Sparse Discriminative Multimanifold Grassmannian Analysis for Face Recognition With Image Sets

We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 25; no. 10; pp. 1599 - 1611
Main Author Hu, Haifeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2014.2367357

Cover

Loading…
Abstract We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity constrained hierarchical agglomerative clustering (LC-HAC) method is first employed to partition each image set into several local linear models (LLMs), each depicted as a point on the Grassmannian manifold using positive definite Gaussian kernel function. In contrast to the standard discriminative learning algorithms that assume that all data are sampled from one single manifold and only one projection is derived for feature extraction, we model all the LLMs of each person as a manifold and present SDMMGA model to seek multiple projection matrices, which can uncover the geometrical information of different manifolds. Aiming to better separate manifold margins in the low-dimensional feature space, we introduce the ℓ 1 and ℓ 2 norms penalty in the SDMMGA objective function. An efficient regression method is presented for finding the most discriminative features. Comprehensive experiments on three standard data sets show that our method consistently outperforms the state of the art.
AbstractList We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity constrained hierarchical agglomerative clustering (LC-HAC) method is first employed to partition each image set into several local linear models (LLMs), each depicted as a point on the Grassmannian manifold using positive definite Gaussian kernel function. In contrast to the standard discriminative learning algorithms that assume that all data are sampled from one single manifold and only one projection is derived for feature extraction, we model all the LLMs of each person as a manifold and present SDMMGA model to seek multiple projection matrices, which can uncover the geometrical information of different manifolds. Aiming to better separate manifold margins in the low-dimensional feature space, we introduce the [Formula Omitted] and [Formula Omitted] norms penalty in the SDMMGA objective function. An efficient regression method is presented for finding the most discriminative features. Comprehensive experiments on three standard data sets show that our method consistently outperforms the state of the art.
We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set (FRIS), where each set contains face images belonging to the same subject and typically covering large variations. In our work, linearity constrained hierarchical agglomerative clustering (LC-HAC) method is first employed to partition each image set into several local linear models (LLMs), each depicted as a point on the Grassmannian manifold using positive definite Gaussian kernel function. In contrast to the standard discriminative learning algorithms that assume that all data are sampled from one single manifold and only one projection is derived for feature extraction, we model all the LLMs of each person as a manifold and present SDMMGA model to seek multiple projection matrices, which can uncover the geometrical information of different manifolds. Aiming to better separate manifold margins in the low-dimensional feature space, we introduce the ℓ 1 and ℓ 2 norms penalty in the SDMMGA objective function. An efficient regression method is presented for finding the most discriminative features. Comprehensive experiments on three standard data sets show that our method consistently outperforms the state of the art.
Author Haifeng Hu
Author_xml – sequence: 1
  givenname: Haifeng
  surname: Hu
  fullname: Hu, Haifeng
BookMark eNp9kEFLAzEQhYNU0Kp_QC8Bz1uT7GaTHKXaWlAEW_XmMu5ONLLN1iQV_PdurXjw4Glm4H0z896QDHznkZBjzkacM3O2GM8fFiPBeDESealyqXbIPpdSZ0IwOeh7JnmmBZd7ZBjjG-uVulD75Gm-ghCRXrhYB7d0HpL7QHqzbpNbgne2axs6DRBjP3kHnp57aD-ji9R2gU6gRnqHdffiXXKdp48uvdLZEl6QzjHFQ7JroY149FMPyP3kcjG-yq5vp7Px-XVWCyNThg3IshTPDJpCImjNDKA0mmmBuQJAYLZkpaotV6jQKqiNMEzaApq8sTY_IKfbvavQva8xpuqtW4f-01hxJQw3XGjZq8RWVYcuxoC2WvWeIXxWnFWbHKvvHKtNjtVPjj2k_0C1S7AxmwK49n_0ZIs6RPy9VZpCi0LmX250hH0
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2894393
crossref_primary_10_1186_s13638_020_01731_3
crossref_primary_10_1109_TCSVT_2019_2903563
crossref_primary_10_1016_j_jvcir_2018_02_004
crossref_primary_10_1016_j_eswa_2019_06_062
crossref_primary_10_1016_j_ins_2019_12_041
crossref_primary_10_1007_s11042_018_6239_3
crossref_primary_10_1007_s12559_016_9403_y
crossref_primary_10_1016_j_jvcir_2018_05_016
crossref_primary_10_1016_j_neucom_2018_06_077
Cites_doi 10.1007/978-3-540-76390-1_46
10.5244/C.20.58
10.1109/TPAMI.2007.1037
10.1111/j.1467-9868.2005.00503.x
10.1109/34.598228
10.1109/TNN.2007.901277
10.1109/TPAMI.2011.283
10.1109/AFGR.2000.840643
10.1016/j.patrec.2009.06.002
10.1007/11527923_8
10.1007/s10994-008-5084-4
10.1109/CVPR.2005.151
10.1145/1390156.1390204
10.1109/FG.2013.6553727
10.1109/CVPR.2013.17
10.1093/biomet/28.3-4.321
10.1109/CVPR.2010.5539965
10.1126/science.290.5500.2323
10.1145/1553374.1553432
10.1109/TIP.2012.2206039
10.1109/CVPR.2011.5995564
10.1109/CVPR.2007.383396
10.1023/B:VISI.0000013087.49260.fb
10.1109/TSMCB.2006.888925
10.1109/TPAMI.2012.70
10.1109/CVPR.2011.5995566
10.1109/TPAMI.2008.79
10.1109/AFGR.1998.670968
10.1016/j.patcog.2006.12.030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2014.2367357
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1611
ExternalDocumentID 3855428521
10_1109_TCSVT_2014_2367357
6948245
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of China
– fundername: National Science Foundation of China
  grantid: 60802069; 61273270
– fundername: Science and Technology Program of Guangzhou, China
  grantid: 2014Y2-00165; 2014J4100114; 2014J4100095
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2014A030313173
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-eda5662b0ad45ea8809ae598082e37aaea0f6067cf17e7ef7ac92905f4ad3dff3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:12:29 EDT 2025
Tue Jul 01 00:41:07 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Tue Aug 26 16:40:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Dimensionality reduction
sparse discriminative multimanifold Grassmannian analysis (SDMMGA)
face recognition with image sets (FRISs)
manifold learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-eda5662b0ad45ea8809ae598082e37aaea0f6067cf17e7ef7ac92905f4ad3dff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1729191285
PQPubID 85433
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2014_2367357
ieee_primary_6948245
crossref_primary_10_1109_TCSVT_2014_2367357
proquest_journals_1729191285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Oct.
2015-10-00
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref37
ref15
nishiyama (ref21) 2005
ref36
ref14
lu (ref41) 2008; 19
gross (ref31) 2001
ref33
ref32
ref10
cui (ref12) 2012
wang (ref29) 2008
ref2
ref1
ref17
oja (ref20) 1983
ref38
wang (ref11) 2012
ref16
wang (ref4) 2009
ref18
fan (ref9) 2006
fukui (ref26) 2006
wolf (ref25) 2003; 4
wagstaff (ref35) 2001
lee (ref30) 2003
ref24
ref45
ref23
fukui (ref19) 2003
ref42
ref22
ref44
ref43
ref27
ref8
ref7
shakhnarovich (ref13) 2002
ref3
ref6
ref5
ref40
li (ref28) 2009
lui (ref39) 2008
References_xml – start-page: 44
  year: 2008
  ident: ref39
  article-title: Grassmann registration manifolds for face recognition
  publication-title: Proc 10th ECCV
– ident: ref27
  doi: 10.1007/978-3-540-76390-1_46
– ident: ref15
  doi: 10.5244/C.20.58
– ident: ref2
  doi: 10.1109/TPAMI.2007.1037
– ident: ref43
  doi: 10.1111/j.1467-9868.2005.00503.x
– start-page: 577
  year: 2001
  ident: ref35
  article-title: Constrained K-means clustering with background knowledge
  publication-title: Proc 18th Int Conf Mach Learn
– ident: ref1
  doi: 10.1109/34.598228
– volume: 19
  start-page: 18
  year: 2008
  ident: ref41
  article-title: MPCA: Multilinear principal component analysis of tensor objects
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.901277
– ident: ref8
  doi: 10.1109/TPAMI.2011.283
– ident: ref10
  doi: 10.1109/AFGR.2000.840643
– ident: ref23
  doi: 10.1016/j.patrec.2009.06.002
– start-page: 71
  year: 2005
  ident: ref21
  article-title: Face recognition with the multiple constrained mutual subspace method
  publication-title: Proc Int Conf Audio-Video-Based Biometric Person Authentication
  doi: 10.1007/11527923_8
– start-page: 315
  year: 2006
  ident: ref26
  article-title: A framework for 3D object recognition using the kernel constrained mutual subspace method
  publication-title: Proc Asian Conf Comput Vis
– ident: ref36
  doi: 10.1007/s10994-008-5084-4
– ident: ref14
  doi: 10.1109/CVPR.2005.151
– ident: ref22
  doi: 10.1145/1390156.1390204
– ident: ref24
  doi: 10.1109/FG.2013.6553727
– ident: ref33
  doi: 10.1109/CVPR.2013.17
– ident: ref17
  doi: 10.1093/biomet/28.3-4.321
– ident: ref5
  doi: 10.1109/CVPR.2010.5539965
– ident: ref34
  doi: 10.1126/science.290.5500.2323
– ident: ref37
  doi: 10.1145/1553374.1553432
– ident: ref3
  doi: 10.1109/TIP.2012.2206039
– ident: ref6
  doi: 10.1109/CVPR.2011.5995564
– ident: ref7
  doi: 10.1109/CVPR.2007.383396
– start-page: 2626
  year: 2012
  ident: ref12
  article-title: Image sets alignment for video-based face recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 192
  year: 2003
  ident: ref19
  article-title: Face recognition using multi-viewpoint patterns for robot vision
  publication-title: Proc Int Symp Robot Res
– start-page: 1
  year: 2008
  ident: ref29
  article-title: Manifold-manifold distance with application to face recognition based on image set
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– year: 1983
  ident: ref20
  publication-title: Subspace Methods of Pattern Recognition
– ident: ref45
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref42
  doi: 10.1109/TSMCB.2006.888925
– year: 2001
  ident: ref31
  article-title: The CMU motion of body (MoBo) database
– start-page: 313
  year: 2003
  ident: ref30
  article-title: Video-based face recognition using probabilistic appearance manifolds
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref44
  doi: 10.1109/TPAMI.2012.70
– ident: ref32
  doi: 10.1109/CVPR.2011.5995566
– ident: ref40
  doi: 10.1109/TPAMI.2008.79
– start-page: 851
  year: 2002
  ident: ref13
  article-title: Face recognition from long-term observations
  publication-title: Proc 7th Eur Conf Comput Vis
– ident: ref18
  doi: 10.1109/AFGR.1998.670968
– ident: ref16
  doi: 10.1016/j.patcog.2006.12.030
– start-page: 429
  year: 2009
  ident: ref4
  article-title: Manifold discriminant analysis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 1384
  year: 2006
  ident: ref9
  article-title: Locally linear models on face appearance manifolds with application to dual-subspace based classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: 4
  start-page: 913
  year: 2003
  ident: ref25
  article-title: Learning over sets using kernel principal angles
  publication-title: J Mach Learn Res
– start-page: 323
  year: 2009
  ident: ref28
  article-title: Image-set based face recognition using boosted global and local principal angles
  publication-title: Proc Asian Conf Comput Vis
– start-page: 2496
  year: 2012
  ident: ref11
  article-title: Covariance discriminative learning: A natural and efficient approach to image set classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref38
  doi: 10.1145/1390156.1390204
SSID ssj0014847
Score 2.211861
Snippet We propose an efficient and robust solution, called sparse discriminative multimanifold Grassmannian analysis (SDMMGA), for face recognition based on image set...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1599
SubjectTerms Covariance matrices
Data models
dimensionality reduction
Face
Face recognition
Face recognition with image sets
Kernel
Linear programming
manifold learning
Manifolds
sparse discriminative multi-manifold Grassmannian analysis
Title Sparse Discriminative Multimanifold Grassmannian Analysis for Face Recognition With Image Sets
URI https://ieeexplore.ieee.org/document/6948245
https://www.proquest.com/docview/1729191285
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T-QwEB0BFVcAB5xYPk4u6CCLk9gkLhGwcEhQsMtHdZFjjwUCsgiyDb-esZOsEJzQdSlsy9KzZ97EM28AtrWKnSwFRlwhjwSSHSzLREd56ogtGGNU6ouTzy_2T6_E2a28nYHdaS0MIobkM-z7z_CWb8dm4n-V7e0rkSdCzsIsHbOmVmv6YiDy0EyM6EIc5eTHugIZrvZGh8Prkc_iEn2vV5Z6V_TBCYWuKl9McfAvg0U473bWpJU89Cd12Tdvn0Qb_3frS7DQEk120JyMnzCD1TL8-CA_uAJ_h88U1iI7uve2w-fEeNvHQk2ul8Vw40fLTl6IXj_5zka6Yp2ECSOqywbaILvsEpDGFbu5r-_YnyeyUGyI9esqXA2OR4enUdtvITKJknWEVhO5S0qurZCo6WYrjVLlxBIwzbRGzR3FO5lxcYYZukwbIldcOqFtap1Lf8FcNa5wDVhWxrHKpeFIAShHIj0JJpk1RmBiU7Q9iDsACtOKkfueGI9FCEq4KgJohQetaEHrwc50znMjxfHt6BWPwnRkC0APNjuci_a2vhZE4hTFrUku1_89awPmaW3ZJPFtwlz9MsEtIiN1-TucwncroNy6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Remg50A9ALNDiQ29tFiexSXysgO1CWQ7dpeVE5NhjsQKyCLIXfj1jJ1mhtqp6y8GWLT175k088wbgk1axk6XAiCvkkUCyg2WZ6ChPHbEFY4xKfXHy6Gx_eC5OLuTFEnxZ1MIgYkg-w77_DG_5dmbm_lfZ3r4SeSLkC3hJfl_Iplpr8WYg8tBOjAhDHOXkyboSGa72JgfjnxOfxyX6XrEs9c7omRsKfVX-MMbBwwzewKjbW5NYct2f12XfPP4m2_i_m38Lqy3VZF-bs_EOlrB6DyvPBAjX4HJ8R4EtssOptx4-K8ZbPxaqcr0whpvdWPbtngj2re9tpCvWiZgwIrtsoA2yH10K0qxiv6b1FTu-JRvFxlg_rMP54GhyMIzajguRSZSsI7Sa6F1Scm2FRE13W2mUKieegGmmNWruKOLJjIszzNBl2hC94tIJbVPrXLoBy9Wswk1gWRnHKpeGI4WgHIn2JJhk1hiBiU3R9iDuAChMK0fuu2LcFCEs4aoIoBUetKIFrQefF3PuGjGOf45e8ygsRrYA9GCnw7lo7-tDQTROUeSa5HLr77N24dVwMjotTo_Pvm_Da1pHNil9O7Bc38_xA1GTuvwYTuQT4WrgBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Discriminative+Multimanifold+Grassmannian+Analysis+for+Face+Recognition+With+Image+Sets&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Hu%2C+Haifeng&rft.date=2015-10-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=25&rft.issue=10&rft.spage=1599&rft.epage=1611&rft_id=info:doi/10.1109%2FTCSVT.2014.2367357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2014_2367357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon