Meta-Learning-Based Incremental Few-Shot Object Detection
Recent years have witnessed meaningful progress in the task of few-shot object detection. However, most of the existing models are not capable of incremental learning with a few samples, i.e. , the detector can't detect novel-class objects by using only a few samples of novel classes (without r...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 4; pp. 2158 - 2169 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed meaningful progress in the task of few-shot object detection. However, most of the existing models are not capable of incremental learning with a few samples, i.e. , the detector can't detect novel-class objects by using only a few samples of novel classes (without revisiting the original training samples) while maintaining the performances on base classes. This is largely because of catastrophic forgetting, which is a general phenomenon in few-shot learning that the incorporation of the unseen information ( e.g. , novel-class objects) will lead to a serious loss of the knowledge learnt before ( e.g. , base-class objects). In this paper, a new model is proposed for incremental few-shot object detection, which takes CenterNet as the fundamental framework and redesigns it by introducing a novel meta-learning method to make the model adapted to unseen knowledge while overcoming forgetting to a great extent. Specifically, a meta-learner is trained with the base-class samples, providing the object locator of the proposed model with a good weight initialization, and thus the proposed model can be fine-tuned easily with few novel-class samples. On the other hand, the filters correlated to base classes are preserved when fine-tuning the proposed model with the few samples of novel classes, which is a simple but effective solution to mitigate the problem of forgetting. The experiments on the benchmark MS COCO and PASCAL VOC datasets demonstrate that the proposed model outperforms the state-of-the-art methods by a large margin in the detection performances on base classes and all classes while achieving best performances when detecting novel-class objects in most cases. The project page can be found in https://mic.tongji.edu.cn/e6/d5/c9778a190165/page.htm . |
---|---|
AbstractList | Recent years have witnessed meaningful progress in the task of few-shot object detection. However, most of the existing models are not capable of incremental learning with a few samples, i.e. , the detector can’t detect novel-class objects by using only a few samples of novel classes (without revisiting the original training samples) while maintaining the performances on base classes. This is largely because of catastrophic forgetting, which is a general phenomenon in few-shot learning that the incorporation of the unseen information ( e.g. , novel-class objects) will lead to a serious loss of the knowledge learnt before ( e.g. , base-class objects). In this paper, a new model is proposed for incremental few-shot object detection, which takes CenterNet as the fundamental framework and redesigns it by introducing a novel meta-learning method to make the model adapted to unseen knowledge while overcoming forgetting to a great extent. Specifically, a meta-learner is trained with the base-class samples, providing the object locator of the proposed model with a good weight initialization, and thus the proposed model can be fine-tuned easily with few novel-class samples. On the other hand, the filters correlated to base classes are preserved when fine-tuning the proposed model with the few samples of novel classes, which is a simple but effective solution to mitigate the problem of forgetting. The experiments on the benchmark MS COCO and PASCAL VOC datasets demonstrate that the proposed model outperforms the state-of-the-art methods by a large margin in the detection performances on base classes and all classes while achieving best performances when detecting novel-class objects in most cases. The project page can be found in https://mic.tongji.edu.cn/e6/d5/c9778a190165/page.htm . |
Author | Wang, Hanli Cheng, Meng Long, Yu |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0003-1734-5550 surname: Cheng fullname: Cheng, Meng email: chengmeng@tongji.edu.cn organization: Department of Computer Science and Technology, Tongji University, Shanghai, China – sequence: 2 givenname: Hanli orcidid: 0000-0002-9999-4871 surname: Wang fullname: Wang, Hanli email: hanliwang@tongji.edu.cn organization: Department of Computer Science and Technology, Tongji University, Shanghai, China – sequence: 3 givenname: Yu surname: Long fullname: Long, Yu email: longyu@tongji.edu.cn organization: Department of Computer Science and Technology, Tongji University, Shanghai, China |
BookMark | eNp9kE1PAjEQhhuDiYD-Ab1s4rnY7-0eFUVJMBxAr027O9Ul0MVuifHfuwjx4MHTTDLvMzN5BqgXmgAIXVIyopQUN8vx4nU5YoTRESdaSyFPUJ9KqTFjRPa6nkiKNaPyDA3adkUIFVrkfVQ8Q7J4BjaGOrzhO9tClU1DGWEDIdl1NoFPvHhvUjZ3KyhTdg-pK3UTztGpt-sWLo51iF4mD8vxE57NH6fj2xkuWSET9sTmQB11vuKcac68ZpWGovRMcKe9zXk3kpV34JQmumSK5JbmwJVShXV8iK4Pe7ex-dhBm8yq2cXQnTRMiVwwWQjVpfQhVcambSN4U9bJ7v9M0dZrQ4nZizI_osxelDmK6lD2B93GemPj1__Q1QGqAeAXKIRkVAn-DdX2daU |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2021_3138851 crossref_primary_10_1109_TCSVT_2023_3349007 crossref_primary_10_1016_j_cviu_2023_103774 crossref_primary_10_1016_j_eswa_2024_125557 crossref_primary_10_1109_TCSVT_2022_3219605 crossref_primary_10_1109_TCSVT_2023_3272612 crossref_primary_10_3390_s25010214 crossref_primary_10_1109_TCSVT_2023_3262739 crossref_primary_10_1109_TCSVT_2022_3173687 crossref_primary_10_1016_j_dsp_2025_105181 crossref_primary_10_1109_TCSVT_2024_3385444 crossref_primary_10_1016_j_neunet_2023_10_039 crossref_primary_10_1109_TCSVT_2024_3499937 crossref_primary_10_1109_TCSVT_2022_3193612 crossref_primary_10_1016_j_cviu_2025_104317 crossref_primary_10_1109_TCSVT_2024_3432152 crossref_primary_10_1109_TCSVT_2023_3285263 crossref_primary_10_1145_3576045 crossref_primary_10_1109_TCSVT_2023_3343397 crossref_primary_10_1109_TCSVT_2024_3435977 crossref_primary_10_1016_j_patcog_2024_110266 crossref_primary_10_1109_TCSVT_2024_3424566 crossref_primary_10_1109_TCSVT_2024_3412996 crossref_primary_10_1109_TCSVT_2024_3447066 crossref_primary_10_1109_TCSVT_2021_3125129 crossref_primary_10_1109_TCSVT_2024_3378978 crossref_primary_10_1109_TCSVT_2023_3313576 crossref_primary_10_1016_j_neucom_2024_127388 crossref_primary_10_1016_j_cviu_2025_104323 crossref_primary_10_1109_TCSVT_2023_3248798 crossref_primary_10_1049_ipr2_12935 crossref_primary_10_3390_app13137549 crossref_primary_10_1109_TCSVT_2023_3327605 crossref_primary_10_1109_TCSVT_2022_3164190 crossref_primary_10_1109_TPAMI_2024_3463709 crossref_primary_10_1007_s00371_023_03228_8 crossref_primary_10_1109_TCSVT_2023_3344574 crossref_primary_10_1109_TCSVT_2023_3325651 crossref_primary_10_1109_TGRS_2024_3475482 crossref_primary_10_1109_TCSVT_2023_3241651 crossref_primary_10_1109_TCSVT_2024_3350913 crossref_primary_10_1016_j_knosys_2024_111964 crossref_primary_10_1049_ipr2_70038 crossref_primary_10_3390_app13105958 crossref_primary_10_1155_2023_5337454 crossref_primary_10_1109_TCSVT_2024_3370600 crossref_primary_10_3390_rs14184581 crossref_primary_10_1109_ACCESS_2023_3347634 crossref_primary_10_1109_TCSVT_2023_3292519 crossref_primary_10_1109_TCSVT_2023_3238804 crossref_primary_10_1109_TCSVT_2022_3222305 crossref_primary_10_1109_TCSVT_2023_3301854 crossref_primary_10_1016_j_cja_2024_05_047 crossref_primary_10_1016_j_engappai_2023_107125 crossref_primary_10_1016_j_jvcir_2024_104228 crossref_primary_10_1109_TCSVT_2022_3165068 crossref_primary_10_1109_TCSVT_2024_3424302 crossref_primary_10_1109_TPAMI_2025_3529038 crossref_primary_10_1109_TASE_2024_3372711 crossref_primary_10_1016_j_future_2024_107690 crossref_primary_10_1109_TIM_2023_3288258 crossref_primary_10_1007_s10489_024_05556_1 crossref_primary_10_1109_TMM_2022_3142413 crossref_primary_10_3390_rs14225863 crossref_primary_10_1007_s10845_024_02475_3 crossref_primary_10_1109_TCSVT_2022_3197147 crossref_primary_10_1007_s10489_023_05245_5 crossref_primary_10_1016_j_neunet_2023_05_006 crossref_primary_10_1109_TCSVT_2023_3245584 crossref_primary_10_1109_TCSVT_2023_3304567 crossref_primary_10_1109_TNSM_2023_3347789 crossref_primary_10_1109_TCSVT_2024_3367666 crossref_primary_10_1109_TCSVT_2024_3477951 |
Cites_doi | 10.1109/CVPR.2019.00534 10.1109/ICCV.2019.00851 10.1109/CVPR42600.2020.01238 10.1109/ICCV.2017.89 10.1007/978–3-319-10602-148 10.1109/CVPR42600.2020.01259 10.1109/CVPR.2019.00011 10.1109/CVPR.2018.00255 10.1145/3065386 10.1109/CVPR.2017.690 10.1109/ICCV.2019.00967 10.1109/CVPR.2019.00948 10.1109/TPAMI.2020.3007511 10.1109/TCSVT.2019.2920783 10.1007/s11263-014-0733-5 10.1609/aaai.v32i1.11716 10.1109/CVPR.2018.00610 10.1007/978-3-030-58520-4_12 10.1109/CVPR.2016.91 10.1109/CVPR42600.2020.01386 10.1007/978-3-030-01264-9_45 10.1109/TCSVT.2021.3052785 10.1109/CVPR.2018.00755 10.1109/CVPR.2016.90 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2019.00641 10.1109/ICCV.2019.00815 10.l007/978-3-319-46448-0_2 10.1145/2998574 10.1109/CVPR.2014.81 10.1109/ICCV.2015.169 10.1109/TCSVT.2020.2995754 10.1109/CVPR.2017.106 10.1109/CVPR.2018.00459 10.1109/CVPR42600.2020.00407 10.1145/2733373.2806216 10.1109/ICEIEC49280.2020.9152261 10.5220/0010243202360242 10.1109/ICCV.2017.324 10.1109/CVPR.2018.00131 10.1109/CVPR.2018.00760 10.1109/ICCV.2017.322 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3088545 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 2169 |
ExternalDocumentID | 10_1109_TCSVT_2021_3088545 9452164 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2021SHZDZX0100 – fundername: Shanghai Innovation Action Project of Science and Technology grantid: 20511100700 – fundername: National Natural Science Foundation of China grantid: 61976159 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-f0a7e1b1bfd332832f82d8e9cf243b8fa73bfd5dfbeb6808c2607a17e36669ab3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 05:16:57 EDT 2025 Tue Jul 01 00:41:15 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Wed Aug 27 02:40:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-f0a7e1b1bfd332832f82d8e9cf243b8fa73bfd5dfbeb6808c2607a17e36669ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1734-5550 0000-0002-9999-4871 |
PQID | 2647425946 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9452164 crossref_citationtrail_10_1109_TCSVT_2021_3088545 crossref_primary_10_1109_TCSVT_2021_3088545 proquest_journals_2647425946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 Wang (ref45) ref11 ref10 ref17 ref19 ref51 Santoro (ref36) ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 Kingma (ref52) 2014 ref40 ref35 Zhou (ref18) 2019 ref37 Redmon (ref15) 2018 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Koch (ref22); 2 ref38 Vinyals (ref21) Finn (ref7); 70 ref24 ref23 ref26 ref25 ref20 Nichol (ref34) 2018 Bochkovskiy (ref16) 2020 ref28 ref27 ref29 |
References_xml | – ident: ref4 doi: 10.1109/CVPR.2019.00534 – year: 2018 ident: ref15 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 – ident: ref2 doi: 10.1109/ICCV.2019.00851 – start-page: 9919 volume-title: Proc. 37th Int. Conf. Mach. Learn. (ICML) ident: ref45 article-title: Frustratingly simple few-shot object detection – ident: ref40 doi: 10.1109/CVPR42600.2020.01238 – ident: ref49 doi: 10.1109/ICCV.2017.89 – ident: ref9 doi: 10.1007/978–3-319-10602-148 – ident: ref27 doi: 10.1109/CVPR42600.2020.01259 – ident: ref30 doi: 10.1109/CVPR.2019.00011 – ident: ref48 doi: 10.1109/CVPR.2018.00255 – ident: ref51 doi: 10.1145/3065386 – volume: 70 start-page: 1126 volume-title: Proc. 34th Int. Conf. Mach. Learn. (ICML) ident: ref7 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref14 doi: 10.1109/CVPR.2017.690 – ident: ref3 doi: 10.1109/ICCV.2019.00967 – ident: ref23 doi: 10.1109/CVPR.2019.00948 – year: 2019 ident: ref18 article-title: Objects as points publication-title: arXiv:1904.07850 – ident: ref37 doi: 10.1109/TPAMI.2020.3007511 – ident: ref41 doi: 10.1109/TCSVT.2019.2920783 – ident: ref10 doi: 10.1007/s11263-014-0733-5 – ident: ref1 doi: 10.1609/aaai.v32i1.11716 – ident: ref31 doi: 10.1109/CVPR.2018.00610 – ident: ref46 doi: 10.1007/978-3-030-58520-4_12 – ident: ref13 doi: 10.1109/CVPR.2016.91 – ident: ref6 doi: 10.1109/CVPR42600.2020.01386 – ident: ref50 doi: 10.1007/978-3-030-01264-9_45 – ident: ref35 doi: 10.1109/TCSVT.2021.3052785 – ident: ref32 doi: 10.1109/CVPR.2018.00755 – ident: ref47 doi: 10.1109/CVPR.2016.90 – ident: ref8 doi: 10.1109/TPAMI.2016.2577031 – ident: ref38 doi: 10.1109/CVPR.2019.00641 – ident: ref39 doi: 10.1109/ICCV.2019.00815 – year: 2018 ident: ref34 article-title: On first-order meta-learning algorithms publication-title: arXiv:1803.02999 – ident: ref17 doi: 10.l007/978-3-319-46448-0_2 – year: 2014 ident: ref52 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – start-page: 3630 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref21 article-title: Matching networks for one shot learning – ident: ref42 doi: 10.1145/2998574 – year: 2020 ident: ref16 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv:2004.10934 – ident: ref11 doi: 10.1109/CVPR.2014.81 – ident: ref12 doi: 10.1109/ICCV.2015.169 – ident: ref28 doi: 10.1109/TCSVT.2020.2995754 – volume: 2 start-page: 1 volume-title: Proc. 32nd. Int. Conf. Mach. Learn. Deep Learn. Workshop ident: ref22 article-title: Siamese neural network for one-shot image recognition – ident: ref20 doi: 10.1109/CVPR.2017.106 – ident: ref29 doi: 10.1109/CVPR.2018.00459 – ident: ref5 doi: 10.1109/CVPR42600.2020.00407 – ident: ref43 doi: 10.1145/2733373.2806216 – start-page: 1842 volume-title: Proc. 33nd. Int. Conf. Mach. Learn. (ICML) ident: ref36 article-title: Meta-learning with memory-augmented neural networks – ident: ref24 doi: 10.1109/ICEIEC49280.2020.9152261 – ident: ref33 doi: 10.5220/0010243202360242 – ident: ref19 doi: 10.1109/ICCV.2017.324 – ident: ref25 doi: 10.1109/CVPR.2018.00131 – ident: ref26 doi: 10.1109/CVPR.2018.00760 – ident: ref44 doi: 10.1109/ICCV.2017.322 |
SSID | ssj0014847 |
Score | 2.6068008 |
Snippet | Recent years have witnessed meaningful progress in the task of few-shot object detection. However, most of the existing models are not capable of incremental... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2158 |
SubjectTerms | Adaptation models Data models Detectors Feature extraction Few-shot learning incremental learning Learning meta-learning Object detection Object recognition Task analysis Training |
Title | Meta-Learning-Based Incremental Few-Shot Object Detection |
URI | https://ieeexplore.ieee.org/document/9452164 https://www.proquest.com/docview/2647425946 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_XFHrxpapN9ZHPUailC9WAVb0uSnSgoregWwV_vJLstoiLeFjYDYSbJN18yD4BD8rmFdFww7WyHJcrSniOcZ4SlyNGVgic-33lwlfVvk8v79H4Ojme5MIgYgs-w7T_DW345thN_VXaiEgKbLJmHeSJuda7W7MUgyUMzMXIXOMsJx6YJMh11Muze3A2JCgrejmlTpT516QsIha4qP47igC-9FRhMZ1aHlTy1J5Vp249vRRv_O_VVWG4czei0XhlrMIejdVj6Un5wA9QAK82aCqsP7IwArYzowKivDEm4h-_s5nFcRdfGX9dE51iFyK3RJtz2LobdPmtaKTArVFox19ESueHGlXHsuxO5XJQ5KutEEpvcaRnTr7R0Bo1vxmGJ5kjNJcZEb5Q28RYsjMYj3IbIiExKLWVQuc5yzYW0sSnRyZzormoBn-q2sE2dcd_u4rkIfKOjimCPwtujaOzRgqOZzEtdZePP0RtewbORjW5bsDc1YdFsxLeC_D0i_6lKsp3fpXZhUfiMhhCMswcL1esE98nPqMxBWGCfzN3MiQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6F9lB6AEqpGgiwB27Uaex9eH2EQJTSJBySVL2tbO-4lUBJ1W5UiV_P2LuJorZC3FZaj2TNePzNjOcB8IlsbiEdF0w722OJsqRzhPOMsBQ5ulLwxNc7jyfZcJ78uEwvW3CyqYVBxJB8hl3_Gd7yy6Vd-VDZqUoIbLLkGewS7qeirtbavBkkeRgnRgYDZzkh2bpEpqdOZ_3pxYycQcG7MalV6ouXtmAozFV5dBkHhBm8hPF6b3Viya_uqjJd--dB28b_3fwreNGYmtGX-mwcQAsXr2F_qwHhIagxVpo1PVav2FeCtDKiK6MOGhLxAO_Z9HpZRT-ND9hE37AKuVuLNzAffJ_1h6wZpsCsUGnFXE9L5IYbV8axn0_kclHmqKwTSWxyp2VMv9LSGTR-HIclR0dqLjEmB0dpEx_BzmK5wGOIjMik1FIGluss11xIG5sSnczJ4VVt4GveFrbpNO4HXvwugsfRU0WQR-HlUTTyaMPnDc1N3Wfjn6sPPYM3KxvetqGzFmHRqOJdQRYfuf-pSrK3T1N9hL3hbDwqRmeT83fwXPj6hpCa04Gd6naF78nqqMyHcNj-AqkPz9M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-Learning-Based+Incremental+Few-Shot+Object+Detection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Cheng%2C+Meng&rft.au=Wang%2C+Hanli&rft.au=Long%2C+Yu&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=4&rft.spage=2158&rft_id=info:doi/10.1109%2FTCSVT.2021.3088545&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |