Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules

Recent research on joint source channel coding (JSCC) for wireless communications has achieved great success owing to the employment of deep learning (DL). However, the existing work on DL based JSCC usually trains the designed network to operate under a specific signal-to-noise ratio (SNR) regime,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 4; pp. 2315 - 2328
Main Authors Xu, Jialong, Ai, Bo, Chen, Wei, Yang, Ang, Sun, Peng, Rodrigues, Miguel
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent research on joint source channel coding (JSCC) for wireless communications has achieved great success owing to the employment of deep learning (DL). However, the existing work on DL based JSCC usually trains the designed network to operate under a specific signal-to-noise ratio (SNR) regime, without taking into account that the SNR level during the deployment stage may differ from that during the training stage. A number of networks are required to cover the scenario with a broad range of SNRs, which is computational inefficiency (in the training stage) and requires large storage. To overcome these drawbacks our paper proposes a novel method called Attention DL based JSCC (ADJSCC) that can successfully operate with different SNR levels during transmission. This design is inspired by the resource assignment strategy in traditional JSCC, which dynamically adjusts the compression ratio in source coding and the channel coding rate according to the channel SNR. This is achieved by resorting to attention mechanisms because these are able to allocate computing resources to more critical tasks. Instead of applying the resource allocation strategy in traditional JSCC, the ADJSCC uses the channel-wise soft attention to scaling features according to SNR conditions. We compare the ADJSCC method with the state-of-the-art DL based JSCC method through extensive experiments to demonstrate its adaptability, robustness and versatility. Compared with the existing methods, the proposed method takes less storage and is more robust in the presence of channel mismatch.
AbstractList Recent research on joint source channel coding (JSCC) for wireless communications has achieved great success owing to the employment of deep learning (DL). However, the existing work on DL based JSCC usually trains the designed network to operate under a specific signal-to-noise ratio (SNR) regime, without taking into account that the SNR level during the deployment stage may differ from that during the training stage. A number of networks are required to cover the scenario with a broad range of SNRs, which is computational inefficiency (in the training stage) and requires large storage. To overcome these drawbacks our paper proposes a novel method called Attention DL based JSCC (ADJSCC) that can successfully operate with different SNR levels during transmission. This design is inspired by the resource assignment strategy in traditional JSCC, which dynamically adjusts the compression ratio in source coding and the channel coding rate according to the channel SNR. This is achieved by resorting to attention mechanisms because these are able to allocate computing resources to more critical tasks. Instead of applying the resource allocation strategy in traditional JSCC, the ADJSCC uses the channel-wise soft attention to scaling features according to SNR conditions. We compare the ADJSCC method with the state-of-the-art DL based JSCC method through extensive experiments to demonstrate its adaptability, robustness and versatility. Compared with the existing methods, the proposed method takes less storage and is more robust in the presence of channel mismatch.
Author Chen, Wei
Rodrigues, Miguel
Sun, Peng
Yang, Ang
Ai, Bo
Xu, Jialong
Author_xml – sequence: 1
  givenname: Jialong
  orcidid: 0000-0003-3669-9274
  surname: Xu
  fullname: Xu, Jialong
  email: jialongxu@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0001-6850-0595
  surname: Ai
  fullname: Ai, Bo
  email: boai@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0001-5090-9915
  surname: Chen
  fullname: Chen, Wei
  email: weich@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Ang
  orcidid: 0000-0001-8107-4543
  surname: Yang
  fullname: Yang, Ang
  email: ang.yang@vivo.com
  organization: Vivo Communication Research Institute, Beijing, China
– sequence: 5
  givenname: Peng
  orcidid: 0000-0002-6095-5461
  surname: Sun
  fullname: Sun, Peng
  email: sunpeng@vivo.com
  organization: Vivo Communication Research Institute, Beijing, China
– sequence: 6
  givenname: Miguel
  orcidid: 0000-0002-8908-847X
  surname: Rodrigues
  fullname: Rodrigues, Miguel
  email: m.rodrigues@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
BookMark eNp9UMtOwkAUnRhMBPQHdNPEdXGe7XRJ6osE44Iiy8m0vYUhMMWZYeHf2wpx4cLVvck9j3vOCA1sawGhW4InhODsocgXH8WEYkomDEsqKLlAQyKEjCnFYtDtWJBYUiKu0Mj7LcaES54O0WJlHOzA-2i212uICqet3xvvTWujpTd2HT0CHKJFe3QVRPlGWwu7KG_r_rQyYRNNQwAbevxbWx87rWt02eidh5vzHKPl81ORv8bz95dZPp3HFc1EiBtcQlUnWa1ZI9KGJwyE5AxDCiSppC4zrblksmlSgRmUddLwUkAmBdMVESkbo_uT7sG1n0fwQW27L21nqWjCU05FwnoUPaEq13rvoFEHZ_bafSmCVV-e-ilP9eWpc3kdSf4hVSboPmRw2uz-p96dqAYAfr0yzmTSpfkGxhp_aQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_LCOMM_2025_3538486
crossref_primary_10_1109_TVT_2024_3390213
crossref_primary_10_1109_TWC_2024_3520870
crossref_primary_10_1109_TGCN_2024_3374700
crossref_primary_10_1016_j_phycom_2024_102568
crossref_primary_10_1109_JIOT_2024_3350656
crossref_primary_10_1109_JSAC_2022_3221999
crossref_primary_10_1109_JSAC_2023_3288238
crossref_primary_10_1109_JIOT_2024_3373808
crossref_primary_10_1109_TCCN_2022_3228536
crossref_primary_10_1109_TCCN_2023_3306851
crossref_primary_10_3390_electronics12224637
crossref_primary_10_1109_TCCN_2023_3326302
crossref_primary_10_1016_j_aeue_2024_155512
crossref_primary_10_1109_TCOMM_2024_3406381
crossref_primary_10_1109_TCCN_2022_3151935
crossref_primary_10_1109_TWC_2023_3234408
crossref_primary_10_1109_JSAC_2022_3180802
crossref_primary_10_1007_s00530_023_01116_8
crossref_primary_10_1109_TCOMM_2024_3400912
crossref_primary_10_1109_OJCOMS_2024_3371871
crossref_primary_10_1109_JSTSP_2024_3521277
crossref_primary_10_1109_JSAC_2023_3288243
crossref_primary_10_1016_j_dcan_2024_06_001
crossref_primary_10_1109_JSAC_2023_3288246
crossref_primary_10_1016_j_phycom_2024_102534
crossref_primary_10_1109_LWC_2024_3460789
crossref_primary_10_1109_TCCN_2024_3422496
crossref_primary_10_1109_TCOMM_2024_3364990
crossref_primary_10_3390_s24124005
crossref_primary_10_3390_s24216772
crossref_primary_10_1109_LCOMM_2024_3499956
crossref_primary_10_1109_TWC_2024_3422794
crossref_primary_10_1109_JSAC_2022_3223408
crossref_primary_10_1109_TCCN_2024_3417627
crossref_primary_10_1109_ACCESS_2023_3269848
crossref_primary_10_1109_TCOMM_2023_3258484
crossref_primary_10_1109_LWC_2022_3204837
crossref_primary_10_1109_JSAC_2022_3191354
crossref_primary_10_1109_TCCN_2024_3392803
crossref_primary_10_1109_TCCN_2024_3424842
crossref_primary_10_1109_TCCN_2024_3438371
crossref_primary_10_1109_TWC_2023_3334225
crossref_primary_10_1109_TWC_2023_3339239
crossref_primary_10_1109_JIOT_2024_3352737
crossref_primary_10_1109_TVT_2024_3362328
crossref_primary_10_1109_TWC_2024_3409735
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_TCCN_2024_3375506
crossref_primary_10_1109_ACCESS_2025_3546514
crossref_primary_10_1109_LWC_2024_3510722
crossref_primary_10_1016_j_dcan_2024_12_001
crossref_primary_10_1109_JSTSP_2024_3511403
crossref_primary_10_1109_TCCN_2024_3394867
crossref_primary_10_1109_JSAC_2025_3531537
crossref_primary_10_1109_TCCN_2023_3294754
crossref_primary_10_22630_MGV_2025_34_1_1
crossref_primary_10_1038_s41598_024_70619_9
crossref_primary_10_1109_MCOM_004_2200819
crossref_primary_10_1109_TWC_2024_3386052
crossref_primary_10_1109_COMST_2022_3223224
crossref_primary_10_1109_LWC_2023_3256006
crossref_primary_10_1109_JSAC_2025_3531579
crossref_primary_10_1109_MWC_001_2300014
crossref_primary_10_1109_OJCOMS_2025_3548079
crossref_primary_10_1109_TWC_2023_3265201
crossref_primary_10_1109_TVT_2024_3401140
crossref_primary_10_3390_electronics12112425
crossref_primary_10_1109_JLT_2023_3328311
crossref_primary_10_1007_s11760_025_03826_0
crossref_primary_10_1109_ACCESS_2025_3532797
crossref_primary_10_1109_TWC_2023_3269444
crossref_primary_10_1109_LWC_2024_3452705
crossref_primary_10_1109_LWC_2025_3527145
crossref_primary_10_1109_JPROC_2024_3520707
crossref_primary_10_1109_TVT_2024_3396426
crossref_primary_10_1109_JSAC_2022_3221963
crossref_primary_10_1109_COMST_2023_3300664
crossref_primary_10_1109_JSAC_2024_3460084
crossref_primary_10_1109_OJCOMS_2022_3189023
crossref_primary_10_1016_j_phycom_2024_102555
crossref_primary_10_1109_TWC_2024_3483314
crossref_primary_10_3390_math11040992
crossref_primary_10_1109_TWC_2021_3107452
crossref_primary_10_1109_ACCESS_2024_3360003
crossref_primary_10_1109_TCOMM_2024_3455233
crossref_primary_10_1109_TVT_2022_3219363
crossref_primary_10_1109_LCOMM_2023_3339776
crossref_primary_10_1109_TIFS_2025_3534562
crossref_primary_10_1109_TSP_2024_3411692
crossref_primary_10_1109_TWC_2024_3379244
crossref_primary_10_1109_LWC_2025_3526962
crossref_primary_10_1007_s11042_023_15374_1
crossref_primary_10_1109_TWC_2024_3450697
Cites_doi 10.1109/ACSSC.2018.8645416
10.1109/WCSP.2019.8928071
10.1016/j.image.2015.11.005
10.1007/s11263-015-0816-y
10.1109/TCSVT.2018.2867067
10.1109/TCSVT.2020.3010627
10.1109/TCOMM.2005.844936
10.1109/ICASSP40776.2020.9054078
10.1109/ACCESS.2019.2920929
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.90
10.1109/ICC.2010.5502650
10.1109/TCCN.2017.2758370
10.1109/ISIT.2007.4557472
10.1109/ICASSP.2018.8461983
10.1109/TCSVT.2017.2734838
10.1109/ICIP40778.2020.9190935
10.1109/SPAWC.2019.8815416
10.1109/JSAIT.2020.2988577
10.1109/DCC.2004.1281472
10.1109/JSAIT.2020.2987203
10.1109/CVPR.2018.00745
10.1109/26.843191
10.1002/j.1538-7305.1948.tb01338.x
10.1109/JSTSP.2019.2908700
10.1109/GLOCOMW.2018.8644250
10.18653/v1/D15-1166
10.1002/0471200611
10.1109/ICASSP.2005.1415816
10.1109/TCCN.2019.2919300
10.1109/ICCV.2015.123
10.1007/978-3-7091-2945-6
10.1109/ICIP.1995.537420
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2017.683
10.1109/TIT.2007.909092
10.1109/76.867934
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3082521
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2328
ExternalDocumentID 10_1109_TCSVT_2021_3082521
9438648
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61911530216; 6196113039; U1834210
  funderid: 10.13039/501100001809
– fundername: NSFC Outstanding Youth Foundation
  grantid: 61725101
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFE0207600; 2020YFB1807201
  funderid: 10.13039/501100012166
– fundername: State Key Laboratory of Rail Traffic Control and Safety through Beijing Jiaotong University
  grantid: RCS2021ZZ004; RCS2020ZT010
  funderid: 10.13039/501100005023
– fundername: Vivo Research Grant
– fundername: Beijing Natural Science Foundation
  grantid: L202019
  funderid: 10.13039/501100004826
– fundername: Royal Society Newton Advanced Fellowship
  grantid: NA191006
  funderid: 10.13039/501100000288
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2019B010157002
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-f0becd69da3f57f463e58430e7e16c8ab9aa4838ff7503ebd6f4b5e9853ac1573
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 02:28:07 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Wed Aug 27 02:40:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f0becd69da3f57f463e58430e7e16c8ab9aa4838ff7503ebd6f4b5e9853ac1573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8908-847X
0000-0001-5090-9915
0000-0003-3669-9274
0000-0001-8107-4543
0000-0002-6095-5461
0000-0001-6850-0595
PQID 2647425637
PQPubID 85433
PageCount 14
ParticipantIDs ieee_primary_9438648
proquest_journals_2647425637
crossref_primary_10_1109_TCSVT_2021_3082521
crossref_citationtrail_10_1109_TCSVT_2021_3082521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Ballé (ref15) 2016
ref53
ref52
ref11
ref10
Minnen (ref16)
ref17
Ballé (ref48) 2015
ref19
Jiang (ref25)
ref46
ref45
ref47
ref42
ref49
Burth Kurka (ref37)
ref8
ref7
ref9
ref3
ref6
ref5
ref40
Goodfellow (ref18) 2016; 1
ref35
ref34
ref36
ref31
ref30
ref2
ref1
ref39
ref38
Csiszár (ref4) 1980; 9
Mnih (ref44)
Devlin (ref13) 2018
Bahdanau (ref41) 2014
ref24
ref23
ref26
Toderici (ref14) 2015
ref20
Mnih (ref33) 2016
ref22
ref21
Choi (ref32)
Krizhevsky (ref51) 2009
ref28
ref27
Abadi (ref50) 2016
ref29
Vaswani (ref43)
References_xml – ident: ref26
  doi: 10.1109/ACSSC.2018.8645416
– start-page: 2204
  volume-title: Proc. Adv. neural Inf. Process. Syst.
  ident: ref44
  article-title: Recurrent models of visual attention
– ident: ref23
  doi: 10.1109/WCSP.2019.8928071
– start-page: 10771
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref16
  article-title: Joint autoregressive and hierarchical priors for learned image compression
– ident: ref39
  doi: 10.1016/j.image.2015.11.005
– ident: ref52
  doi: 10.1007/s11263-015-0816-y
– start-page: 2758
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Turbo autoencoder: Deep learning based channel codes for point-to-point communication channels
– ident: ref21
  doi: 10.1109/TCSVT.2018.2867067
– ident: ref20
  doi: 10.1109/TCSVT.2020.3010627
– volume-title: arXiv:1409.0473
  year: 2014
  ident: ref41
  article-title: Neural machine translation by jointly learning to align and translate
– year: 2009
  ident: ref51
  article-title: Learning multiple layers of features from tiny images
– ident: ref8
  doi: 10.1109/TCOMM.2005.844936
– volume: 9
  start-page: 315
  issue: 5
  year: 1980
  ident: ref4
  article-title: Joint source-channel error exponent
  publication-title: Problems Control Inf. Theory
– start-page: 1182
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Neural joint source-channel coding
– ident: ref34
  doi: 10.1109/ICASSP40776.2020.9054078
– ident: ref36
  doi: 10.1109/ACCESS.2019.2920929
– ident: ref11
  doi: 10.1109/CVPR.2015.7298594
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– ident: ref38
  doi: 10.1109/ICC.2010.5502650
– ident: ref22
  doi: 10.1109/TCCN.2017.2758370
– ident: ref6
  doi: 10.1109/ISIT.2007.4557472
– volume-title: arXiv:1603.04467
  year: 2016
  ident: ref50
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref28
  doi: 10.1109/ICASSP.2018.8461983
– ident: ref19
  doi: 10.1109/TCSVT.2017.2734838
– ident: ref17
  doi: 10.1109/ICIP40778.2020.9190935
– ident: ref30
  doi: 10.1109/SPAWC.2019.8815416
– volume-title: arXiv:1511.06085
  year: 2015
  ident: ref14
  article-title: Variable rate image compression with recurrent neural networks
– ident: ref24
  doi: 10.1109/JSAIT.2020.2988577
– ident: ref10
  doi: 10.1109/DCC.2004.1281472
– ident: ref31
  doi: 10.1109/JSAIT.2020.2987203
– ident: ref46
  doi: 10.1109/CVPR.2018.00745
– volume: 1
  volume-title: Deep Learning
  year: 2016
  ident: ref18
– ident: ref40
  doi: 10.1109/26.843191
– ident: ref2
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref12
  doi: 10.1109/JSTSP.2019.2908700
– ident: ref27
  doi: 10.1109/GLOCOMW.2018.8644250
– ident: ref42
  doi: 10.18653/v1/D15-1166
– volume-title: arXiv:1611.01704
  year: 2016
  ident: ref15
  article-title: End-to-end optimized image compression
– ident: ref1
  doi: 10.1002/0471200611
– ident: ref53
  doi: 10.1109/ICASSP.2005.1415816
– ident: ref29
  doi: 10.1109/TCCN.2019.2919300
– ident: ref49
  doi: 10.1109/ICCV.2015.123
– volume-title: arXiv:1810.04805
  year: 2018
  ident: ref13
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Attention is all you need
– volume-title: arXiv:1602.06725
  year: 2016
  ident: ref33
  article-title: Variational inference for Monte Carlo objectives
– start-page: 90
  volume-title: Proc. Int. Zurich Seminar Inf. Commun. (IZS)
  ident: ref37
  article-title: Joint source-channel coding of images with (not very) deep learning
– ident: ref3
  doi: 10.1007/978-3-7091-2945-6
– ident: ref7
  doi: 10.1109/ICIP.1995.537420
– ident: ref47
  doi: 10.1007/978-3-030-01234-2_1
– volume-title: arXiv:1511.06281
  year: 2015
  ident: ref48
  article-title: Density modeling of images using a generalized normalization transformation
– ident: ref45
  doi: 10.1109/CVPR.2017.683
– ident: ref5
  doi: 10.1109/TIT.2007.909092
– ident: ref9
  doi: 10.1109/76.867934
SSID ssj0014847
Score 2.7118623
Snippet Recent research on joint source channel coding (JSCC) for wireless communications has achieved great success owing to the employment of deep learning (DL)....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2315
SubjectTerms attention mechanism
Channel coding
Coding
Compression ratio
Decoding
deep learning
deep neural network
Image coding
Image transmission
Joint source channel coding
Resource allocation
Signal to noise ratio
Source coding
Training
Transform coding
Wireless communication
Wireless communications
Title Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules
URI https://ieeexplore.ieee.org/document/9438648
https://www.proquest.com/docview/2647425637
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2yQEseOY4-ogACpLC2PLUrii0CUtoJ04ddzdtKKlxBbBtuy7pz77n0Ah9zmOizIUi2lCAMZCwyyMDGBypSwhKC29N32uzfq8lZeP8QPc3A8q4VBRJ98hm336WP5dlRMnKvsxEihldTzME-GW12rNYsYSO2HiZG6wANNODYtkAnNSb_Tu-uTKRjxtmvOEkf8Cwj5qSo_RLHHl4sV6E5vVqeVPLcnVd4u3r81bfzv1VdhuVE02Wn9MtZgDofrsPSp_eAG9Fzq64BEHbt6IbHCPG4R350DjflcAnaGOGY97-BnrhBhiAPWGTm8Y_dP1SM7rao6X5J1R3ZCZ23C7cV5v3MZNEMWgiIycRWUIXHRKmMzUcZJKZVA0klEiAlyVegsN1kmtdBl6SKemFtVyjxGQzCfFTxOxBYsDEdD3AbGcx4pg9zSEZLLnCwpTfqREW6SRIJFC_iU6mnRdCB3gzAGqbdEQpN6TqWOU2nDqRYczfaM6_4bf67ecKSfrWyo3oK9KXPT5hd9S0kTTEhgKZHs_L5rFxYjV-vg03T2YKF6neA-aSBVfuCf3gdGutX-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA5ALuworzWh72xKXHsOPYRFVBhKZeWxy1K4okWUdoK0gu_nrGTViysELccbMuaceab9wD84jbXYUGWailFGMhYYJCFiQlUpoQlBLWl77bfu1TdK3l-G98uwO95LQwi-uQzbLtPH8u342LqXGWHRgqtpP4CS4T7cVRXa81jBlL7cWKkMPBAE5LNSmRCczjo9K8HZAxGvO3as8QR_weG_FyVd8LYI8zpGvRmd6sTS-7b0ypvF89v2jZ-9vLrsNqomuyofhvfYAFH32HlVQPCDei75NchCTt29kCChXnkIs47Fxrz2QTsGHHC-t7Fz1wpwgiHrDN2iMdu7qq_7Kiq6oxJ1hvbKZ21CVenJ4NON2jGLARFZOIqKEPio1XGZqKMk1IqgaSViBAT5KrQWW6yTGqhy9LFPDG3qpR5jIaAPit4nIgfsDgaj3ALGM95pAxyS0dILnOypTRpSEa4WRIJFi3gM6qnRdOD3I3CGKbeFglN6jmVOk6lDadacDDfM6k7cHy4esORfr6yoXoLdmfMTZuf9CklXTAhkaVEsv3_XT9huTvoXaQXZ5d_duBr5CoffNLOLixWj1PcI32kyvf9M3wBnjjZSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+Image+Transmission+Using+Deep+Source+Channel+Coding+With+Attention+Modules&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Xu%2C+Jialong&rft.au=Ai%2C+Bo&rft.au=Chen%2C+Wei&rft.au=Yang%2C+Ang&rft.date=2022-04-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=4&rft.spage=2315&rft.epage=2328&rft_id=info:doi/10.1109%2FTCSVT.2021.3082521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3082521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon