: Bulletin de la Societe Francoise des Electriciens – ident: ref28 doi: 10.1109/TSP.2019.2926023 – ident: ref30 doi: 10.1109/TPWRS.2010.2050344 – ident: ref35 doi: 10.1109/SmartGridComm.2019.8909795 – ident: ref1 doi: 10.1145/3065386 – ident: ref40 doi: 10.1109/59.260897 – ident: ref15 doi: 10.1016/S0893-6080(05)80131-5 – ident: ref18 doi: 10.1016/0893-6080(91)90009-T – ident: ref6 doi: 10.1109/CVPR.2014.214 – ident: ref12 doi: 10.1109/TPWRS.2013.2271980 – ident: ref23 doi: 10.1109/TPWRS.2007.901301 – ident: ref20 doi: 10.1007/BF01587086 |
SSID | ssj0006679 |
Score | 2.6754987 |
Snippet | We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1725 |
SubjectTerms | Artificial neural networks Biological neural networks Complexity theory Deep learning deep neural network Direct current Feasibility Flow equations Forecasting Generators Machine learning Mapping Neural networks optimal power flow Optimization Post-processing Power flow Power system stability Security |
Title | DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow |
URI | https://ieeexplore.ieee.org/document/9205647 https://www.proquest.com/docview/2515852042 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KQdu0K1rkrbhNm1MCAk2sQG7Vc3rwtgm2ITEr8dJuwkBQhwq5RCrUZzY_lr7M8BZTpXQecqDUCDSYVyrIDWRCKzIJctzTplxxcm3d_H1A7sZ8uEKXCxrYYwxPvnM1NzQ_8vXEzV3n8rqIkJ3zZJVWEXgVtRqLa1uHBe8eim-NxU8XBTIhKI-6D3d9xEKRohQEXJQl7b1xQn5rio_TLH3L50tuF2srEgrea7NZ7KmPr6RNv536duwWQaapFmcjB1YMeNd2PhCP1iBx7Yx026vc0maxA2JY-pAmbsiNZw0S75xgoEt6ZeN7gLX4tM3ljCatFukizbnBYV6rt0a6Ywm73vw0LkatK6Dss9CoCLBZ4FlNk6oSkK83lo5OhlBGcdHJ4qZXGiuIkTR2lJ0czKUGkMwbmOVUKsaiUnpPqyNJ2NzAERY5nhGBW1oyWQjlSLJaaip1ZG0aZpXobHY-EyVJORuyaPMg5FQZF5ZmVNWViqrCudLmWlBwfHn7Irb_eXMcuOrcLzQb1be0rcMYztESxHarcPfpY5gPXI5LD7B8RjWZq9zc4JByEye-tP3CS_Y1ps |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB614UA5UGioCKR0D9yKE9u7a3t7i9pGaZuXSAK5Wd7XhZBEkAiJX8_s2okiQIiDpT3syKud3Zn57JlvAN4XVAldZDwIBSIdxrUKMhOLwIpCsqLglBlXnDwYJr0Ze5jz-RF82NfCGGN88plpuaH_l69Xaus-lbVFjO6apcfwBP0-j8pqrb3dTZKSWS_DN2eCh7sSmVC0p-PPHycIBmPEqAg6qEvcOnBDvq_KH8bYe5juKQx2aysTS760thvZUj9_o23838W_gOdVqEk65dl4CUdmeQbPDggI6_Dp1pj1aNy9Jh3ihsRxdaDMsEwOJ52KcZxgaEsmVau7wDX59K0ljCa3N2SEVucrCo1dwzXSXax-vIJZ92560wuqTguBigXfBJbZJKUqDfGCa-UIZQRlHB-dKmYKobmKEUdrS9HRyVBqDMK4TVRKrYpSk9FzqC1XS_MaiLDMMY0KGmnJZJRJkRY01NTqWNosKxoQ7TY-VxUNuVvyIvdwJBS5V1bulJVXymrA1V5mXZJw_HN23e3-fma18Q1o7vSbV_f0e47RHeKlGC3Xm79LXcLT3nTQz_v3w8e3cBK7jBaf7tiE2ubb1lxgSLKR7_xJ_AWOx9nk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepOPF%3A+A+Deep+Neural+Network+Approach+for+Security-Constrained+DC+Optimal+Power+Flow&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Pan%2C+Xiang&rft.au=Zhao%2C+Tianyu&rft.au=Chen%2C+Minghua&rft.au=Zhang%2C+Shengyu&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=36&rft.issue=3&rft.spage=1725&rft.epage=1735&rft_id=info:doi/10.1109%2FTPWRS.2020.3026379&rft.externalDocID=9205647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |