Incomplete Descriptor Mining With Elastic Loss for Person Re-Identification
In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for the person Re-ID task. The CBDB-Net contains two novel designs: the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL). In...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 1; pp. 160 - 171 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for the person Re-ID task. The CBDB-Net contains two novel designs: the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL). In the Consecutive Batch DropBlock Module (CBDBM), we firstly conduct uniform partition on the feature maps. And then, we independently and continuously drop each patch from top to bottom on the feature maps, which can output multiple incomplete feature maps. In the training stage, these multiple incomplete features can better encourage the Re-ID model to capture the robust person descriptor for the Re-ID task. In the Elastic Loss (EL), we design a novel weight control item to help the Re-ID model adaptively balance hard sample pairs and easy sample pairs in the whole training process. Through an extensive set of ablation studies, we verify that the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL) each contribute to the performance boosts of CBDB-Net. We demonstrate that our CBDB-Net can achieve the competitive performance on the three standard person Re-ID datasets (the Market-1501, the DukeMTMC-Re-ID, and the CUHK03 dataset), three occluded Person Re-ID datasets (the Occluded DukeMTMC, the Partial-REID, and the Partial iLIDS dataset), and a general image retrieval dataset (In-Shop Clothes Retrieval dataset). |
---|---|
AbstractList | In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for the person Re-ID task. The CBDB-Net contains two novel designs: the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL). In the Consecutive Batch DropBlock Module (CBDBM), we firstly conduct uniform partition on the feature maps. And then, we independently and continuously drop each patch from top to bottom on the feature maps, which can output multiple incomplete feature maps. In the training stage, these multiple incomplete features can better encourage the Re-ID model to capture the robust person descriptor for the Re-ID task. In the Elastic Loss (EL), we design a novel weight control item to help the Re-ID model adaptively balance hard sample pairs and easy sample pairs in the whole training process. Through an extensive set of ablation studies, we verify that the Consecutive Batch DropBlock Module (CBDBM) and the Elastic Loss (EL) each contribute to the performance boosts of CBDB-Net. We demonstrate that our CBDB-Net can achieve the competitive performance on the three standard person Re-ID datasets (the Market-1501, the DukeMTMC-Re-ID, and the CUHK03 dataset), three occluded Person Re-ID datasets (the Occluded DukeMTMC, the Partial-REID, and the Partial iLIDS dataset), and a general image retrieval dataset (In-Shop Clothes Retrieval dataset). |
Author | Liu, Xiuping Wang, Huasheng Yin, Baocai Tan, Hongchen Bian, Yuhao |
Author_xml | – sequence: 1 givenname: Hongchen orcidid: 0000-0001-6915-8736 surname: Tan fullname: Tan, Hongchen email: tanhongchenphd@mail.dlut.edu.cn organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China – sequence: 2 givenname: Xiuping orcidid: 0000-0003-1712-6083 surname: Liu fullname: Liu, Xiuping email: xpliu@dlut.edu.cn organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China – sequence: 3 givenname: Yuhao orcidid: 0000-0001-9916-7377 surname: Bian fullname: Bian, Yuhao email: yhbian@mail.dlut.edu.cn organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China – sequence: 4 givenname: Huasheng surname: Wang fullname: Wang, Huasheng email: huashengdadi@mail.dlut.edu.cn organization: Key Laboratory of Computational Mathematics, School of Mathematical Sciences, Dalian University of Technology, Dalian, China – sequence: 5 givenname: Baocai surname: Yin fullname: Yin, Baocai email: ybc@dlut.edu.cn organization: Department of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China |
BookMark | eNp9kE1PwzAMhiMEEtvgD8ClEucOO19tj2gMmBgCwYBj1aUJZOrSkWQH_j3dhzhw4GTL9uPXfvvk0LVOE3KGMESE4nI2enmbDSlQHDKQyJEekB4KkaeUgjjschCY5hTFMemHsABAnvOsR-4nTrXLVaOjTq51UN6uYuuTB-us-0jebfxMxk0VolXJtA0hMV3zSfvQuuRZp5Nau2iNVVW0rTshR6Zqgj7dxwF5vRnPRnfp9PF2MrqapooWIqYGuOZcykLWXM4zNEZWKhcFL6oMapYB5JJy7GqIVSbnII0BpJoqw3QtOBuQi93elW-_1jrEctGuveskSyqxAMqowG6K7qaU7w732pQrb5eV_y4Ryo1p5da0cmNauTetg_I_kLJx-1z0lW3-R893qNVa_2oVTEJWMPYDJI57QQ |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3399406 crossref_primary_10_1142_S0218001424550164 crossref_primary_10_1007_s11042_023_15116_3 crossref_primary_10_1016_j_neunet_2023_11_003 crossref_primary_10_1109_TCSVT_2023_3262832 crossref_primary_10_1145_3610534 crossref_primary_10_1109_TCSVT_2024_3379577 crossref_primary_10_1109_ACCESS_2024_3405169 crossref_primary_10_1109_TCSVT_2024_3358850 crossref_primary_10_1109_TCSVT_2022_3173263 crossref_primary_10_1016_j_neunet_2025_107287 crossref_primary_10_1007_s11042_022_12510_1 crossref_primary_10_1109_TBIOM_2023_3281357 crossref_primary_10_1109_TCSVT_2022_3225285 crossref_primary_10_1109_TIFS_2022_3218449 crossref_primary_10_1016_j_imavis_2024_105111 crossref_primary_10_1016_j_patrec_2023_09_008 crossref_primary_10_1109_TCSVT_2023_3246999 crossref_primary_10_1007_s10044_024_01219_6 crossref_primary_10_1016_j_patcog_2024_110362 crossref_primary_10_1007_s13042_022_01610_x crossref_primary_10_1016_j_inffus_2023_102201 crossref_primary_10_1109_TCSVT_2023_3261333 crossref_primary_10_1016_j_jvcir_2023_103993 crossref_primary_10_1142_S0219843623500044 crossref_primary_10_1016_j_inffus_2024_102863 crossref_primary_10_1016_j_jvcir_2023_103772 crossref_primary_10_1109_JIOT_2021_3084978 crossref_primary_10_1109_TIM_2023_3269117 crossref_primary_10_1007_s11760_023_02705_w crossref_primary_10_1109_TCSVT_2023_3340428 crossref_primary_10_1016_j_eswa_2023_122419 crossref_primary_10_1109_ACCESS_2024_3385782 crossref_primary_10_1109_TIP_2021_3107211 crossref_primary_10_3390_electronics13051001 crossref_primary_10_1109_TCSVT_2023_3276996 crossref_primary_10_1109_TCSVT_2023_3250464 crossref_primary_10_1016_j_displa_2023_102467 crossref_primary_10_1109_TCSVT_2023_3339167 crossref_primary_10_1109_TCSVT_2024_3425536 crossref_primary_10_1109_JIOT_2022_3147950 crossref_primary_10_1016_j_ins_2024_121866 crossref_primary_10_1109_TCSVT_2023_3340225 crossref_primary_10_1109_TCSVT_2022_3153348 |
Cites_doi | 10.1016/j.patcog.2015.04.005 10.1007/978-3-319-48881-3_2 10.1109/TPAMI.2018.2858826 10.1109/CVPR.2009.5206848 10.1109/TIP.2019.2908065 10.1109/ICCV.2019.00386 10.1109/TPAMI.2018.2848925 10.1109/CVPR.2018.00739 10.1109/CVPR.2019.00148 10.1109/CVPR.2018.00225 10.1109/CVPR.2018.00243 10.1109/ICCV.2019.00380 10.1109/CVPR.2015.7298832 10.1109/ICCV.2015.531 10.1109/CVPR.2014.27 10.1109/ICCV.2019.00379 10.1109/CVPR.2017.103 10.1109/ICCV.2019.00813 10.1109/TPAMI.2021.3050918 10.1109/CVPR.2016.90 10.1109/CVPR.2018.00110 10.1109/TPAMI.2020.3034233 10.1109/CVPR.2019.00730 10.1007/978-3-030-01225-0_30 10.1109/CVPR42600.2020.00648 10.1109/ICCV.2019.00844 10.1007/978-3-030-01231-1_17 10.1109/TPAMI.2019.2928540 10.1609/aaai.v34i07.7000 10.1109/CVPR.2017.389 10.1109/ICCV.2019.00063 10.1109/CVPR.2019.00954 10.1109/ICCV.2015.133 10.1109/ICCV.2019.00674 10.1145/3123266.3123279 10.1109/ICCV.2017.405 10.1109/CVPR.2016.139 10.1109/TIP.2018.2874313 10.1109/TIP.2019.2946975 10.1109/CVPR.2016.124 10.1007/978-3-319-46484-8_48 10.1016/j.patcog.2019.06.006 10.1109/TCSVT.2018.2873599 10.1109/TIP.2018.2818438 10.1109/CVPR.2018.00117 10.1109/CVPR.2016.151 10.1109/CVPR.2015.7298682 10.1109/CVPR.2015.7298664 10.1109/CVPR.2018.00129 10.1109/CVPR.2018.00535 10.1007/978-3-030-01246-5_45 10.1109/ICCV.2019.00374 10.1109/TPAMI.2012.191 10.1109/ICCV.2017.349 10.1109/ICCV.2017.94 10.1109/CVPR.2016.149 10.1109/ICCV.2017.427 10.1109/TCSVT.2018.2872503 10.1007/978-3-030-01264-9_25 10.1007/978-3-030-01270-0_44 10.1109/TCSVT.2017.2734740 10.1007/978-3-030-01225-0_23 10.1109/TPAMI.2019.2942030 10.1109/CVPR.2018.00226 10.1109/CVPR.2018.00051 10.1007/978-3-030-01240-3_40 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3061412 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 171 |
ExternalDocumentID | 10_1109_TCSVT_2021_3061412 9360793 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People’s Republic of China grantid: 2018AAA0102003 funderid: 10.13039/501100002855 – fundername: National Natural Science Foundation of China grantid: 61976040; U19B2039 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-f04e446696d46b71ff6ac85949a70d370086241ac811a76b06ff012e2cf3ed543 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 13:39:23 EDT 2025 Tue Jul 01 00:41:15 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Wed Aug 27 03:03:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-f04e446696d46b71ff6ac85949a70d370086241ac811a76b06ff012e2cf3ed543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9916-7377 0000-0001-6915-8736 0000-0003-1712-6083 |
PQID | 2619023251 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9360793 crossref_citationtrail_10_1109_TCSVT_2021_3061412 crossref_primary_10_1109_TCSVT_2021_3061412 proquest_journals_2619023251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref12 ref56 ref59 Kingma (ref27) 2014 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref19 ref18 Ge (ref13) ref51 ref50 ref46 ref45 Srivastava (ref47) 2014; 15 ref48 ref42 ref41 ref44 ref43 Yao (ref65) 2017 He (ref20) 2018 ref49 ref7 ref4 Yu (ref66) 2017 ref3 ref6 ref5 Faghri (ref9) 2017 ref40 Hermans (ref21) 2017 ref80 ref35 ref79 Chen (ref14) 2016 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Ghiasi (ref15) 2018 ref71 ref70 ref73 ref72 Zheng (ref74) 2016 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref64 ref63 ref22 ref28 ref29 ref60 DeVries (ref8) 2017 Goyal (ref16) 2017 ref62 ref61 |
References_xml | – ident: ref46 doi: 10.1016/j.patcog.2015.04.005 – ident: ref38 doi: 10.1007/978-3-319-48881-3_2 – volume-title: arXiv:1711.08106 year: 2017 ident: ref66 article-title: The devil is in the middle: Exploiting mid-level representations for cross-domain instance matching – ident: ref32 doi: 10.1109/TPAMI.2018.2858826 – ident: ref6 doi: 10.1109/CVPR.2009.5206848 – ident: ref42 doi: 10.1109/TIP.2019.2908065 – start-page: 1230 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS) ident: ref13 article-title: FD-GAN: Pose-guided feature distilling GAN for robust person re-identification – ident: ref59 doi: 10.1109/ICCV.2019.00386 – ident: ref36 doi: 10.1109/TPAMI.2018.2848925 – ident: ref19 doi: 10.1109/CVPR.2018.00739 – volume-title: arXiv:1810.12890 year: 2018 ident: ref15 article-title: DropBlock: A regularization method for convolutional networks – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref47 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref58 doi: 10.1109/CVPR.2019.00148 – ident: ref62 doi: 10.1109/CVPR.2018.00225 – ident: ref29 doi: 10.1109/CVPR.2018.00243 – ident: ref24 doi: 10.1109/ICCV.2019.00380 – ident: ref30 doi: 10.1109/CVPR.2015.7298832 – ident: ref57 doi: 10.1109/ICCV.2015.531 – ident: ref28 doi: 10.1109/CVPR.2014.27 – volume-title: arXiv:1611.05244 year: 2016 ident: ref14 article-title: Deep transfer learning for person re-identification – ident: ref80 doi: 10.1109/ICCV.2019.00379 – ident: ref69 doi: 10.1109/CVPR.2017.103 – ident: ref41 doi: 10.1109/ICCV.2019.00813 – ident: ref61 doi: 10.1109/TPAMI.2021.3050918 – ident: ref18 doi: 10.1109/CVPR.2016.90 – ident: ref7 doi: 10.1109/CVPR.2018.00110 – ident: ref39 doi: 10.1109/TPAMI.2020.3034233 – ident: ref3 doi: 10.1109/CVPR.2019.00730 – ident: ref50 doi: 10.1007/978-3-030-01225-0_30 – ident: ref54 doi: 10.1109/CVPR42600.2020.00648 – ident: ref1 doi: 10.1109/ICCV.2019.00844 – ident: ref12 doi: 10.1007/978-3-030-01231-1_17 – ident: ref23 doi: 10.1109/TPAMI.2019.2928540 – ident: ref76 doi: 10.1609/aaai.v34i07.7000 – ident: ref75 doi: 10.1109/CVPR.2017.389 – ident: ref35 doi: 10.1109/ICCV.2019.00063 – ident: ref40 doi: 10.1109/CVPR.2019.00954 – ident: ref73 doi: 10.1109/ICCV.2015.133 – ident: ref10 doi: 10.1109/ICCV.2019.00674 – volume-title: arXiv:1707.00798 year: 2017 ident: ref65 article-title: Deep representation learning with part loss for person re-identification – ident: ref56 doi: 10.1145/3123266.3123279 – ident: ref72 doi: 10.1109/ICCV.2017.405 – ident: ref68 doi: 10.1109/CVPR.2016.139 – ident: ref77 doi: 10.1109/TIP.2018.2874313 – ident: ref55 doi: 10.1109/TIP.2019.2946975 – ident: ref34 doi: 10.1109/CVPR.2016.124 – ident: ref52 doi: 10.1007/978-3-319-46484-8_48 – volume-title: arXiv:1810.07399 year: 2018 ident: ref20 article-title: Recognizing partial biometric patterns – ident: ref33 doi: 10.1016/j.patcog.2019.06.006 – ident: ref71 doi: 10.1109/TCSVT.2018.2873599 – ident: ref11 doi: 10.1109/TIP.2018.2818438 – volume-title: arXiv:1706.02677 year: 2017 ident: ref16 article-title: Accurate, large minibatch SGD: Training ImageNet in 1 hour – ident: ref25 doi: 10.1109/CVPR.2018.00117 – ident: ref4 doi: 10.1109/CVPR.2016.151 – ident: ref44 doi: 10.1109/CVPR.2015.7298682 – ident: ref51 doi: 10.1109/CVPR.2015.7298664 – ident: ref5 doi: 10.1109/CVPR.2018.00129 – ident: ref22 doi: 10.1109/CVPR.2018.00535 – ident: ref26 doi: 10.1007/978-3-030-01246-5_45 – ident: ref17 doi: 10.1109/ICCV.2019.00374 – ident: ref31 doi: 10.1109/TPAMI.2012.191 – ident: ref70 doi: 10.1109/ICCV.2017.349 – ident: ref67 doi: 10.1109/ICCV.2017.94 – ident: ref2 doi: 10.1109/CVPR.2016.149 – ident: ref48 doi: 10.1109/ICCV.2017.427 – volume-title: arXiv:1412.6980 year: 2014 ident: ref27 article-title: Adam: A method for stochastic optimization – ident: ref45 doi: 10.1109/TCSVT.2018.2872503 – ident: ref49 doi: 10.1007/978-3-030-01264-9_25 – ident: ref64 doi: 10.1007/978-3-030-01270-0_44 – ident: ref78 doi: 10.1109/TCSVT.2017.2734740 – ident: ref53 doi: 10.1007/978-3-030-01225-0_23 – ident: ref60 doi: 10.1109/TPAMI.2019.2942030 – ident: ref63 doi: 10.1109/CVPR.2018.00226 – volume-title: arXiv:1707.05612 year: 2017 ident: ref9 article-title: VSE++: Improving visual-semantic embeddings with hard negatives – ident: ref79 doi: 10.1609/aaai.v34i07.7000 – ident: ref43 doi: 10.1109/CVPR.2018.00051 – ident: ref37 doi: 10.1007/978-3-030-01240-3_40 – volume-title: arXiv:1610.02984 year: 2016 ident: ref74 article-title: Person re-identification: Past, present and future – volume-title: arXiv:1708.04552 year: 2017 ident: ref8 article-title: Improved regularization of convolutional neural networks with cutout – volume-title: arXiv:1703.07737 year: 2017 ident: ref21 article-title: In defense of the triplet loss for person re-identification |
SSID | ssj0014847 |
Score | 2.609821 |
Snippet | In this paper, we propose a novel person Re-ID model, Consecutive Batch DropBlock Network (CBDB-Net), to capture the attentive and robust person descriptor for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 160 |
SubjectTerms | Ablation Biological system modeling Datasets dropout strategy Feature maps Image management Image retrieval incomplete person descriptor Integrated circuit modeling Measurement Modules Person Re-ID Robustness Task analysis Tensors Testing Training triple ranking |
Title | Incomplete Descriptor Mining With Elastic Loss for Person Re-Identification |
URI | https://ieeexplore.ieee.org/document/9360793 https://www.proquest.com/docview/2619023251 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KQdukNK0adoc0TQ0AUMIxuNWtWkiEGhDo7vw63HSh3gJcauqpErjxP6-OLYBDnymI8GFojKPfcpVkVDkWYJqUUimeBIybYOTh5dicMvPHqKHOThqY2G01u7ymfbso_PlFxM1s0dlxzIUNp_bPMwjcatitVqPAU9cMTGEC4wmaMeaABlfHo96N3cjpIIB80JLgFjwxQi5qio_VLGzL6crMGxGVl0refZmZe6p929JG_879FVYroEmOalWxhrM6fE6LH1KP9iBc1QO9kY54maC_NPpj8mUDF3NCHL_VD6SPoJr_AC5wN8giG_JlUPo5FrTKsTX1Gd-G3B72h_1BrQurkBVIKOSGp9r68uVouAij5kxIlNJJLnMYr8IY8d1OMN3jGWxyH1hDBozHSgT6iLi4SYsjCdjvQVExmHkZ5JnPFJcMCODPODKpqbTYSYD0wXWzHaq6szjtgDGS-oYiC9TJ6HUSiitJdSFw7bPa5V348_WHTvlbct6truw2wg1rbfmW2opIwIVxHXbv_fagcXAxji4c5ZdWCinM72HyKPM992S-wDxztJI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYzxy4QUbTpmlzRIhpwIYQbMCtatNEINCGRnfh1-Ok3cRLiFtVJVUaJ_b3xbENcOAxHQouFJVZ5FGu8pgizxJUi1wyxeOAaRuc3L0S7T6_eAgfanA0jYXRWrvLZ7ppH50vPx-qsT0qO5aBsPncZmAO7X7Iymitqc-Ax66cGAIGRmO0ZJMQGU8e905v73pIBn3WDCwFYv4XM-TqqvxQxs7CtJahOxlbebHkuTkusqZ6_5a28b-DX4GlCmqSk3JtrEJND9Zg8VMCwjpconqwd8oRORNkoE6DDEek66pGkPun4pGcIbzGD5AO_gZBhEuuHUYnN5qWQb6mOvVbh37rrHfaplV5Bap8GRbUeFxbb64UORdZxIwRqYpDyWUaeXkQObbDGb5jLI1E5glj0JxpX5lA5yEPNmB2MBzoTSAyCkIvlTzloeKCGelnPlc2OZ0OUumbBrDJbCeqyj1uS2C8JI6DeDJxEkqshJJKQg04nPZ5LTNv_Nm6bqd82rKa7QbsTISaVJvzLbGkEaEKIrut33vtw3y71-0knfOry21Y8G3Egzt12YHZYjTWu4hDimzPLb8PF6PVkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incomplete+Descriptor+Mining+With+Elastic+Loss+for+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Tan%2C+Hongchen&rft.au=Liu%2C+Xiuping&rft.au=Bian%2C+Yuhao&rft.au=Wang%2C+Huasheng&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=1&rft.spage=160&rft_id=info:doi/10.1109%2FTCSVT.2021.3061412&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |