Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model

Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is the key ingredient for the development of the e-commerce ecosystem and sustainability of the financial market. The main objective of this pape...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 11; no. 19; p. 5521
Main Authors Xu, Yao-Zhi, Zhang, Jian-Lin, Hua, Ying, Wang, Lin-Yue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is the key ingredient for the development of the e-commerce ecosystem and sustainability of the financial market. The main objective of this paper is to develop an effective and user-friendly system for seller credit risk evaluation. Three hybrid artificial intelligent models, including (1) decision tree—artificial neural network (ANN), (2) decision tree—logistic regression, and (3) decision tree—dynamic Bayesian network have been investigated. The models were trained using sellers credit cases from Taobao, which has 609 cases, and each case had 23 categorical and numerical attributes. The results suggest that the combination of decision tree—ANN provides the highest accuracy, which can promote healthy and fast transactions between buyers and sellers on the platforms. This model is regarded as a powerful tool that allows us to build an advanced credit risk evaluation system, and meet the requirements of the platform transaction mode to be dynamic and self-learning—which will ultimately contribute to the sustainable development of the e-commerce ecosystem. The empirical results can serve as a reference for e-commerce platforms promoting an optimum credit risk evaluation model to improve e-commerce transaction environment and for buyers and investors making decisions.
AbstractList Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is the key ingredient for the development of the e-commerce ecosystem and sustainability of the financial market. The main objective of this paper is to develop an effective and user-friendly system for seller credit risk evaluation. Three hybrid artificial intelligent models, including (1) decision tree—artificial neural network (ANN), (2) decision tree—logistic regression, and (3) decision tree—dynamic Bayesian network have been investigated. The models were trained using sellers credit cases from Taobao, which has 609 cases, and each case had 23 categorical and numerical attributes. The results suggest that the combination of decision tree—ANN provides the highest accuracy, which can promote healthy and fast transactions between buyers and sellers on the platforms. This model is regarded as a powerful tool that allows us to build an advanced credit risk evaluation system, and meet the requirements of the platform transaction mode to be dynamic and self-learning—which will ultimately contribute to the sustainable development of the e-commerce ecosystem. The empirical results can serve as a reference for e-commerce platforms promoting an optimum credit risk evaluation model to improve e-commerce transaction environment and for buyers and investors making decisions.
Author Zhang, Jian-Lin
Xu, Yao-Zhi
Wang, Lin-Yue
Hua, Ying
Author_xml – sequence: 1
  givenname: Yao-Zhi
  surname: Xu
  fullname: Xu, Yao-Zhi
– sequence: 2
  givenname: Jian-Lin
  surname: Zhang
  fullname: Zhang, Jian-Lin
– sequence: 3
  givenname: Ying
  surname: Hua
  fullname: Hua, Ying
– sequence: 4
  givenname: Lin-Yue
  surname: Wang
  fullname: Wang, Lin-Yue
BookMark eNpN0N9LwzAQB_AgE5xzL_4FAd-E6iVZ2uZx1qmDDcEfzyVLrprZNjNphf33Vibovdw9fO4Ovqdk1PoWCTlncCWEguvYM8aUlJwdkTGHjCUMJIz-zSdkGuMWhhKCKZaOSX27b3XjDC0CWtfRJxc_6OJL173unG_pGrt3b2nlA10khW8aDAbpM9Y1hkhvdERLB6bpw34TnKXz0LnKGadrumy7gbk3bIeNtbdYn5HjStcRp799Ql7vFi_FQ7J6vF8W81ViuJJdgnnGMi2AcQVSA0izSSFFK7XlQlijlJjlsEGdVyLPkZnKpKkGpbjiA5ViQi4Od3fBf_YYu3Lr-9AOL0suVM5mIpvBoC4PygQfY8Cq3AXX6LAvGZQ_gZZ_gYpvZmdoxQ
CitedBy_id crossref_primary_10_3390_su15075882
crossref_primary_10_3390_su15054233
crossref_primary_10_1016_j_measen_2023_100793
crossref_primary_10_3390_jrfm16110487
crossref_primary_10_1155_2020_8888296
crossref_primary_10_1007_s13198_021_01181_0
crossref_primary_10_1016_j_ejor_2024_03_008
crossref_primary_10_37394_232018_2022_10_9
crossref_primary_10_1016_j_asoc_2023_110277
crossref_primary_10_4018_JGIM_305238
crossref_primary_10_3390_su142315585
crossref_primary_10_1016_j_heliyon_2024_e28571
crossref_primary_10_2478_amns_2023_2_01570
crossref_primary_10_4236_ajibm_2023_139052
crossref_primary_10_1007_s11227_022_04329_2
crossref_primary_10_1111_ijcs_12938
crossref_primary_10_2478_amns_2024_0763
crossref_primary_10_1007_s11042_024_18793_w
crossref_primary_10_3233_IDT_230190
crossref_primary_10_3390_math8101799
Cites_doi 10.1016/j.jbankfin.2006.05.008
10.3390/su11061506
10.1016/j.eswa.2004.12.031
10.1086/296668
10.3390/su8050433
10.1111/j.1540-6261.1968.tb00843.x
10.1016/j.jbankfin.2014.02.009
10.1287/mnsc.34.12.1403
10.1016/0378-4266(77)90022-X
10.1016/S0378-4266(98)00019-3
10.1016/S0167-9236(03)00086-1
10.1111/j.1368-423X.2008.00232.x
10.1111/j.1540-627X.2010.00299.x
10.2307/2329929
10.1016/j.eswa.2010.02.101
10.2307/2490168
10.1080/01621459.1963.10500855
10.1007/s10693-012-0152-0
10.1016/j.neucom.2017.11.034
10.2307/2330408
10.4304/jsw.9.5.1062-1070
10.1016/j.cogsys.2018.07.023
10.1016/0377-2217(95)00246-4
10.2307/2490171
10.1111/j.1540-6261.1994.tb04418.x
10.1016/j.eswa.2005.12.006
10.1016/j.jvcir.2018.11.002
10.1080/15326349.2015.1053616
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
4U-
7X5
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
K6~
PIMPY
PQEST
PQQKQ
PQUKI
DOI 10.3390/su11195521
DatabaseName CrossRef
University Readers
Entrepreneurship Database
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Business Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
ProQuest Entrepreneurship
Publicly Available Content Database
Business Premium Collection
University Readers
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Business Collection
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList ProQuest Entrepreneurship
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10_3390_su11195521
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GROUPED_DOAJ
GX1
HCIFZ
KQ8
ML.
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
TR2
4U-
7X5
ABUWG
AZQEC
BEZIV
DWQXO
K6~
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c295t-e8717a3012905a005cb606ed5ad233dc993480bea8f388e1cfc66a099292cb653
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Thu Oct 10 22:22:55 EDT 2024
Fri Aug 23 04:51:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e8717a3012905a005cb606ed5ad233dc993480bea8f388e1cfc66a099292cb653
OpenAccessLink https://www.proquest.com/docview/2398143740?pq-origsite=%requestingapplication%
PQID 2398143740
PQPubID 2032327
ParticipantIDs proquest_journals_2398143740
crossref_primary_10_3390_su11195521
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bielecki (ref_23) 2013; 31
Morgan (ref_41) 1963; 58
Koh (ref_30) 2004; 1
Pederzoli (ref_31) 2010; 5
Banachewicz (ref_39) 2008; 11
Fantazzini (ref_16) 2009; 11
Yu (ref_24) 2014; 9
ref_13
ref_34
Beaver (ref_1) 1966; 4
Mirta (ref_29) 2005; 3
Edmister (ref_4) 1972; 7
ref_10
Mitchell (ref_7) 1994; 49
Khashman (ref_35) 2010; 37
Wiginton (ref_28) 1980; 15
Ono (ref_18) 2014; 42
Altman (ref_3) 1968; 23
Yan (ref_25) 2017; 12
Ning (ref_45) 2017; 122
Gregory (ref_11) 2006; 30
Madjia (ref_38) 2018; 275
Messier (ref_12) 1988; 34
Jiang (ref_27) 2015; 47
(ref_36) 2018; 52
Yang (ref_44) 2013; 18
Martin (ref_5) 1977; 1
Bart (ref_19) 2003; 49
ref_22
ref_21
ref_43
Horrigan (ref_2) 1966; 4
ref_20
ref_42
Raghuram (ref_6) 1992; 47
Pederzoli (ref_32) 2013; 44
ref_40
Desai (ref_14) 1996; 95
Berger (ref_9) 1995; 68
Lim (ref_26) 2007; 32
Lee (ref_33) 2005; 28
Sohn (ref_17) 2010; 48
Huang (ref_15) 2004; 37
Meyer (ref_8) 1998; 22
Xu (ref_37) 2019; 59
References_xml – volume: 47
  start-page: 1367
  year: 1992
  ident: ref_6
  article-title: Insiders and outsiders: the choice between informed and arm’s length debt
  publication-title: J. Financ.
  contributor:
    fullname: Raghuram
– volume: 30
  start-page: 2945
  year: 2006
  ident: ref_11
  article-title: A more complete conceptual framework for SME finance
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2006.05.008
  contributor:
    fullname: Gregory
– volume: 47
  start-page: 40
  year: 2015
  ident: ref_27
  article-title: Development of Personal Credit Scoring Model and Analysis of Optimization Algorithms
  publication-title: J. H.I.T.
  contributor:
    fullname: Jiang
– ident: ref_21
  doi: 10.3390/su11061506
– volume: 28
  start-page: 743
  year: 2005
  ident: ref_33
  article-title: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2004.12.031
  contributor:
    fullname: Lee
– ident: ref_34
– volume: 11
  start-page: 9
  year: 2009
  ident: ref_16
  article-title: Random Survival Forests Models for SME Credit Risk Measurement
  publication-title: Methodol. Comput. Appl.
  contributor:
    fullname: Fantazzini
– volume: 3
  start-page: 133
  year: 2005
  ident: ref_29
  article-title: Modelling Small-business Credit Scoring by Using Logistic Regression, Neural Networks and Decision Trees
  publication-title: Int. J. Intell. Syst. Account. Financ. Manag.
  contributor:
    fullname: Mirta
– volume: 68
  start-page: 351
  year: 1995
  ident: ref_9
  article-title: Relationship lending and lines of credit in small firm finance
  publication-title: J. Bus.
  doi: 10.1086/296668
  contributor:
    fullname: Berger
– ident: ref_40
– ident: ref_42
– ident: ref_20
  doi: 10.3390/su8050433
– volume: 23
  start-page: 589
  year: 1968
  ident: ref_3
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: J. Financ.
  doi: 10.1111/j.1540-6261.1968.tb00843.x
  contributor:
    fullname: Altman
– volume: 42
  start-page: 371
  year: 2014
  ident: ref_18
  article-title: Differentiated Use of Small Business Credit Scoring by Relationship Lenders and Transactional Lenders: Evidence from Firm-Bank Matched Data in Japan
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2014.02.009
  contributor:
    fullname: Ono
– volume: 34
  start-page: 1403
  year: 1988
  ident: ref_12
  article-title: Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.34.12.1403
  contributor:
    fullname: Messier
– volume: 1
  start-page: 96
  year: 2004
  ident: ref_30
  article-title: A Two-step Method to Construct Credit Scoring Models with Data Mining Techniques
  publication-title: Int. J. Bus. Inform.
  contributor:
    fullname: Koh
– volume: 18
  start-page: 57
  year: 2013
  ident: ref_44
  article-title: Construction of Personal Credit Assessment Portfolio Model Based on Decision Tree-Neural Network
  publication-title: Fin. Forum.
  contributor:
    fullname: Yang
– volume: 1
  start-page: 249
  year: 1977
  ident: ref_5
  article-title: Early warning of bank failure: A logit regression approach
  publication-title: J. Bank. Financ.
  doi: 10.1016/0378-4266(77)90022-X
  contributor:
    fullname: Martin
– volume: 22
  start-page: 1109
  year: 1998
  ident: ref_8
  article-title: The Present and Future Roles of Banks in Small Business Finance
  publication-title: J. Bank. Financ.
  doi: 10.1016/S0378-4266(98)00019-3
  contributor:
    fullname: Meyer
– volume: 37
  start-page: 543
  year: 2004
  ident: ref_15
  article-title: Credit rating analysis with support vector machines and neural networks: a market comparative study
  publication-title: Decis. Suppot. Syst.
  doi: 10.1016/S0167-9236(03)00086-1
  contributor:
    fullname: Huang
– volume: 5
  start-page: 28
  year: 2010
  ident: ref_31
  article-title: A parsimonious default prediction model for Italian SMEs
  publication-title: Banks Bank Syst.
  contributor:
    fullname: Pederzoli
– volume: 11
  start-page: 155
  year: 2008
  ident: ref_39
  article-title: Modelling Portfolio Defaults Using Hidden Markov Models with Covariates
  publication-title: Economet. J.
  doi: 10.1111/j.1368-423X.2008.00232.x
  contributor:
    fullname: Banachewicz
– volume: 48
  start-page: 378
  year: 2010
  ident: ref_17
  article-title: Competing Risk Model for Technology Credit Fund for Small and Medium-Sized Enterprises
  publication-title: J. Small. Bus. Manag.
  doi: 10.1111/j.1540-627X.2010.00299.x
  contributor:
    fullname: Sohn
– volume: 7
  start-page: 1477
  year: 1972
  ident: ref_4
  article-title: An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction
  publication-title: J. Financ. Quant. Anal.
  doi: 10.2307/2329929
  contributor:
    fullname: Edmister
– volume: 37
  start-page: 6233
  year: 2010
  ident: ref_35
  article-title: Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.101
  contributor:
    fullname: Khashman
– ident: ref_10
– volume: 4
  start-page: 44
  year: 1966
  ident: ref_2
  article-title: The Determination of Long-Term Credit Standing with Financial Ratios
  publication-title: J. Account. Res.
  doi: 10.2307/2490168
  contributor:
    fullname: Horrigan
– volume: 58
  start-page: 415
  year: 1963
  ident: ref_41
  article-title: Problems in the analysis of survey data, and a proposal
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500855
  contributor:
    fullname: Morgan
– volume: 44
  start-page: 111
  year: 2013
  ident: ref_32
  article-title: Modelling credit risk for innovative firms: The role of innovation measures
  publication-title: J. Financ. Serv. Res.
  doi: 10.1007/s10693-012-0152-0
  contributor:
    fullname: Pederzoli
– volume: 275
  start-page: 2525
  year: 2018
  ident: ref_38
  article-title: An artificial neural network and Bayesian network model for liquidity risk assessment in banking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.034
  contributor:
    fullname: Madjia
– volume: 12
  start-page: 55
  year: 2017
  ident: ref_25
  article-title: Construction of Seller Credit Evaluation Model of E-commerce Platform from the Perspective of Dynamic Transaction Events
  publication-title: J. E. Bus.
  contributor:
    fullname: Yan
– volume: 49
  start-page: 312
  year: 2003
  ident: ref_19
  article-title: Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation
  publication-title: Manag. Sci.
  contributor:
    fullname: Bart
– ident: ref_13
– volume: 15
  start-page: 757
  year: 1980
  ident: ref_28
  article-title: A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior
  publication-title: J. Financ. Quant. Anal.
  doi: 10.2307/2330408
  contributor:
    fullname: Wiginton
– volume: 9
  start-page: 1062
  year: 2014
  ident: ref_24
  article-title: Trust Management in peer-to-peer Networks
  publication-title: J. Softw.
  doi: 10.4304/jsw.9.5.1062-1070
  contributor:
    fullname: Yu
– volume: 52
  start-page: 317
  year: 2018
  ident: ref_36
  article-title: Enterprise credit risk evaluation based on neural network algorithm
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.023
– volume: 95
  start-page: 24
  year: 1996
  ident: ref_14
  article-title: A comparison of neural networks and linear scoring models in the credit union environment
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(95)00246-4
  contributor:
    fullname: Desai
– ident: ref_43
– volume: 4
  start-page: 71
  year: 1966
  ident: ref_1
  article-title: Financial Ratios as Predictors of Failure
  publication-title: J. Account. Res.
  doi: 10.2307/2490171
  contributor:
    fullname: Beaver
– ident: ref_22
– volume: 49
  start-page: 3
  year: 1994
  ident: ref_7
  article-title: The benefits of lending relationships: Evidence from small business data
  publication-title: J. Financ.
  doi: 10.1111/j.1540-6261.1994.tb04418.x
  contributor:
    fullname: Mitchell
– volume: 32
  start-page: 427
  year: 2007
  ident: ref_26
  article-title: Cluster-based dynamic scoring model
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2005.12.006
  contributor:
    fullname: Lim
– volume: 59
  start-page: 433
  year: 2019
  ident: ref_37
  article-title: Evaluating hedge fund downside risk using a multi-objective neural network
  publication-title: J. Vis. Commun. Image. R.
  doi: 10.1016/j.jvcir.2018.11.002
  contributor:
    fullname: Xu
– volume: 31
  start-page: 494
  year: 2013
  ident: ref_23
  article-title: Dynamic limit growth indices in discrete time
  publication-title: Stoch. Models
  doi: 10.1080/15326349.2015.1053616
  contributor:
    fullname: Bielecki
– volume: 122
  start-page: 775
  year: 2017
  ident: ref_45
  article-title: Evaluating the well-qualified borrowers from PaiPaiDai
  publication-title: Inform. Technol. Quant. Manag.
  contributor:
    fullname: Ning
SSID ssj0000331916
Score 2.344496
Snippet Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 5521
SubjectTerms Artificial intelligence
Bankruptcy
Bayesian analysis
Big Data
Consumers
Credibility
Decision making
Default
Electronic commerce
Evaluation
Learning theory
Literature reviews
Mathematical models
Neural networks
Product quality
Risk assessment
Securities markets
Small & medium sized enterprises-SME
Small business
Sustainability
Sustainable development
Title Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model
URI https://www.proquest.com/docview/2398143740
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4IHPRiFCWiSJrotXEf3dfJCC6iCcSgJNw23babGAkgux789053C8jF885hM9POfDOd-QbglqUOV1aku8RDTplkGQ39TFDFWMYCnuIx0NPIo7E_nLKXmTczBbfctFVufGLpqOVS6Br5neapw9geMOt-9UX11ij9umpWaNSg4WCmYNWh0YvHr5NtlcVy8YjZfsVL6mJ-j_a1NcuZ59j7kWjfEZfRZXACxwYWkofKjqdwoBZNONxMDedNaMW7iTQUNFcyP4P5Y7VTnvTXGIcKMvnIP0m85fAmo3JFNEFsSmKqx0F0Jwt50_X6dU56GMQkQTFOhj96eKv8hYpVgjz_oeskemna_Bymg_i9P6RmhQIVTuQVVGE-FHC3rDZ5HG-cSDFjUdLj0nFdKRCdsNBKFQ8zNwyVLTLh-xxRoxM5KOq5Lagvlgt1ASTgYZBKP4ykJZmfyijjmAplKmPCixBktOFmo85kVTFlJJhhaKUnO6W3obPRdGJuS57sbHv5_-crOELAElXNdB2oF-tvdY2goEi7xvJdqD3N7F-Spbl4
link.rule.ids 315,783,787,21400,27936,27937,33756,43817,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHPBiFCWiqJvotbGP7etkBEuKAjEICbdmu4_ESABpPfjvnW23IBfPnUMzszvzzezMNwjdk9SmwgxVl3hADcKJNAJPMkMQIolPUzgGahp5NPbiGXmZu3NdcMt0W2XlEwtHzVdM1cgfFE8dxHafmI_rL0NtjVKvq3qFxiGqK6oqSL7q3Wj8NtlWWUwHjpjllbykDuT3YF9LsZy5trUfifYdcRFd-ifoWMNC_FTa8RQdiGUTNaqp4ayJWtFuIg0E9ZXMztDiudwpj3sbiEM5nnxknzjacnjjUbEiGgM2xZGhxkFUJwt-V_X6TYa7EMQ4BjGK4x81vFX8QskqgQd_6DqxWpq2OEezfjTtxYZeoWAwO3RzQ0A-5FOnqDa5FG4cSyFjEdyl3HYczgCdkMBMBQ2kEwTCYpJ5HgXUaIc2iLpOC9WWq6W4QNingZ9yLwi5yYmX8lBSSIWkkIS5IYCMNrqr1JmsS6aMBDIMpfRkp_Q26lSaTvRtyZKdbS___3yLGvF0NEyGg_HrFToC8BKWjXUdVMs33-IaAEKe3uhT8AskDbuB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oJOrFKGpEUTfRa0Npt18nI1ACKoSgJNyabXc3MRJAWg_-e2fbLcjFc-fQzM7svJmdeQPwQGOLCTNQXeI-Myin0vBdmRiCUkk9FqMZqGnk4cjtT-nzzJnp_qdUt1WWd2J-UfNlomrkTcVTh7Hdo2ZT6raIcbf3uPoy1AYp9dKq12nsQ9VTLFgVqLbD0XiyqbiYNppbyy04Sm3M9fGsW4rxzLFau1Fp91LOI03vBI41RCRPxZmewp5Y1OCwnCBOa3ARbqfTUFC7Z3oG826xX5501hiTMjL5SD9JuOHzJsN8XTRBnEpCQ42GqK4W8qZq9-uUtDGgcYJijPR_1CBX_gsFwwQZ_KHuJGqB2vwcpr3wvdM39DoFI7ECJzME5kYes_PKk8PQ-5IYsxfBHcYt2-YJIhXqm7FgvrR9X7QSmbguQwRpBRaKOvYFVBbLhbgE4jHfi7nrB9zk1I15IBmmRVJImjgBAo463JfqjFYFa0aE2YZSerRVeh0apaYj7TlptD3nq_8_38EBGkD0Ohi9XMMR4pig6LFrQCVbf4sbxApZfKuN4Bekgb-1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Credit+Risk+Evaluation+Method+for+E-Commerce+Sellers+Based+on+a+Hybrid+Artificial+Intelligence+Model&rft.jtitle=Sustainability&rft.au=Xu%2C+Yao-Zhi&rft.au=Zhang%2C+Jian-Lin&rft.au=Hua%2C+Ying&rft.au=Wang%2C+Lin-Yue&rft.date=2019-10-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=11&rft.issue=19&rft.spage=5521&rft_id=info:doi/10.3390%2Fsu11195521&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su11195521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon