Sparse Discriminative Multimanifold Grassmannian Analysis for Face Recognition With Image Sets
We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity co...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 25; no. 10; pp. 1599 - 1611 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1051-8215 1558-2205 |
DOI | 10.1109/TCSVT.2014.2367357 |
Cover
Loading…
Abstract | We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity constrained hierarchical agglomerative clustering (LC-HAC) method is first employed to partition each image set into several local linear models (LLMs), each depicted as a point on the Grassmannian manifold using positive definite Gaussian kernel function. In contrast to the standard discriminative learning algorithms that assume that all data are sampled from one single manifold and only one projection is derived for feature extraction, we model all the LLMs of each person as a manifold and present SDMMGA model to seek multiple projection matrices, which can uncover the geometrical information of different manifolds. Aiming to better separate manifold margins in the low-dimensional feature space, we introduce the ℓ 1 and ℓ 2 norms penalty in the SDMMGA objective function. An efficient regression method is presented for finding the most discriminative features. Comprehensive experiments on three standard data sets show that our method consistently outperforms the state of the art. |
---|---|
AbstractList | We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity constrained hierarchical agglomerative clustering (LC-HAC) method is first employed to partition each image set into several local linear models (LLMs), each depicted as a point on the Grassmannian manifold using positive definite Gaussian kernel function. In contrast to the standard discriminative learning algorithms that assume that all data are sampled from one single manifold and only one projection is derived for feature extraction, we model all the LLMs of each person as a manifold and present SDMMGA model to seek multiple projection matrices, which can uncover the geometrical information of different manifolds. Aiming to better separate manifold margins in the low-dimensional feature space, we introduce the [Formula Omitted] and [Formula Omitted] norms penalty in the SDMMGA objective function. An efficient regression method is presented for finding the most discriminative features. Comprehensive experiments on three standard data sets show that our method consistently outperforms the state of the art. We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity constrained hierarchical agglomerative clustering (LC-HAC) method is first employed to partition each image set into several local linear models (LLMs), each depicted as a point on the Grassmannian manifold using positive definite Gaussian kernel function. In contrast to the standard discriminative learning algorithms that assume that all data are sampled from one single manifold and only one projection is derived for feature extraction, we model all the LLMs of each person as a manifold and present SDMMGA model to seek multiple projection matrices, which can uncover the geometrical information of different manifolds. Aiming to better separate manifold margins in the low-dimensional feature space, we introduce the ℓ 1 and ℓ 2 norms penalty in the SDMMGA objective function. An efficient regression method is presented for finding the most discriminative features. Comprehensive experiments on three standard data sets show that our method consistently outperforms the state of the art. |
Author | Haifeng Hu |
Author_xml | – sequence: 1 givenname: Haifeng surname: Hu fullname: Hu, Haifeng |
BookMark | eNp9kEFLAzEQhYNU0Kp_QC8Bz1uT7GaTHKXaWlAEW_XmMu5ONLLN1iQV_PdurXjw4Glm4H0z896QDHznkZBjzkacM3O2GM8fFiPBeDESealyqXbIPpdSZ0IwOeh7JnmmBZd7ZBjjG-uVulD75Gm-ghCRXrhYB7d0HpL7QHqzbpNbgne2axs6DRBjP3kHnp57aD-ji9R2gU6gRnqHdffiXXKdp48uvdLZEl6QzjHFQ7JroY149FMPyP3kcjG-yq5vp7Px-XVWCyNThg3IshTPDJpCImjNDKA0mmmBuQJAYLZkpaotV6jQKqiNMEzaApq8sTY_IKfbvavQva8xpuqtW4f-01hxJQw3XGjZq8RWVYcuxoC2WvWeIXxWnFWbHKvvHKtNjtVPjj2k_0C1S7AxmwK49n_0ZIs6RPy9VZpCi0LmX250hH0 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2894393 crossref_primary_10_1186_s13638_020_01731_3 crossref_primary_10_1109_TCSVT_2019_2903563 crossref_primary_10_1016_j_jvcir_2018_02_004 crossref_primary_10_1016_j_eswa_2019_06_062 crossref_primary_10_1016_j_ins_2019_12_041 crossref_primary_10_1007_s11042_018_6239_3 crossref_primary_10_1007_s12559_016_9403_y crossref_primary_10_1016_j_jvcir_2018_05_016 crossref_primary_10_1016_j_neucom_2018_06_077 |
Cites_doi | 10.1007/978-3-540-76390-1_46 10.5244/C.20.58 10.1109/TPAMI.2007.1037 10.1111/j.1467-9868.2005.00503.x 10.1109/34.598228 10.1109/TNN.2007.901277 10.1109/TPAMI.2011.283 10.1109/AFGR.2000.840643 10.1016/j.patrec.2009.06.002 10.1007/11527923_8 10.1007/s10994-008-5084-4 10.1109/CVPR.2005.151 10.1145/1390156.1390204 10.1109/FG.2013.6553727 10.1109/CVPR.2013.17 10.1093/biomet/28.3-4.321 10.1109/CVPR.2010.5539965 10.1126/science.290.5500.2323 10.1145/1553374.1553432 10.1109/TIP.2012.2206039 10.1109/CVPR.2011.5995564 10.1109/CVPR.2007.383396 10.1023/B:VISI.0000013087.49260.fb 10.1109/TSMCB.2006.888925 10.1109/TPAMI.2012.70 10.1109/CVPR.2011.5995566 10.1109/TPAMI.2008.79 10.1109/AFGR.1998.670968 10.1016/j.patcog.2006.12.030 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2014.2367357 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1611 |
ExternalDocumentID | 3855428521 10_1109_TCSVT_2014_2367357 6948245 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China – fundername: National Science Foundation of China grantid: 60802069; 61273270 – fundername: Science and Technology Program of Guangzhou, China grantid: 2014Y2-00165; 2014J4100114; 2014J4100095 – fundername: Natural Science Foundation of Guangdong Province grantid: 2014A030313173 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-eda5662b0ad45ea8809ae598082e37aaea0f6067cf17e7ef7ac92905f4ad3dff3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:12:29 EDT 2025 Tue Jul 01 00:41:07 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Tue Aug 26 16:40:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Dimensionality reduction sparse discriminative multimanifold Grassmannian analysis (SDMMGA) face recognition with image sets (FRISs) manifold learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-eda5662b0ad45ea8809ae598082e37aaea0f6067cf17e7ef7ac92905f4ad3dff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1729191285 |
PQPubID | 85433 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2014_2367357 ieee_primary_6948245 crossref_primary_10_1109_TCSVT_2014_2367357 proquest_journals_1729191285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Oct. 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-Oct. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref37 ref15 nishiyama (ref21) 2005 ref36 ref14 lu (ref41) 2008; 19 gross (ref31) 2001 ref33 ref32 ref10 cui (ref12) 2012 wang (ref29) 2008 ref2 ref1 ref17 oja (ref20) 1983 ref38 wang (ref11) 2012 ref16 wang (ref4) 2009 ref18 fan (ref9) 2006 fukui (ref26) 2006 wolf (ref25) 2003; 4 wagstaff (ref35) 2001 lee (ref30) 2003 ref24 ref45 ref23 fukui (ref19) 2003 ref42 ref22 ref44 ref43 ref27 ref8 ref7 shakhnarovich (ref13) 2002 ref3 ref6 ref5 ref40 li (ref28) 2009 lui (ref39) 2008 |
References_xml | – start-page: 44 year: 2008 ident: ref39 article-title: Grassmann registration manifolds for face recognition publication-title: Proc 10th ECCV – ident: ref27 doi: 10.1007/978-3-540-76390-1_46 – ident: ref15 doi: 10.5244/C.20.58 – ident: ref2 doi: 10.1109/TPAMI.2007.1037 – ident: ref43 doi: 10.1111/j.1467-9868.2005.00503.x – start-page: 577 year: 2001 ident: ref35 article-title: Constrained K-means clustering with background knowledge publication-title: Proc 18th Int Conf Mach Learn – ident: ref1 doi: 10.1109/34.598228 – volume: 19 start-page: 18 year: 2008 ident: ref41 article-title: MPCA: Multilinear principal component analysis of tensor objects publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.901277 – ident: ref8 doi: 10.1109/TPAMI.2011.283 – ident: ref10 doi: 10.1109/AFGR.2000.840643 – ident: ref23 doi: 10.1016/j.patrec.2009.06.002 – start-page: 71 year: 2005 ident: ref21 article-title: Face recognition with the multiple constrained mutual subspace method publication-title: Proc Int Conf Audio-Video-Based Biometric Person Authentication doi: 10.1007/11527923_8 – start-page: 315 year: 2006 ident: ref26 article-title: A framework for 3D object recognition using the kernel constrained mutual subspace method publication-title: Proc Asian Conf Comput Vis – ident: ref36 doi: 10.1007/s10994-008-5084-4 – ident: ref14 doi: 10.1109/CVPR.2005.151 – ident: ref22 doi: 10.1145/1390156.1390204 – ident: ref24 doi: 10.1109/FG.2013.6553727 – ident: ref33 doi: 10.1109/CVPR.2013.17 – ident: ref17 doi: 10.1093/biomet/28.3-4.321 – ident: ref5 doi: 10.1109/CVPR.2010.5539965 – ident: ref34 doi: 10.1126/science.290.5500.2323 – ident: ref37 doi: 10.1145/1553374.1553432 – ident: ref3 doi: 10.1109/TIP.2012.2206039 – ident: ref6 doi: 10.1109/CVPR.2011.5995564 – ident: ref7 doi: 10.1109/CVPR.2007.383396 – start-page: 2626 year: 2012 ident: ref12 article-title: Image sets alignment for video-based face recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 192 year: 2003 ident: ref19 article-title: Face recognition using multi-viewpoint patterns for robot vision publication-title: Proc Int Symp Robot Res – start-page: 1 year: 2008 ident: ref29 article-title: Manifold-manifold distance with application to face recognition based on image set publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – year: 1983 ident: ref20 publication-title: Subspace Methods of Pattern Recognition – ident: ref45 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref42 doi: 10.1109/TSMCB.2006.888925 – year: 2001 ident: ref31 article-title: The CMU motion of body (MoBo) database – start-page: 313 year: 2003 ident: ref30 article-title: Video-based face recognition using probabilistic appearance manifolds publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref44 doi: 10.1109/TPAMI.2012.70 – ident: ref32 doi: 10.1109/CVPR.2011.5995566 – ident: ref40 doi: 10.1109/TPAMI.2008.79 – start-page: 851 year: 2002 ident: ref13 article-title: Face recognition from long-term observations publication-title: Proc 7th Eur Conf Comput Vis – ident: ref18 doi: 10.1109/AFGR.1998.670968 – ident: ref16 doi: 10.1016/j.patcog.2006.12.030 – start-page: 429 year: 2009 ident: ref4 article-title: Manifold discriminant analysis publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 1384 year: 2006 ident: ref9 article-title: Locally linear models on face appearance manifolds with application to dual-subspace based classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – volume: 4 start-page: 913 year: 2003 ident: ref25 article-title: Learning over sets using kernel principal angles publication-title: J Mach Learn Res – start-page: 323 year: 2009 ident: ref28 article-title: Image-set based face recognition using boosted global and local principal angles publication-title: Proc Asian Conf Comput Vis – start-page: 2496 year: 2012 ident: ref11 article-title: Covariance discriminative learning: A natural and efficient approach to image set classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref38 doi: 10.1145/1390156.1390204 |
SSID | ssj0014847 |
Score | 2.211861 |
Snippet | We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1599 |
SubjectTerms | Covariance matrices Data models dimensionality reduction Face Face recognition Face recognition with image sets Kernel Linear programming manifold learning Manifolds sparse discriminative multi-manifold Grassmannian analysis |
Title | Sparse Discriminative Multimanifold Grassmannian Analysis for Face Recognition With Image Sets |
URI | https://ieeexplore.ieee.org/document/6948245 https://www.proquest.com/docview/1729191285 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T-QwEB0BFVcAB5xYPk4u6CCLk9gkLhGwcEhQsMtHdZFjjwUCsgiyDb-esZOsEJzQdSlsy9KzZ97EM28AtrWKnSwFRlwhjwSSHSzLREd56ogtGGNU6ouTzy_2T6_E2a28nYHdaS0MIobkM-z7z_CWb8dm4n-V7e0rkSdCzsIsHbOmVmv6YiDy0EyM6EIc5eTHugIZrvZGh8Prkc_iEn2vV5Z6V_TBCYWuKl9McfAvg0U473bWpJU89Cd12Tdvn0Qb_3frS7DQEk120JyMnzCD1TL8-CA_uAJ_h88U1iI7uve2w-fEeNvHQk2ul8Vw40fLTl6IXj_5zka6Yp2ECSOqywbaILvsEpDGFbu5r-_YnyeyUGyI9esqXA2OR4enUdtvITKJknWEVhO5S0qurZCo6WYrjVLlxBIwzbRGzR3FO5lxcYYZukwbIldcOqFtap1Lf8FcNa5wDVhWxrHKpeFIAShHIj0JJpk1RmBiU7Q9iDsACtOKkfueGI9FCEq4KgJohQetaEHrwc50znMjxfHt6BWPwnRkC0APNjuci_a2vhZE4hTFrUku1_89awPmaW3ZJPFtwlz9MsEtIiN1-TucwncroNy6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Remg50A9ALNDiQ29tFiexSXysgO1CWQ7dpeVE5NhjsQKyCLIXfj1jJ1mhtqp6y8GWLT175k088wbgk1axk6XAiCvkkUCyg2WZ6ChPHbEFY4xKfXHy6Gx_eC5OLuTFEnxZ1MIgYkg-w77_DG_5dmbm_lfZ3r4SeSLkC3hJfl_Iplpr8WYg8tBOjAhDHOXkyboSGa72JgfjnxOfxyX6XrEs9c7omRsKfVX-MMbBwwzewKjbW5NYct2f12XfPP4m2_i_m38Lqy3VZF-bs_EOlrB6DyvPBAjX4HJ8R4EtssOptx4-K8ZbPxaqcr0whpvdWPbtngj2re9tpCvWiZgwIrtsoA2yH10K0qxiv6b1FTu-JRvFxlg_rMP54GhyMIzajguRSZSsI7Sa6F1Scm2FRE13W2mUKieegGmmNWruKOLJjIszzNBl2hC94tIJbVPrXLoBy9Wswk1gWRnHKpeGI4WgHIn2JJhk1hiBiU3R9iDuAChMK0fuu2LcFCEs4aoIoBUetKIFrQefF3PuGjGOf45e8ygsRrYA9GCnw7lo7-tDQTROUeSa5HLr77N24dVwMjotTo_Pvm_Da1pHNil9O7Bc38_xA1GTuvwYTuQT4WrgBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Discriminative+Multimanifold+Grassmannian+Analysis+for+Face+Recognition+With+Image+Sets&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Hu%2C+Haifeng&rft.date=2015-10-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=25&rft.issue=10&rft.spage=1599&rft.epage=1611&rft_id=info:doi/10.1109%2FTCSVT.2014.2367357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2014_2367357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |