Real-Time Scene-Aware LiDAR Point Cloud Compression Using Semantic Prior Representation
Existing LiDAR point cloud compression (PCC) methods tend to treat compression as a fidelity issue, without sufficiently addressing its machine perception aspect. The latter issue is often encountered by the decoder agents that might aim to conduct scene-understanding related tasks only, such as com...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5623 - 5637 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing LiDAR point cloud compression (PCC) methods tend to treat compression as a fidelity issue, without sufficiently addressing its machine perception aspect. The latter issue is often encountered by the decoder agents that might aim to conduct scene-understanding related tasks only, such as computing the localization information. For tackling this challenge, a novel LiDAR PCC system is proposed to compress the point cloud geometry, which contains a back channel for allowing the decoder to initiate such request to the encoder. The key success of our PCC method lies in our proposed semantic prior representation (SPR) and its lossy encoding algorithm with variable precision to generate the final bitstream; the entire process is fast and achieves real-time performance. Note that our SPR is a compact and effective representation of three-dimensional (3D) input point clouds, and it consists of labels, predictions , and residuals . These information can be generated by first exploiting a scene-aware object segmentation to a set of 2D range images (frames) individually, which were generated from the 3D point clouds via a projection process. Based on the generated labels, the pixels associated with those moving objects are considered as noisy information and should be removed for not only saving bit budget on transmission but also, most importantly, improving the accuracy of localization computed at the decoder. Experimental results conducted on the commonly-used test dataset have shown that our proposed system outperforms the MPEG's G-PCC (TMC13-v14.0) in a large bitrate range. In fact, the performance gap will become even larger when more and/or large moving objects are involved in the input point clouds. |
---|---|
AbstractList | Existing LiDAR point cloud compression (PCC) methods tend to treat compression as a fidelity issue, without sufficiently addressing its machine perception aspect. The latter issue is often encountered by the decoder agents that might aim to conduct scene-understanding related tasks only, such as computing the localization information. For tackling this challenge, a novel LiDAR PCC system is proposed to compress the point cloud geometry, which contains a back channel for allowing the decoder to initiate such request to the encoder. The key success of our PCC method lies in our proposed semantic prior representation (SPR) and its lossy encoding algorithm with variable precision to generate the final bitstream; the entire process is fast and achieves real-time performance. Note that our SPR is a compact and effective representation of three-dimensional (3D) input point clouds, and it consists of labels, predictions , and residuals . These information can be generated by first exploiting a scene-aware object segmentation to a set of 2D range images (frames) individually, which were generated from the 3D point clouds via a projection process. Based on the generated labels, the pixels associated with those moving objects are considered as noisy information and should be removed for not only saving bit budget on transmission but also, most importantly, improving the accuracy of localization computed at the decoder. Experimental results conducted on the commonly-used test dataset have shown that our proposed system outperforms the MPEG's G-PCC (TMC13-v14.0) in a large bitrate range. In fact, the performance gap will become even larger when more and/or large moving objects are involved in the input point clouds. |
Author | Zhao, Lili Yin, Qian Ma, Kai-Kuang Chen, Jianwen Liu, Zhili |
Author_xml | – sequence: 1 givenname: Lili orcidid: 0000-0002-5182-7230 surname: Zhao fullname: Zhao, Lili email: zllmail@foxmail.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Kai-Kuang orcidid: 0000-0003-2932-5709 surname: Ma fullname: Ma, Kai-Kuang email: ekkma@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Zhili surname: Liu fullname: Liu, Zhili email: liuzhili@yihang.ai organization: Yihang Intellitech Company Ltd., Beijing, China – sequence: 4 givenname: Qian surname: Yin fullname: Yin, Qian email: yinqian_xixi@163.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Jianwen orcidid: 0000-0002-5987-148X surname: Chen fullname: Chen, Jianwen email: jianwen.chen@ieee.org organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China |
BookMark | eNp9kE1LAzEQhoMo2Fb_gF4Cnrdmssl-HMv6CQVLu9Xjku5OJWU3qckW8d-b2uLBg6cM5HlmXt4hOTXWICFXwMYALL8ti8VrOeaM83EMQkqIT8gApMwizpk8DTOTEGUc5DkZer9hDEQm0gF5m6Nqo1J3SBc1Gowmn8ohneq7yZzOrDY9LVq7a2hhu61D77U1dOm1eacL7JTpdU1nTltH57j_R9OrPjAX5GytWo-Xx3dElg_3ZfEUTV8en4vJNKp5LvsI1-kqAdbkMm1kHgsEpZoQFVnCV0rAKsWAYLZKsyQNnBRNIwQwkSYq5Id4RG4Oe7fOfuzQ99XG7pwJJyue5KlMcinjQGUHqnbWe4frqtaHnL1Tuq2AVfsaq58aq32N1bHGoPI_6tbpTrmv_6Xrg6QR8VfIk5wB8Pgbqzp_Yg |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TITS_2024_3409907 crossref_primary_10_1145_3715916 crossref_primary_10_3390_s24103185 crossref_primary_10_3390_s23052398 crossref_primary_10_1109_TCSVT_2022_3196550 crossref_primary_10_3390_infrastructures7040049 crossref_primary_10_1109_TCSVT_2023_3276788 crossref_primary_10_1109_TBC_2022_3162406 crossref_primary_10_3390_s25061660 crossref_primary_10_1109_TCSVT_2023_3309902 crossref_primary_10_1109_TCSVT_2022_3211084 crossref_primary_10_1109_TCSVT_2024_3496489 |
Cites_doi | 10.1109/TCSVT.2021.3069838 10.1109/TCSVT.2021.3098832 10.1109/TIP.2019.2936738 10.1109/TCSVT.2021.3100279 10.1109/TIP.2019.2957853 10.1109/TRO.2017.2705103 10.1109/ICRA.2019.8793585 10.1109/ICCV.2019.00939 10.1109/LSP.2020.2965322 10.1109/TCSVT.2021.3101807 10.1109/IROS40897.2019.8967704 10.1109/ICRA.2019.8794264 10.1109/TBC.2019.2957652 10.1109/VCIP47243.2019.8965783 10.1109/TCSVT.2020.3026046 10.1109/LRA.2019.2900747 10.1109/IROS40897.2019.8967762 10.1109/TMM.2018.2859591 10.1109/DCC.2018.00067 10.1109/34.88573 10.1109/CVPR.2012.6248074 10.1109/DCC47342.2020.00015 10.1109/IROS.2006.282246 10.1109/ICME.2018.8486481 10.1109/LRA.2020.3010207 10.1109/CVPR.2018.00938 10.1109/CVPR.2017.691 10.1109/TIP.2017.2707807 10.1109/3DV.2018.00017 10.1109/TPAMI.2019.2926463 10.1109/ICIP.2019.8803690 10.1109/ACCESS.2019.2935253 10.1109/DCC47342.2020.00082 10.1109/TCSVT.2020.3015901 10.1109/IROS.2016.7759050 10.1109/ICRA.2011.5980567 10.1109/TCSVT.2021.3051377 10.1109/ICRA.2012.6224647 10.1109/TITS.2019.2956066 10.1109/MRA.2006.1638022 10.1109/TPAMI.2014.2316828 10.1145/3177853 10.1109/VCIP.2018.8698661 10.1109/TCSVT.2016.2543039 10.1177/0278364913491297 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3145513 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 5637 |
ExternalDocumentID | 10_1109_TCSVT_2022_3145513 9690112 |
Genre | orig-research |
GrantInformation_xml | – fundername: Nanyang Technological University & Wallenberg AI, Autonomous Systems and Software Program Joint Project (NTU-WASP) Joint Project grantid: M4082184 funderid: 10.13039/501100001475 – fundername: Sichuan Science and Technology Program grantid: 2019YJ0190; 2020YFG0149 funderid: 10.13039/100012542 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-ef7b610d957d5934e1aad051e062ba41b7eef7e8b786710d54dd4410476a84713 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 15:46:22 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Jul 01 00:41:17 EDT 2025 Wed Aug 27 02:23:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-ef7b610d957d5934e1aad051e062ba41b7eef7e8b786710d54dd4410476a84713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5182-7230 0000-0002-5987-148X 0000-0003-2932-5709 |
PQID | 2697569553 |
PQPubID | 85433 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2022_3145513 proquest_journals_2697569553 ieee_primary_9690112 crossref_primary_10_1109_TCSVT_2022_3145513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 (ref5) 2018 ref11 ref10 ref17 ref16 ref19 ref18 Grupp (ref58) 2017 (ref2) 2017 (ref37) 2021 ref51 ref50 ref46 ref48 (ref39) 2020 ref47 ref42 ref41 ref44 (ref45) 2019 ref43 ref49 ref8 ref7 ref9 ref6 ref40 Zhou (ref55) 2018 ref35 ref34 (ref38) 2020 ref36 ref31 ref30 ref33 ref32 ref1 (ref25) 2020 (ref54) 2021 (ref4) 2017 ref24 ref23 ref26 (ref52) 2021 ref20 ref22 ref21 ref28 ref27 ref29 (ref3) 2017 |
References_xml | – year: 2018 ident: ref55 article-title: Open3D: A modern library for 3D data processing publication-title: arXiv:1801.09847 – ident: ref14 doi: 10.1109/TCSVT.2021.3069838 – ident: ref10 doi: 10.1109/TCSVT.2021.3098832 – ident: ref12 doi: 10.1109/TIP.2019.2936738 – ident: ref8 doi: 10.1109/TCSVT.2021.3100279 – ident: ref7 doi: 10.1109/TIP.2019.2957853 – ident: ref56 doi: 10.1109/TRO.2017.2705103 – volume-title: Point Cloud Compression Test Model for Category 1 V0 year: 2017 ident: ref2 – ident: ref47 doi: 10.1109/ICRA.2019.8793585 – ident: ref44 doi: 10.1109/ICCV.2019.00939 – ident: ref16 doi: 10.1109/LSP.2020.2965322 – ident: ref6 doi: 10.1109/TCSVT.2021.3101807 – ident: ref24 doi: 10.1109/IROS40897.2019.8967704 – ident: ref21 doi: 10.1109/ICRA.2019.8794264 – volume-title: evo: Python Package for the Evaluation of Odometry and SLAM year: 2017 ident: ref58 – ident: ref15 doi: 10.1109/TBC.2019.2957652 – ident: ref35 doi: 10.1109/VCIP47243.2019.8965783 – ident: ref11 doi: 10.1109/TCSVT.2020.3026046 – volume-title: Point Cloud Compression Category 13 Reference Software, TMC 13 Vesion 14.0 year: 2021 ident: ref52 – ident: ref18 doi: 10.1109/LRA.2019.2900747 – volume-title: FPZIP Version 1.3.0 year: 2019 ident: ref45 – ident: ref43 doi: 10.1109/IROS40897.2019.8967762 – ident: ref17 doi: 10.1109/TMM.2018.2859591 – ident: ref32 doi: 10.1109/DCC.2018.00067 – ident: ref57 doi: 10.1109/34.88573 – volume-title: An Extremely Fast Lossless Compression Algorithm year: 2020 ident: ref38 – ident: ref51 doi: 10.1109/CVPR.2012.6248074 – ident: ref29 doi: 10.1109/DCC47342.2020.00015 – ident: ref40 doi: 10.1109/IROS.2006.282246 – ident: ref28 doi: 10.1109/ICME.2018.8486481 – ident: ref36 doi: 10.1109/LRA.2020.3010207 – ident: ref41 doi: 10.1109/CVPR.2018.00938 – volume-title: PCC Test Model Category 2 V0 year: 2017 ident: ref3 – volume-title: The bzip2 Compression Program year: 2020 ident: ref39 – ident: ref46 doi: 10.1109/CVPR.2017.691 – ident: ref31 doi: 10.1109/TIP.2017.2707807 – ident: ref50 doi: 10.1109/3DV.2018.00017 – volume-title: G-PCC TMC13v14 Performance Evaluation and Anchor Results year: 2021 ident: ref54 – ident: ref48 doi: 10.1109/TPAMI.2019.2926463 – ident: ref34 doi: 10.1109/ICIP.2019.8803690 – ident: ref20 doi: 10.1109/ACCESS.2019.2935253 – ident: ref30 doi: 10.1109/DCC47342.2020.00082 – volume-title: PCC Test Model Category 3 V0 year: 2017 ident: ref4 – ident: ref13 doi: 10.1109/TCSVT.2020.3015901 – ident: ref42 doi: 10.1109/IROS.2016.7759050 – ident: ref53 doi: 10.1109/ICRA.2011.5980567 – ident: ref9 doi: 10.1109/TCSVT.2021.3051377 – ident: ref27 doi: 10.1109/ICRA.2012.6224647 – volume-title: G-PCC Codec Description year: 2021 ident: ref37 – ident: ref19 doi: 10.1109/TITS.2019.2956066 – ident: ref22 doi: 10.1109/MRA.2006.1638022 – ident: ref49 doi: 10.1109/TPAMI.2014.2316828 – ident: ref23 doi: 10.1145/3177853 – volume-title: PCC Test Model Category 13 V2 year: 2018 ident: ref5 – ident: ref33 doi: 10.1109/VCIP.2018.8698661 – ident: ref1 doi: 10.1109/TCSVT.2016.2543039 – volume-title: Common Test Conditions for PCC year: 2020 ident: ref25 – ident: ref26 doi: 10.1177/0278364913491297 |
SSID | ssj0014847 |
Score | 2.5173936 |
Snippet | Existing LiDAR point cloud compression (PCC) methods tend to treat compression as a fidelity issue, without sufficiently addressing its machine perception... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5623 |
SubjectTerms | Algorithms Cloud computing Coders Encoding Geometry Image coding Image segmentation Labels Laser radar LiDAR Localization Object motion Point cloud compression Real time Real-time systems Representations Semantics Three dimensional models Three-dimensional displays |
Title | Real-Time Scene-Aware LiDAR Point Cloud Compression Using Semantic Prior Representation |
URI | https://ieeexplore.ieee.org/document/9690112 https://www.proquest.com/docview/2697569553 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTnDgjRgMlAM3yOgjTZvjNJgQYmjaxuNWpY0nTYwWjU5I_HqctJt4CXHrwakiO7U_N7Y_Qk5SNxFc-op5GMwwQYl8pkD7LBVagUp0wJXpRu7diqs7fv0YPNbI2bIXBgBs8Rm0zKO9y9d5Oje_ys6lYU8ylMIrmLiVvVrLGwMeWTIxhAsuizCOLRpkHHk-6gzvR5gKeh5mqNwwmnwJQpZV5YcrtvGlu0F6i52VZSVPrXmRtNL3b0Mb_7v1TbJeAU3aLk_GFqlBtk3WPo0f3CEPA0SJzDSB0GGKPo-139QM6M3koj2g_XySFbQzzeeaGqdR1stm1NYY0CE8o0kmKe3PJvmMDmw9bdXGlO2Su-7lqHPFKqIFlnoyKBiMwwRhlJZBqAPpc3CV0qhIcISXKO4mIaAIRElopuE5aECtEUY5PBTKRDd_j9SzPIN9QsdcS0CXyc0Fn0BMHCEmENqgQs_x-bhB3IXm47SaQm7IMKaxzUYcGVtrxcZacWWtBjldrnkpZ3D8Kb1j1L-UrDTfIM2FgePqM32NPSHDQMgg8A9-X3VIVs27y4q_JqkXszkcIQopkmN7_D4AzMfXLA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOvAoitMAe4IQ2tde7tvfAIUpbpTStqiSF3szaO5GitjZKHVX0t_BX-G_Mrp2oPMStEjcfdv3Y-TTzjecF8LYI81jqyHBBxowclDTiBm3Ei9gaNLlV0rhq5MOjeHAiP56q0zX4vqqFQUSffIZdd-lj-bYqFu5X2bZ205NC0aZQHuC3K3LQLj_s75A03wmxtzvpD3g7Q4AXQqua4zTJiSFYrRKrdCQxNMYSEDGIRW5kmCdISzDNE9foLaB3s5YYQiCT2DjFHdF978Bd4hlKNNVhqxiFTP34MiIoIU_Jci5LcgK9PemPP03I-RSCfGLpZqj8Yvb8HJc_lL-3aHuP4MfyLJpElrPuos67xfVvbSL_18N6DA9bKs16DfafwBqWT-HBjQaLG_B5RDyYuzIXNi5Iq_PelZkjG852eiN2XM3KmvXPq4VlTi02GcEl81kUbIwXBLpZwY7ns2rORj5juC3UKp_Bya182XNYL6sSXwCbSquRjIJ0IcyYWH9KrCe2jveKIJLTDoRLSWdF22fdjfs4z7y_FejMoyNz6MhadHTg_WrP16bLyD9Xbzhxr1a2ku7A1hJQWauILjMR60TFWqno5d93vYF7g8nhMBvuHx1swn33nCa_cQvW6_kCXxHnqvPXHvoMvtw2fH4CUSEzTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Scene-Aware+LiDAR+Point+Cloud+Compression+Using+Semantic+Prior+Representation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhao%2C+Lili&rft.au=Ma%2C+Kai-Kuang&rft.au=Liu%2C+Zhili&rft.au=Yin%2C+Qian&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=8&rft.spage=5623&rft.epage=5637&rft_id=info:doi/10.1109%2FTCSVT.2022.3145513&rft.externalDocID=9690112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |