Incomplete Descriptor Mining With Elastic Loss for Person Re-Identification

In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for the person Re-ID task. The CBDB-Net contains two novel designs: the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL). In...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 1; pp. 160 - 171
Main Authors Tan, Hongchen, Liu, Xiuping, Bian, Yuhao, Wang, Huasheng, Yin, Baocai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for the person Re-ID task. The CBDB-Net contains two novel designs: the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL). In the Consecutive Batch DropBlock Module (CBDBM), we firstly conduct uniform partition on the feature maps. And then, we independently and continuously drop each patch from top to bottom on the feature maps, which can output multiple incomplete feature maps. In the training stage, these multiple incomplete features can better encourage the Re-ID model to capture the robust person descriptor for the Re-ID task. In the Elastic Loss (EL), we design a novel weight control item to help the Re-ID model adaptively balance hard sample pairs and easy sample pairs in the whole training process. Through an extensive set of ablation studies, we verify that the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL) each contribute to the performance boosts of CBDB-Net. We demonstrate that our CBDB-Net can achieve the competitive performance on the three standard person Re-ID datasets (the Market-1501, the DukeMTMC-Re-ID, and the CUHK03 dataset), three occluded Person Re-ID datasets (the Occluded DukeMTMC, the Partial-REID, and the Partial iLIDS dataset), and a general image retrieval dataset (In-Shop Clothes Retrieval dataset).
AbstractList In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for the person Re-ID task. The CBDB-Net contains two novel designs: the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL). In the Consecutive Batch DropBlock Module (CBDBM), we firstly conduct uniform partition on the feature maps. And then, we independently and continuously drop each patch from top to bottom on the feature maps, which can output multiple incomplete feature maps. In the training stage, these multiple incomplete features can better encourage the Re-ID model to capture the robust person descriptor for the Re-ID task. In the Elastic Loss (EL), we design a novel weight control item to help the Re-ID model adaptively balance hard sample pairs and easy sample pairs in the whole training process. Through an extensive set of ablation studies, we verify that the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL) each contribute to the performance boosts of CBDB-Net. We demonstrate that our CBDB-Net can achieve the competitive performance on the three standard person Re-ID datasets (the Market-1501, the DukeMTMC-Re-ID, and the CUHK03 dataset), three occluded Person Re-ID datasets (the Occluded DukeMTMC, the Partial-REID, and the Partial iLIDS dataset), and a general image retrieval dataset (In-Shop Clothes Retrieval dataset).
Author Liu, Xiuping
Wang, Huasheng
Yin, Baocai
Tan, Hongchen
Bian, Yuhao
Author_xml – sequence: 1
  givenname: Hongchen
  orcidid: 0000-0001-6915-8736
  surname: Tan
  fullname: Tan, Hongchen
  email: tanhongchenphd@mail.dlut.edu.cn
  organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Xiuping
  orcidid: 0000-0003-1712-6083
  surname: Liu
  fullname: Liu, Xiuping
  email: xpliu@dlut.edu.cn
  organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Yuhao
  orcidid: 0000-0001-9916-7377
  surname: Bian
  fullname: Bian, Yuhao
  email: yhbian@mail.dlut.edu.cn
  organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Huasheng
  surname: Wang
  fullname: Wang, Huasheng
  email: huashengdadi@mail.dlut.edu.cn
  organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Baocai
  surname: Yin
  fullname: Yin, Baocai
  email: ybc@dlut.edu.cn
  organization: Department of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
BookMark eNp9kE1PwzAMhiMEEtvgD8ClEucOO19tj2gMmBgCwYBj1aUJZOrSkWQH_j3dhzhw4GTL9uPXfvvk0LVOE3KGMESE4nI2enmbDSlQHDKQyJEekB4KkaeUgjjschCY5hTFMemHsABAnvOsR-4nTrXLVaOjTq51UN6uYuuTB-us-0jebfxMxk0VolXJtA0hMV3zSfvQuuRZp5Nau2iNVVW0rTshR6Zqgj7dxwF5vRnPRnfp9PF2MrqapooWIqYGuOZcykLWXM4zNEZWKhcFL6oMapYB5JJy7GqIVSbnII0BpJoqw3QtOBuQi93elW-_1jrEctGuveskSyqxAMqowG6K7qaU7w732pQrb5eV_y4Ryo1p5da0cmNauTetg_I_kLJx-1z0lW3-R893qNVa_2oVTEJWMPYDJI57QQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3399406
crossref_primary_10_1142_S0218001424550164
crossref_primary_10_1007_s11042_023_15116_3
crossref_primary_10_1016_j_neunet_2023_11_003
crossref_primary_10_1109_TCSVT_2023_3262832
crossref_primary_10_1145_3610534
crossref_primary_10_1109_TCSVT_2024_3379577
crossref_primary_10_1109_ACCESS_2024_3405169
crossref_primary_10_1109_TCSVT_2024_3358850
crossref_primary_10_1109_TCSVT_2022_3173263
crossref_primary_10_1016_j_neunet_2025_107287
crossref_primary_10_1007_s11042_022_12510_1
crossref_primary_10_1109_TBIOM_2023_3281357
crossref_primary_10_1109_TCSVT_2022_3225285
crossref_primary_10_1109_TIFS_2022_3218449
crossref_primary_10_1016_j_imavis_2024_105111
crossref_primary_10_1016_j_patrec_2023_09_008
crossref_primary_10_1109_TCSVT_2023_3246999
crossref_primary_10_1007_s10044_024_01219_6
crossref_primary_10_1016_j_patcog_2024_110362
crossref_primary_10_1007_s13042_022_01610_x
crossref_primary_10_1016_j_inffus_2023_102201
crossref_primary_10_1109_TCSVT_2023_3261333
crossref_primary_10_1016_j_jvcir_2023_103993
crossref_primary_10_1142_S0219843623500044
crossref_primary_10_1016_j_inffus_2024_102863
crossref_primary_10_1016_j_jvcir_2023_103772
crossref_primary_10_1109_JIOT_2021_3084978
crossref_primary_10_1109_TIM_2023_3269117
crossref_primary_10_1007_s11760_023_02705_w
crossref_primary_10_1109_TCSVT_2023_3340428
crossref_primary_10_1016_j_eswa_2023_122419
crossref_primary_10_1109_ACCESS_2024_3385782
crossref_primary_10_1109_TIP_2021_3107211
crossref_primary_10_3390_electronics13051001
crossref_primary_10_1109_TCSVT_2023_3276996
crossref_primary_10_1109_TCSVT_2023_3250464
crossref_primary_10_1016_j_displa_2023_102467
crossref_primary_10_1109_TCSVT_2023_3339167
crossref_primary_10_1109_TCSVT_2024_3425536
crossref_primary_10_1109_JIOT_2022_3147950
crossref_primary_10_1016_j_ins_2024_121866
crossref_primary_10_1109_TCSVT_2023_3340225
crossref_primary_10_1109_TCSVT_2022_3153348
Cites_doi 10.1016/j.patcog.2015.04.005
10.1007/978-3-319-48881-3_2
10.1109/TPAMI.2018.2858826
10.1109/CVPR.2009.5206848
10.1109/TIP.2019.2908065
10.1109/ICCV.2019.00386
10.1109/TPAMI.2018.2848925
10.1109/CVPR.2018.00739
10.1109/CVPR.2019.00148
10.1109/CVPR.2018.00225
10.1109/CVPR.2018.00243
10.1109/ICCV.2019.00380
10.1109/CVPR.2015.7298832
10.1109/ICCV.2015.531
10.1109/CVPR.2014.27
10.1109/ICCV.2019.00379
10.1109/CVPR.2017.103
10.1109/ICCV.2019.00813
10.1109/TPAMI.2021.3050918
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00110
10.1109/TPAMI.2020.3034233
10.1109/CVPR.2019.00730
10.1007/978-3-030-01225-0_30
10.1109/CVPR42600.2020.00648
10.1109/ICCV.2019.00844
10.1007/978-3-030-01231-1_17
10.1109/TPAMI.2019.2928540
10.1609/aaai.v34i07.7000
10.1109/CVPR.2017.389
10.1109/ICCV.2019.00063
10.1109/CVPR.2019.00954
10.1109/ICCV.2015.133
10.1109/ICCV.2019.00674
10.1145/3123266.3123279
10.1109/ICCV.2017.405
10.1109/CVPR.2016.139
10.1109/TIP.2018.2874313
10.1109/TIP.2019.2946975
10.1109/CVPR.2016.124
10.1007/978-3-319-46484-8_48
10.1016/j.patcog.2019.06.006
10.1109/TCSVT.2018.2873599
10.1109/TIP.2018.2818438
10.1109/CVPR.2018.00117
10.1109/CVPR.2016.151
10.1109/CVPR.2015.7298682
10.1109/CVPR.2015.7298664
10.1109/CVPR.2018.00129
10.1109/CVPR.2018.00535
10.1007/978-3-030-01246-5_45
10.1109/ICCV.2019.00374
10.1109/TPAMI.2012.191
10.1109/ICCV.2017.349
10.1109/ICCV.2017.94
10.1109/CVPR.2016.149
10.1109/ICCV.2017.427
10.1109/TCSVT.2018.2872503
10.1007/978-3-030-01264-9_25
10.1007/978-3-030-01270-0_44
10.1109/TCSVT.2017.2734740
10.1007/978-3-030-01225-0_23
10.1109/TPAMI.2019.2942030
10.1109/CVPR.2018.00226
10.1109/CVPR.2018.00051
10.1007/978-3-030-01240-3_40
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3061412
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 171
ExternalDocumentID 10_1109_TCSVT_2021_3061412
9360793
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology of the People’s Republic of China
  grantid: 2018AAA0102003
  funderid: 10.13039/501100002855
– fundername: National Natural Science Foundation of China
  grantid: 61976040; U19B2039
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-f04e446696d46b71ff6ac85949a70d370086241ac811a76b06ff012e2cf3ed543
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 13:39:23 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Wed Aug 27 03:03:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f04e446696d46b71ff6ac85949a70d370086241ac811a76b06ff012e2cf3ed543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9916-7377
0000-0001-6915-8736
0000-0003-1712-6083
PQID 2619023251
PQPubID 85433
PageCount 12
ParticipantIDs ieee_primary_9360793
crossref_citationtrail_10_1109_TCSVT_2021_3061412
crossref_primary_10_1109_TCSVT_2021_3061412
proquest_journals_2619023251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref59
Kingma (ref27) 2014
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
Ge (ref13)
ref51
ref50
ref46
ref45
Srivastava (ref47) 2014; 15
ref48
ref42
ref41
ref44
ref43
Yao (ref65) 2017
He (ref20) 2018
ref49
ref7
ref4
Yu (ref66) 2017
ref3
ref6
ref5
Faghri (ref9) 2017
ref40
Hermans (ref21) 2017
ref80
ref35
ref79
Chen (ref14) 2016
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Ghiasi (ref15) 2018
ref71
ref70
ref73
ref72
Zheng (ref74) 2016
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref64
ref63
ref22
ref28
ref29
ref60
DeVries (ref8) 2017
Goyal (ref16) 2017
ref62
ref61
References_xml – ident: ref46
  doi: 10.1016/j.patcog.2015.04.005
– ident: ref38
  doi: 10.1007/978-3-319-48881-3_2
– volume-title: arXiv:1711.08106
  year: 2017
  ident: ref66
  article-title: The devil is in the middle: Exploiting mid-level representations for cross-domain instance matching
– ident: ref32
  doi: 10.1109/TPAMI.2018.2858826
– ident: ref6
  doi: 10.1109/CVPR.2009.5206848
– ident: ref42
  doi: 10.1109/TIP.2019.2908065
– start-page: 1230
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref13
  article-title: FD-GAN: Pose-guided feature distilling GAN for robust person re-identification
– ident: ref59
  doi: 10.1109/ICCV.2019.00386
– ident: ref36
  doi: 10.1109/TPAMI.2018.2848925
– ident: ref19
  doi: 10.1109/CVPR.2018.00739
– volume-title: arXiv:1810.12890
  year: 2018
  ident: ref15
  article-title: DropBlock: A regularization method for convolutional networks
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref47
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref58
  doi: 10.1109/CVPR.2019.00148
– ident: ref62
  doi: 10.1109/CVPR.2018.00225
– ident: ref29
  doi: 10.1109/CVPR.2018.00243
– ident: ref24
  doi: 10.1109/ICCV.2019.00380
– ident: ref30
  doi: 10.1109/CVPR.2015.7298832
– ident: ref57
  doi: 10.1109/ICCV.2015.531
– ident: ref28
  doi: 10.1109/CVPR.2014.27
– volume-title: arXiv:1611.05244
  year: 2016
  ident: ref14
  article-title: Deep transfer learning for person re-identification
– ident: ref80
  doi: 10.1109/ICCV.2019.00379
– ident: ref69
  doi: 10.1109/CVPR.2017.103
– ident: ref41
  doi: 10.1109/ICCV.2019.00813
– ident: ref61
  doi: 10.1109/TPAMI.2021.3050918
– ident: ref18
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.1109/CVPR.2018.00110
– ident: ref39
  doi: 10.1109/TPAMI.2020.3034233
– ident: ref3
  doi: 10.1109/CVPR.2019.00730
– ident: ref50
  doi: 10.1007/978-3-030-01225-0_30
– ident: ref54
  doi: 10.1109/CVPR42600.2020.00648
– ident: ref1
  doi: 10.1109/ICCV.2019.00844
– ident: ref12
  doi: 10.1007/978-3-030-01231-1_17
– ident: ref23
  doi: 10.1109/TPAMI.2019.2928540
– ident: ref76
  doi: 10.1609/aaai.v34i07.7000
– ident: ref75
  doi: 10.1109/CVPR.2017.389
– ident: ref35
  doi: 10.1109/ICCV.2019.00063
– ident: ref40
  doi: 10.1109/CVPR.2019.00954
– ident: ref73
  doi: 10.1109/ICCV.2015.133
– ident: ref10
  doi: 10.1109/ICCV.2019.00674
– volume-title: arXiv:1707.00798
  year: 2017
  ident: ref65
  article-title: Deep representation learning with part loss for person re-identification
– ident: ref56
  doi: 10.1145/3123266.3123279
– ident: ref72
  doi: 10.1109/ICCV.2017.405
– ident: ref68
  doi: 10.1109/CVPR.2016.139
– ident: ref77
  doi: 10.1109/TIP.2018.2874313
– ident: ref55
  doi: 10.1109/TIP.2019.2946975
– ident: ref34
  doi: 10.1109/CVPR.2016.124
– ident: ref52
  doi: 10.1007/978-3-319-46484-8_48
– volume-title: arXiv:1810.07399
  year: 2018
  ident: ref20
  article-title: Recognizing partial biometric patterns
– ident: ref33
  doi: 10.1016/j.patcog.2019.06.006
– ident: ref71
  doi: 10.1109/TCSVT.2018.2873599
– ident: ref11
  doi: 10.1109/TIP.2018.2818438
– volume-title: arXiv:1706.02677
  year: 2017
  ident: ref16
  article-title: Accurate, large minibatch SGD: Training ImageNet in 1 hour
– ident: ref25
  doi: 10.1109/CVPR.2018.00117
– ident: ref4
  doi: 10.1109/CVPR.2016.151
– ident: ref44
  doi: 10.1109/CVPR.2015.7298682
– ident: ref51
  doi: 10.1109/CVPR.2015.7298664
– ident: ref5
  doi: 10.1109/CVPR.2018.00129
– ident: ref22
  doi: 10.1109/CVPR.2018.00535
– ident: ref26
  doi: 10.1007/978-3-030-01246-5_45
– ident: ref17
  doi: 10.1109/ICCV.2019.00374
– ident: ref31
  doi: 10.1109/TPAMI.2012.191
– ident: ref70
  doi: 10.1109/ICCV.2017.349
– ident: ref67
  doi: 10.1109/ICCV.2017.94
– ident: ref2
  doi: 10.1109/CVPR.2016.149
– ident: ref48
  doi: 10.1109/ICCV.2017.427
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref27
  article-title: Adam: A method for stochastic optimization
– ident: ref45
  doi: 10.1109/TCSVT.2018.2872503
– ident: ref49
  doi: 10.1007/978-3-030-01264-9_25
– ident: ref64
  doi: 10.1007/978-3-030-01270-0_44
– ident: ref78
  doi: 10.1109/TCSVT.2017.2734740
– ident: ref53
  doi: 10.1007/978-3-030-01225-0_23
– ident: ref60
  doi: 10.1109/TPAMI.2019.2942030
– ident: ref63
  doi: 10.1109/CVPR.2018.00226
– volume-title: arXiv:1707.05612
  year: 2017
  ident: ref9
  article-title: VSE++: Improving visual-semantic embeddings with hard negatives
– ident: ref79
  doi: 10.1609/aaai.v34i07.7000
– ident: ref43
  doi: 10.1109/CVPR.2018.00051
– ident: ref37
  doi: 10.1007/978-3-030-01240-3_40
– volume-title: arXiv:1610.02984
  year: 2016
  ident: ref74
  article-title: Person re-identification: Past, present and future
– volume-title: arXiv:1708.04552
  year: 2017
  ident: ref8
  article-title: Improved regularization of convolutional neural networks with cutout
– volume-title: arXiv:1703.07737
  year: 2017
  ident: ref21
  article-title: In defense of the triplet loss for person re-identification
SSID ssj0014847
Score 2.609821
Snippet In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 160
SubjectTerms Ablation
Biological system modeling
Datasets
dropout strategy
Feature maps
Image management
Image retrieval
incomplete person descriptor
Integrated circuit modeling
Measurement
Modules
Person Re-ID
Robustness
Task analysis
Tensors
Testing
Training
triple ranking
Title Incomplete Descriptor Mining With Elastic Loss for Person Re-Identification
URI https://ieeexplore.ieee.org/document/9360793
https://www.proquest.com/docview/2619023251
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KQdukNK0adoc0TQ0AUMIxuNWtWkiEGhDo7vw63HSh3gJcauqpErjxP6-OLYBDnymI8GFojKPfcpVkVDkWYJqUUimeBIybYOTh5dicMvPHqKHOThqY2G01u7ymfbso_PlFxM1s0dlxzIUNp_bPMwjcatitVqPAU9cMTGEC4wmaMeaABlfHo96N3cjpIIB80JLgFjwxQi5qio_VLGzL6crMGxGVl0refZmZe6p929JG_879FVYroEmOalWxhrM6fE6LH1KP9iBc1QO9kY54maC_NPpj8mUDF3NCHL_VD6SPoJr_AC5wN8giG_JlUPo5FrTKsTX1Gd-G3B72h_1BrQurkBVIKOSGp9r68uVouAij5kxIlNJJLnMYr8IY8d1OMN3jGWxyH1hDBozHSgT6iLi4SYsjCdjvQVExmHkZ5JnPFJcMCODPODKpqbTYSYD0wXWzHaq6szjtgDGS-oYiC9TJ6HUSiitJdSFw7bPa5V348_WHTvlbct6truw2wg1rbfmW2opIwIVxHXbv_fagcXAxji4c5ZdWCinM72HyKPM992S-wDxztJI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYzxy4QUbTpmlzRIhpwIYQbMCtatNEINCGRnfh1-Ok3cRLiFtVJVUaJ_b3xbENcOAxHQouFJVZ5FGu8pgizxJUi1wyxeOAaRuc3L0S7T6_eAgfanA0jYXRWrvLZ7ppH50vPx-qsT0qO5aBsPncZmAO7X7Iymitqc-Ax66cGAIGRmO0ZJMQGU8e905v73pIBn3WDCwFYv4XM-TqqvxQxs7CtJahOxlbebHkuTkusqZ6_5a28b-DX4GlCmqSk3JtrEJND9Zg8VMCwjpconqwd8oRORNkoE6DDEek66pGkPun4pGcIbzGD5AO_gZBhEuuHUYnN5qWQb6mOvVbh37rrHfaplV5Bap8GRbUeFxbb64UORdZxIwRqYpDyWUaeXkQObbDGb5jLI1E5glj0JxpX5lA5yEPNmB2MBzoTSAyCkIvlTzloeKCGelnPlc2OZ0OUumbBrDJbCeqyj1uS2C8JI6DeDJxEkqshJJKQg04nPZ5LTNv_Nm6bqd82rKa7QbsTISaVJvzLbGkEaEKIrut33vtw3y71-0knfOry21Y8G3Egzt12YHZYjTWu4hDimzPLb8PF6PVkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incomplete+Descriptor+Mining+With+Elastic+Loss+for+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Tan%2C+Hongchen&rft.au=Liu%2C+Xiuping&rft.au=Bian%2C+Yuhao&rft.au=Wang%2C+Huasheng&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=1&rft.spage=160&rft_id=info:doi/10.1109%2FTCSVT.2021.3061412&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon