Adaptive Region Proposal With Channel Regularization for Robust Object Tracking

In this paper, we propose an adaptive region proposal scheme with feature channel regularization to facilitate robust object tracking. We consider tracking as a linear regression problem and an ensemble of correlation filters is trained on-line to distinguish the foreground target from the backgroun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 4; pp. 1268 - 1282
Main Authors Lu, Xiankai, Ma, Chao, Ni, Bingbing, Yang, Xiaokang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an adaptive region proposal scheme with feature channel regularization to facilitate robust object tracking. We consider tracking as a linear regression problem and an ensemble of correlation filters is trained on-line to distinguish the foreground target from the background. Further, we integrate adaptively learned region proposals into an enhanced two-stream tracking framework based on correlation filters. For the tracking stream, we learn two-stage cascade correlation filters on deep convolutional features to ensure competitive tracking performance. For the detection stream, we employ adaptive region proposals, which are effective in recovering target objects from tracking failures caused by heavy occlusion or out-of-view movement. In contrast to traditional tracking-by-detection methods using random samples or sliding windows, we perform target re-detection over adaptively learned region proposals. Since region proposals naturally take the objectness information into account, we show that the proposed adaptive region proposals can handle the challenging scale estimation problem as well. In addition, we observe the channel redundancy and noisy of feature representation, especially for the convolutional features. Thus, we apply a channel regularization to the correlation filter learning. Extensive experimental validations on OTB, VOT and UAV-123 datasets demonstrate that the proposed method performs favorably against state-of-the-art tracking algorithms.
AbstractList In this paper, we propose an adaptive region proposal scheme with feature channel regularization to facilitate robust object tracking. We consider tracking as a linear regression problem and an ensemble of correlation filters is trained on-line to distinguish the foreground target from the background. Further, we integrate adaptively learned region proposals into an enhanced two-stream tracking framework based on correlation filters. For the tracking stream, we learn two-stage cascade correlation filters on deep convolutional features to ensure competitive tracking performance. For the detection stream, we employ adaptive region proposals, which are effective in recovering target objects from tracking failures caused by heavy occlusion or out-of-view movement. In contrast to traditional tracking-by-detection methods using random samples or sliding windows, we perform target re-detection over adaptively learned region proposals. Since region proposals naturally take the objectness information into account, we show that the proposed adaptive region proposals can handle the challenging scale estimation problem as well. In addition, we observe the channel redundancy and noisy of feature representation, especially for the convolutional features. Thus, we apply a channel regularization to the correlation filter learning. Extensive experimental validations on OTB, VOT and UAV-123 datasets demonstrate that the proposed method performs favorably against state-of-the-art tracking algorithms.
Author Lu, Xiankai
Ni, Bingbing
Yang, Xiaokang
Ma, Chao
Author_xml – sequence: 1
  givenname: Xiankai
  orcidid: 0000-0002-9543-6960
  surname: Lu
  fullname: Lu, Xiankai
  email: carrierlxk@gmail.com
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Chao
  surname: Ma
  fullname: Ma, Chao
  email: chaoma@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Bingbing
  orcidid: 0000-0001-7339-028X
  surname: Ni
  fullname: Ni, Bingbing
  email: nibingbing@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Xiaokang
  orcidid: 0000-0003-4029-3322
  surname: Yang
  fullname: Yang, Xiaokang
  email: xkyang@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kM9LwzAUx4NMcJv-A3opeO5M0qRLjqP4CwaTWfUYkjTdMmtT01TQv952Ew8ezOUF3vfzHu8zAaPa1QaAcwRnCEF-lWePz_kMQ8RnmBOSUnIExohSFmMM6aj_Q4pihhE9AZO23UGICCPzMVgtCtkE-2GitdlYV0cP3jWulVX0YsM2yrayrk01NLtKevslwxAqnY_WTnVtiFZqZ3SIci_1q603p-C4lFVrzn7qFDzdXOfZXbxc3d5ni2WsMachNkrzghsES62wNnKuJKKIFTIlipmUQAOVZkkKC5gkSQnLouSQEpYiTYlOVTIFl4e5jXfvnWmD2LnO1_1KgSnkmGOCeZ9ih5T2rm29KYW2YX9C8NJWAkEx6BN7fWLQJ3709Sj-gzbevkn_-T90cYCsMeYXYIwmw_sGIyJ-aw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1007_s11042_021_10574_z
crossref_primary_10_1007_s11042_021_11689_z
crossref_primary_10_1007_s00371_022_02573_4
crossref_primary_10_1007_s11760_024_03772_3
crossref_primary_10_1016_j_infrared_2022_104384
crossref_primary_10_1007_s11042_021_11540_5
crossref_primary_10_3390_electronics12020420
crossref_primary_10_1016_j_displa_2023_102372
crossref_primary_10_1016_j_patrec_2023_09_010
crossref_primary_10_1002_jemt_23596
crossref_primary_10_1109_TIM_2024_3436132
crossref_primary_10_1007_s00138_024_01580_w
crossref_primary_10_1109_TCSVT_2023_3335157
crossref_primary_10_1109_TCSVT_2024_3494725
crossref_primary_10_1109_TIE_2021_3088366
crossref_primary_10_1007_s44295_024_00050_3
crossref_primary_10_1007_s11042_020_09965_5
crossref_primary_10_1109_LGRS_2022_3207178
crossref_primary_10_1109_TCSVT_2021_3103063
crossref_primary_10_1007_s11042_021_10852_w
crossref_primary_10_1007_s11042_020_08990_8
crossref_primary_10_1109_TCSVT_2023_3289620
crossref_primary_10_1007_s10489_022_03619_9
crossref_primary_10_1007_s11042_021_10605_9
crossref_primary_10_1016_j_jvcir_2023_103974
crossref_primary_10_1007_s11042_022_12413_1
crossref_primary_10_1109_TCSVT_2023_3271275
crossref_primary_10_1016_j_cviu_2025_104325
crossref_primary_10_1016_j_imavis_2022_104374
crossref_primary_10_1007_s11042_020_10080_8
crossref_primary_10_1007_s11042_021_10650_4
crossref_primary_10_3390_s23177516
crossref_primary_10_1109_TCSVT_2023_3272319
crossref_primary_10_1016_j_neucom_2021_05_011
crossref_primary_10_1016_j_cviu_2024_104125
crossref_primary_10_1016_j_eswa_2024_124927
crossref_primary_10_1109_TCSVT_2021_3063144
crossref_primary_10_1109_TCSVT_2024_3419910
crossref_primary_10_1007_s11042_021_10856_6
crossref_primary_10_1109_TCSVT_2024_3498349
crossref_primary_10_1016_j_infrared_2021_103907
crossref_primary_10_1007_s11042_020_09546_6
crossref_primary_10_1016_j_neucom_2022_05_064
crossref_primary_10_3390_s24248120
crossref_primary_10_1109_TCSVT_2021_3077640
crossref_primary_10_1109_TCSVT_2023_3288353
crossref_primary_10_1007_s11042_022_12437_7
crossref_primary_10_1007_s00371_023_03136_x
crossref_primary_10_1109_TCSVT_2020_3023440
crossref_primary_10_3390_electronics13163221
crossref_primary_10_1007_s11042_021_11736_9
crossref_primary_10_1007_s11042_020_10170_7
crossref_primary_10_1109_TCSVT_2021_3094645
crossref_primary_10_1109_TCSVT_2022_3199325
crossref_primary_10_1007_s11042_023_15235_x
crossref_primary_10_1016_j_neucom_2020_04_146
crossref_primary_10_1002_int_22933
crossref_primary_10_1007_s11042_022_12715_4
crossref_primary_10_1007_s11042_020_09361_z
Cites_doi 10.1109/CVPR.2016.465
10.1109/CVPR.2018.00935
10.1109/CVPR.2016.161
10.1109/TCSVT.2016.2515309
10.1007/978-3-642-33712-3_62
10.1109/WACV.2014.6836013
10.1109/CVPR.2015.7299124
10.1109/TPAMI.2018.2865311
10.1109/78.978374
10.1109/TPAMI.2010.226
10.1109/CVPR.2015.7299177
10.1109/TITS.2017.2750082
10.1109/CVPR.2016.108
10.1109/TPAMI.2014.2388226
10.1007/978-3-030-01264-9_22
10.1109/TPAMI.2015.2465908
10.1109/CVPRW.2018.00022
10.1007/978-3-319-10602-1_26
10.1007/978-3-319-10602-1_9
10.1109/TPAMI.2012.28
10.1109/CVPR.2019.00814
10.1109/ICCV.2015.490
10.1109/CVPR.2016.467
10.1109/TCYB.2018.2803217
10.1109/CVPR.2019.00374
10.1109/ICCV.2015.355
10.1109/TPAMI.2015.2453984
10.1109/TPAMI.2013.230
10.1007/978-3-319-46484-8_2
10.1007/978-3-319-10599-4_13
10.1109/CVPR.2013.312
10.1007/978-3-319-10578-9_13
10.1109/ICCV.2015.357
10.1109/CVPR.2018.00515
10.1007/978-3-319-10602-1_8
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2019.00441
10.1109/CVPR.2015.7298675
10.1109/TIP.2018.2885238
10.1109/ICCV.2015.285
10.1109/TCSVT.2015.2450331
10.1109/TMM.2018.2875360
10.1109/CVPR.2014.143
10.1109/ICCV.2011.6126456
10.1109/TPAMI.2014.2345390
10.1109/CVPR.2017.733
10.1145/2508037.2508039
10.1109/ICCV.2015.354
10.1109/CVPR.2014.81
10.1109/ICCV.2017.585
10.1109/TPAMI.2011.239
10.1109/TCSVT.2017.2701279
10.1109/TPAMI.2018.2863279
10.1109/TCSVT.2018.2889457
10.1109/TIP.2009.2019809
10.1109/CVPR.2018.00934
10.1109/CVPR.2010.5540148
10.1109/CVPR.2015.7298632
10.1109/TIP.2019.2898567
10.1016/j.neucom.2011.07.024
10.1109/ICCV.2011.6126251
10.1007/978-3-642-33718-5_35
10.1109/TCYB.2017.2716101
10.1109/ICCV.2015.352
10.1111/j.2517-6161.1996.tb02080.x
10.1109/ACCESS.2019.2903121
10.1109/ICCV.2017.279
10.1109/ICCVW.2015.84
10.1007/s11263-007-0075-7
10.1145/2733373.2807412
10.1109/CVPR.2010.5539960
10.1007/s11263-017-1061-3
10.1007/978-3-319-46448-0_27
10.5244/C.29.185
10.1111/j.1551-6708.1987.tb00862.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2019.2944654
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1282
ExternalDocumentID 10_1109_TCSVT_2019_2944654
8853333
Genre orig-research
GrantInformation_xml – fundername: Shanghai Pujiang Program
– fundername: NSFC
  grantid: 61527804; 61906119
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB1001003
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-ebc9d9e10fcb2cea7ba1518da64b8e640e0bc8360d0333f0fdf9054861c54c6b3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 12:42:43 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Aug 27 02:44:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-ebc9d9e10fcb2cea7ba1518da64b8e640e0bc8360d0333f0fdf9054861c54c6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7339-028X
0000-0003-4029-3322
0000-0002-9543-6960
PQID 2509292429
PQPubID 85433
PageCount 15
ParticipantIDs ieee_primary_8853333
proquest_journals_2509292429
crossref_primary_10_1109_TCSVT_2019_2944654
crossref_citationtrail_10_1109_TCSVT_2019_2944654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
kristan (ref25) 2015
ref17
ref16
ref19
yang (ref42) 2012
ref18
xu (ref80) 2018
ref51
ref50
ref46
ref45
ref48
ref85
ref41
ref88
ref44
ref87
ref43
ref49
ref8
ref7
ref9
cheng (ref47) 2014
ref3
ref6
ref5
ref81
ref40
ref84
ref83
ref35
ref78
ref34
ref37
he (ref82) 2018
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref39
ref38
li (ref10) 2014
simonyan (ref59) 2015
smeulders (ref1) 2014; 36
ref70
ref73
ref72
kristan (ref26) 2018
ref24
ref67
ref23
ref69
ref64
ref20
ref63
ref66
ref22
danelljan (ref68) 2014
ref21
lukeži? (ref71) 2017; 48
bhat (ref86) 2018
ref28
ref27
kai (ref79) 2001
ref29
danelljan (ref65) 2016
ref60
ref62
ref61
supancic (ref4) 2013
References_xml – ident: ref66
  doi: 10.1109/CVPR.2016.465
– ident: ref56
  doi: 10.1109/CVPR.2018.00935
– start-page: 95
  year: 2001
  ident: ref79
  article-title: Template matching using fast normalized cross correlation
  publication-title: Proc Aerosp /Defense Sens Simulation Controls
– start-page: 1918
  year: 2012
  ident: ref42
  article-title: Multi-target tracking by online learning of non-linear motion patterns and robust appearance models
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref37
  doi: 10.1109/CVPR.2016.161
– ident: ref51
  doi: 10.1109/TCSVT.2016.2515309
– start-page: 2379
  year: 2013
  ident: ref4
  article-title: Self-paced learning for long-term tracking
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref78
  doi: 10.1007/978-3-642-33712-3_62
– ident: ref74
  doi: 10.1109/WACV.2014.6836013
– ident: ref32
  doi: 10.1109/CVPR.2015.7299124
– ident: ref36
  doi: 10.1109/TPAMI.2018.2865311
– ident: ref88
  doi: 10.1109/78.978374
– ident: ref77
  doi: 10.1109/TPAMI.2010.226
– start-page: 254
  year: 2014
  ident: ref10
  article-title: A scale adaptive kernel correlation filter tracker with feature integration
  publication-title: Proc Eur Conf Comput Vis
– start-page: 132
  year: 2018
  ident: ref82
  article-title: Towards a better match in Siamese network based visual object tracker
  publication-title: Proc Eur Conf Comput Vis
– ident: ref11
  doi: 10.1109/CVPR.2015.7299177
– ident: ref15
  doi: 10.1109/TITS.2017.2750082
– ident: ref60
  doi: 10.1109/CVPR.2016.108
– ident: ref21
  doi: 10.1109/TPAMI.2014.2388226
– ident: ref20
  doi: 10.1007/978-3-030-01264-9_22
– ident: ref46
  doi: 10.1109/TPAMI.2015.2465908
– start-page: 744
  year: 2015
  ident: ref59
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref45
  doi: 10.1109/CVPRW.2018.00022
– year: 2018
  ident: ref80
  article-title: Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual tracking
  publication-title: arXiv 1807 11348
– ident: ref48
  doi: 10.1007/978-3-319-10602-1_26
– ident: ref35
  doi: 10.1007/978-3-319-10602-1_9
– ident: ref52
  doi: 10.1109/TPAMI.2012.28
– ident: ref58
  doi: 10.1109/CVPR.2019.00814
– ident: ref12
  doi: 10.1109/ICCV.2015.490
– ident: ref30
  doi: 10.1109/CVPR.2016.467
– start-page: 1121
  year: 2014
  ident: ref68
  article-title: Accurate scale estimation for robust visual tracking
  publication-title: Proc BMVC
– ident: ref87
  doi: 10.1109/TCYB.2018.2803217
– ident: ref72
  doi: 10.1109/CVPR.2019.00374
– ident: ref2
  doi: 10.1109/ICCV.2015.355
– ident: ref23
  doi: 10.1109/TPAMI.2015.2453984
– volume: 36
  start-page: 1442
  year: 2014
  ident: ref1
  article-title: Visual tracking: An experimental survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.230
– ident: ref81
  doi: 10.1007/978-3-319-46484-8_2
– ident: ref22
  doi: 10.1007/978-3-319-10599-4_13
– start-page: 493
  year: 2018
  ident: ref86
  article-title: Unveiling the power of deep tracking
  publication-title: Proc Eur Conf Comput Vis
– ident: ref5
  doi: 10.1109/CVPR.2013.312
– ident: ref69
  doi: 10.1007/978-3-319-10578-9_13
– ident: ref19
  doi: 10.1109/ICCV.2015.357
– ident: ref83
  doi: 10.1109/CVPR.2018.00515
– ident: ref76
  doi: 10.1007/978-3-319-10602-1_8
– ident: ref54
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref57
  doi: 10.1109/CVPR.2019.00441
– ident: ref14
  doi: 10.1109/CVPR.2015.7298675
– ident: ref38
  doi: 10.1109/TIP.2018.2885238
– start-page: 564
  year: 2015
  ident: ref25
  article-title: The visual object tracking VOT2015 challenge results
  publication-title: Proc ICCV Workshops
– ident: ref50
  doi: 10.1109/ICCV.2015.285
– ident: ref6
  doi: 10.1109/TCSVT.2015.2450331
– ident: ref39
  doi: 10.1109/TMM.2018.2875360
– ident: ref31
  doi: 10.1109/CVPR.2014.143
– ident: ref49
  doi: 10.1109/ICCV.2011.6126456
– ident: ref8
  doi: 10.1109/TPAMI.2014.2345390
– ident: ref64
  doi: 10.1109/CVPR.2017.733
– ident: ref28
  doi: 10.1145/2508037.2508039
– ident: ref73
  doi: 10.1109/ICCV.2015.354
– ident: ref53
  doi: 10.1109/CVPR.2014.81
– ident: ref40
  doi: 10.1109/ICCV.2017.585
– start-page: 3
  year: 2018
  ident: ref26
  article-title: The sixth visual object tracking VOT2018 challenge results
  publication-title: Proc Eur Conf Comput Vis (ECCV) Workshops
– start-page: 3286
  year: 2014
  ident: ref47
  article-title: BING: Binarized normed gradients for objectness estimation at 300 fps
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref3
  doi: 10.1109/TPAMI.2011.239
– ident: ref7
  doi: 10.1109/TCSVT.2017.2701279
– ident: ref55
  doi: 10.1109/TPAMI.2018.2863279
– ident: ref16
  doi: 10.1109/TCSVT.2018.2889457
– ident: ref18
  doi: 10.1109/TIP.2009.2019809
– ident: ref84
  doi: 10.1109/CVPR.2018.00934
– ident: ref43
  doi: 10.1109/CVPR.2010.5540148
– ident: ref33
  doi: 10.1109/CVPR.2015.7298632
– ident: ref34
  doi: 10.1109/TIP.2019.2898567
– ident: ref29
  doi: 10.1016/j.neucom.2011.07.024
– ident: ref9
  doi: 10.1109/ICCV.2011.6126251
– ident: ref41
  doi: 10.1007/978-3-642-33718-5_35
– volume: 48
  start-page: 1849
  year: 2017
  ident: ref71
  article-title: Deformable parts correlation filters for robust visual tracking
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2716101
– ident: ref13
  doi: 10.1109/ICCV.2015.352
– ident: ref62
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref44
  doi: 10.1109/ACCESS.2019.2903121
– ident: ref67
  doi: 10.1109/ICCV.2017.279
– ident: ref70
  doi: 10.1109/ICCVW.2015.84
– start-page: 472
  year: 2016
  ident: ref65
  article-title: Beyond correlation filters: Learning continuous convolution operators for visual tracking
  publication-title: Proc Eur Conf Comput Vis
– ident: ref75
  doi: 10.1007/s11263-007-0075-7
– ident: ref63
  doi: 10.1145/2733373.2807412
– ident: ref17
  doi: 10.1109/CVPR.2010.5539960
– ident: ref85
  doi: 10.1007/s11263-017-1061-3
– ident: ref27
  doi: 10.1007/978-3-319-46448-0_27
– ident: ref61
  doi: 10.5244/C.29.185
– ident: ref24
  doi: 10.1111/j.1551-6708.1987.tb00862.x
SSID ssj0014847
Score 2.6094651
Snippet In this paper, we propose an adaptive region proposal scheme with feature channel regularization to facilitate robust object tracking. We consider tracking as...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1268
SubjectTerms Adaptive region proposals
Algorithms
channel regularization
Correlation
correlation filters
Estimation
Feature extraction
Object tracking
Occlusion
Proposals
Redundancy
Regularization
robust object tracking
Robustness (mathematics)
Target detection
Target tracking
Tracking
Visualization
Title Adaptive Region Proposal With Channel Regularization for Robust Object Tracking
URI https://ieeexplore.ieee.org/document/8853333
https://www.proquest.com/docview/2509292429
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz34QiOKpgdvutB9sj0SIiEmiEFQbpu2241GAkSWi7_embIQXzHuaZNtk26n7Xwz_WYG4DIVnmriUnCykLxVnLaUFBqtVulLheehb8v59O6i7ii4HYfjElxvYmGMMZZ8Zur0au_y05lekqusEaNuwWcLttBwW8VqbW4MgtgWE0O44Dox6rF1gAwXjWH74XFILC5R94RNIPZFCdmqKj-OYqtfOnvQW49sRSt5rS9zVdfv35I2_nfo-7BbAE3WWq2MAyiZ6SHsfEo_WIF-K5VzOu7YwBAtmd1TyYQF9np6yZ8ZBR5MzYQ-Ele1CNhkiHLZYKaWi5z1FXlxGOo7TR73Ixh1bobtrlMUWHC0J8LcMUqLVBiXZ1p52simkggA4lRGgYpNFHDDlaYoj5Tj2DOepZlAiBdHrg4DHSn_GMrT2dScAAt9YbIslFwqGQRaqwj_1-OB9tEKNm6zCu56xhNdZB-nIhiTxFohXCRWSglJKSmkVIWrTZ_5KvfGn60rNO2blsWMV6G2FmxSbM9FgrgPYSGiE3H6e68z2PaIvGIpOjUo529Lc47oI1cXdtl9ANmu1Ww
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5Remg5QIFWXR6tD-VUZXGcx8aHHhAULeVVwdJyC7YzEYjVLmKzQvS38Ff4b8x4s6s-UG9I5BQpdqR4JjPf2N_MAHwqtLItUoWgTHi3SvIvZbSjqNVExpI9jHw7n_2DtH0SfztNTqfgbpILg4iefIZNvvVn-UXfDXmrbD0j30JXTaHcxdsbCtAGX3a2SJprSm1_7Wy2g7qHQOCUTqoArdOFxlCWziqHpmUN-bisMGlsM0xjidI6TmQoJL25lGVRakIxWRq6JHapjei9L-Al4YxEjbLDJmcUcebblxFACYOMPOc4JUfq9c7m8Y8O88Z0U2lfsuwPt-f7uPxj_L1H256D-_FajIgsl81hZZvu119lIp_rYr2B2RpKi42R7s_DFPYWYOa3AouLcLhRmCs26OIImXgtvnNTiAHN-nlRnQtOrehhlx8yG7dOSRWE48VR3w4HlTi0vE8lyKM7PlN4CydP8kXvYLrX7-F7EEmksSwTI401ceycTWl9lYxdRHE-hq0GhGMJ566ur85tPrq5j7Okzr1W5KwVea0VDfg8mXM1qi7y39GLLObJyFrCDVgZK1JeG6BBTsiWgC_hL730-KyP8Krd2d_L93YOdpfhtWKqjickrcB0dT3EVcJalf3gVV7A2VOrzQMPADS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Region+Proposal+With+Channel+Regularization+for+Robust+Object+Tracking&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Lu%2C+Xiankai&rft.au=Ma%2C+Chao&rft.au=Ni%2C+Bingbing&rft.au=Yang%2C+Xiaokang&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=4&rft.spage=1268&rft_id=info:doi/10.1109%2FTCSVT.2019.2944654&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon