Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model
Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is the key ingredient for the development of the e-commerce ecosystem and sustainability of the financial market. The main objective of this pape...
Saved in:
Published in | Sustainability Vol. 11; no. 19; p. 5521 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is the key ingredient for the development of the e-commerce ecosystem and sustainability of the financial market. The main objective of this paper is to develop an effective and user-friendly system for seller credit risk evaluation. Three hybrid artificial intelligent models, including (1) decision tree—artificial neural network (ANN), (2) decision tree—logistic regression, and (3) decision tree—dynamic Bayesian network have been investigated. The models were trained using sellers credit cases from Taobao, which has 609 cases, and each case had 23 categorical and numerical attributes. The results suggest that the combination of decision tree—ANN provides the highest accuracy, which can promote healthy and fast transactions between buyers and sellers on the platforms. This model is regarded as a powerful tool that allows us to build an advanced credit risk evaluation system, and meet the requirements of the platform transaction mode to be dynamic and self-learning—which will ultimately contribute to the sustainable development of the e-commerce ecosystem. The empirical results can serve as a reference for e-commerce platforms promoting an optimum credit risk evaluation model to improve e-commerce transaction environment and for buyers and investors making decisions. |
---|---|
AbstractList | Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is the key ingredient for the development of the e-commerce ecosystem and sustainability of the financial market. The main objective of this paper is to develop an effective and user-friendly system for seller credit risk evaluation. Three hybrid artificial intelligent models, including (1) decision tree—artificial neural network (ANN), (2) decision tree—logistic regression, and (3) decision tree—dynamic Bayesian network have been investigated. The models were trained using sellers credit cases from Taobao, which has 609 cases, and each case had 23 categorical and numerical attributes. The results suggest that the combination of decision tree—ANN provides the highest accuracy, which can promote healthy and fast transactions between buyers and sellers on the platforms. This model is regarded as a powerful tool that allows us to build an advanced credit risk evaluation system, and meet the requirements of the platform transaction mode to be dynamic and self-learning—which will ultimately contribute to the sustainable development of the e-commerce ecosystem. The empirical results can serve as a reference for e-commerce platforms promoting an optimum credit risk evaluation model to improve e-commerce transaction environment and for buyers and investors making decisions. |
Author | Zhang, Jian-Lin Xu, Yao-Zhi Wang, Lin-Yue Hua, Ying |
Author_xml | – sequence: 1 givenname: Yao-Zhi surname: Xu fullname: Xu, Yao-Zhi – sequence: 2 givenname: Jian-Lin surname: Zhang fullname: Zhang, Jian-Lin – sequence: 3 givenname: Ying surname: Hua fullname: Hua, Ying – sequence: 4 givenname: Lin-Yue surname: Wang fullname: Wang, Lin-Yue |
BookMark | eNpN0N9LwzAQB_AgE5xzL_4FAd-E6iVZ2uZx1qmDDcEfzyVLrprZNjNphf33Vibovdw9fO4Ovqdk1PoWCTlncCWEguvYM8aUlJwdkTGHjCUMJIz-zSdkGuMWhhKCKZaOSX27b3XjDC0CWtfRJxc_6OJL173unG_pGrt3b2nlA10khW8aDAbpM9Y1hkhvdERLB6bpw34TnKXz0LnKGadrumy7gbk3bIeNtbdYn5HjStcRp799Ql7vFi_FQ7J6vF8W81ViuJJdgnnGMi2AcQVSA0izSSFFK7XlQlijlJjlsEGdVyLPkZnKpKkGpbjiA5ViQi4Od3fBf_YYu3Lr-9AOL0suVM5mIpvBoC4PygQfY8Cq3AXX6LAvGZQ_gZZ_gYpvZmdoxQ |
CitedBy_id | crossref_primary_10_3390_su15075882 crossref_primary_10_3390_su15054233 crossref_primary_10_1016_j_measen_2023_100793 crossref_primary_10_3390_jrfm16110487 crossref_primary_10_1155_2020_8888296 crossref_primary_10_1007_s13198_021_01181_0 crossref_primary_10_1016_j_ejor_2024_03_008 crossref_primary_10_37394_232018_2022_10_9 crossref_primary_10_1016_j_asoc_2023_110277 crossref_primary_10_4018_JGIM_305238 crossref_primary_10_3390_su142315585 crossref_primary_10_1016_j_heliyon_2024_e28571 crossref_primary_10_2478_amns_2023_2_01570 crossref_primary_10_4236_ajibm_2023_139052 crossref_primary_10_1007_s11227_022_04329_2 crossref_primary_10_1111_ijcs_12938 crossref_primary_10_2478_amns_2024_0763 crossref_primary_10_1007_s11042_024_18793_w crossref_primary_10_3233_IDT_230190 crossref_primary_10_3390_math8101799 |
Cites_doi | 10.1016/j.jbankfin.2006.05.008 10.3390/su11061506 10.1016/j.eswa.2004.12.031 10.1086/296668 10.3390/su8050433 10.1111/j.1540-6261.1968.tb00843.x 10.1016/j.jbankfin.2014.02.009 10.1287/mnsc.34.12.1403 10.1016/0378-4266(77)90022-X 10.1016/S0378-4266(98)00019-3 10.1016/S0167-9236(03)00086-1 10.1111/j.1368-423X.2008.00232.x 10.1111/j.1540-627X.2010.00299.x 10.2307/2329929 10.1016/j.eswa.2010.02.101 10.2307/2490168 10.1080/01621459.1963.10500855 10.1007/s10693-012-0152-0 10.1016/j.neucom.2017.11.034 10.2307/2330408 10.4304/jsw.9.5.1062-1070 10.1016/j.cogsys.2018.07.023 10.1016/0377-2217(95)00246-4 10.2307/2490171 10.1111/j.1540-6261.1994.tb04418.x 10.1016/j.eswa.2005.12.006 10.1016/j.jvcir.2018.11.002 10.1080/15326349.2015.1053616 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 4U- 7X5 ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO K6~ PIMPY PQEST PQQKQ PQUKI |
DOI | 10.3390/su11195521 |
DatabaseName | CrossRef University Readers Entrepreneurship Database ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection ProQuest One Community College ProQuest Central Korea ProQuest Business Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef ProQuest Entrepreneurship Publicly Available Content Database Business Premium Collection University Readers ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Business Collection ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | ProQuest Entrepreneurship CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 2071-1050 |
ExternalDocumentID | 10_3390_su11195521 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29Q 2WC 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION E3Z ECGQY ESTFP FRS GROUPED_DOAJ GX1 HCIFZ KQ8 ML. MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY TR2 4U- 7X5 ABUWG AZQEC BEZIV DWQXO K6~ PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c295t-e8717a3012905a005cb606ed5ad233dc993480bea8f388e1cfc66a099292cb653 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Thu Oct 10 22:22:55 EDT 2024 Fri Aug 23 04:51:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-e8717a3012905a005cb606ed5ad233dc993480bea8f388e1cfc66a099292cb653 |
OpenAccessLink | https://www.proquest.com/docview/2398143740?pq-origsite=%requestingapplication% |
PQID | 2398143740 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2398143740 crossref_primary_10_3390_su11195521 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bielecki (ref_23) 2013; 31 Morgan (ref_41) 1963; 58 Koh (ref_30) 2004; 1 Pederzoli (ref_31) 2010; 5 Banachewicz (ref_39) 2008; 11 Fantazzini (ref_16) 2009; 11 Yu (ref_24) 2014; 9 ref_13 ref_34 Beaver (ref_1) 1966; 4 Mirta (ref_29) 2005; 3 Edmister (ref_4) 1972; 7 ref_10 Mitchell (ref_7) 1994; 49 Khashman (ref_35) 2010; 37 Wiginton (ref_28) 1980; 15 Ono (ref_18) 2014; 42 Altman (ref_3) 1968; 23 Yan (ref_25) 2017; 12 Ning (ref_45) 2017; 122 Gregory (ref_11) 2006; 30 Madjia (ref_38) 2018; 275 Messier (ref_12) 1988; 34 Jiang (ref_27) 2015; 47 (ref_36) 2018; 52 Yang (ref_44) 2013; 18 Martin (ref_5) 1977; 1 Bart (ref_19) 2003; 49 ref_22 ref_21 ref_43 Horrigan (ref_2) 1966; 4 ref_20 ref_42 Raghuram (ref_6) 1992; 47 Pederzoli (ref_32) 2013; 44 ref_40 Desai (ref_14) 1996; 95 Berger (ref_9) 1995; 68 Lim (ref_26) 2007; 32 Lee (ref_33) 2005; 28 Sohn (ref_17) 2010; 48 Huang (ref_15) 2004; 37 Meyer (ref_8) 1998; 22 Xu (ref_37) 2019; 59 |
References_xml | – volume: 47 start-page: 1367 year: 1992 ident: ref_6 article-title: Insiders and outsiders: the choice between informed and arm’s length debt publication-title: J. Financ. contributor: fullname: Raghuram – volume: 30 start-page: 2945 year: 2006 ident: ref_11 article-title: A more complete conceptual framework for SME finance publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2006.05.008 contributor: fullname: Gregory – volume: 47 start-page: 40 year: 2015 ident: ref_27 article-title: Development of Personal Credit Scoring Model and Analysis of Optimization Algorithms publication-title: J. H.I.T. contributor: fullname: Jiang – ident: ref_21 doi: 10.3390/su11061506 – volume: 28 start-page: 743 year: 2005 ident: ref_33 article-title: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2004.12.031 contributor: fullname: Lee – ident: ref_34 – volume: 11 start-page: 9 year: 2009 ident: ref_16 article-title: Random Survival Forests Models for SME Credit Risk Measurement publication-title: Methodol. Comput. Appl. contributor: fullname: Fantazzini – volume: 3 start-page: 133 year: 2005 ident: ref_29 article-title: Modelling Small-business Credit Scoring by Using Logistic Regression, Neural Networks and Decision Trees publication-title: Int. J. Intell. Syst. Account. Financ. Manag. contributor: fullname: Mirta – volume: 68 start-page: 351 year: 1995 ident: ref_9 article-title: Relationship lending and lines of credit in small firm finance publication-title: J. Bus. doi: 10.1086/296668 contributor: fullname: Berger – ident: ref_40 – ident: ref_42 – ident: ref_20 doi: 10.3390/su8050433 – volume: 23 start-page: 589 year: 1968 ident: ref_3 article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy publication-title: J. Financ. doi: 10.1111/j.1540-6261.1968.tb00843.x contributor: fullname: Altman – volume: 42 start-page: 371 year: 2014 ident: ref_18 article-title: Differentiated Use of Small Business Credit Scoring by Relationship Lenders and Transactional Lenders: Evidence from Firm-Bank Matched Data in Japan publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2014.02.009 contributor: fullname: Ono – volume: 34 start-page: 1403 year: 1988 ident: ref_12 article-title: Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data publication-title: Manag. Sci. doi: 10.1287/mnsc.34.12.1403 contributor: fullname: Messier – volume: 1 start-page: 96 year: 2004 ident: ref_30 article-title: A Two-step Method to Construct Credit Scoring Models with Data Mining Techniques publication-title: Int. J. Bus. Inform. contributor: fullname: Koh – volume: 18 start-page: 57 year: 2013 ident: ref_44 article-title: Construction of Personal Credit Assessment Portfolio Model Based on Decision Tree-Neural Network publication-title: Fin. Forum. contributor: fullname: Yang – volume: 1 start-page: 249 year: 1977 ident: ref_5 article-title: Early warning of bank failure: A logit regression approach publication-title: J. Bank. Financ. doi: 10.1016/0378-4266(77)90022-X contributor: fullname: Martin – volume: 22 start-page: 1109 year: 1998 ident: ref_8 article-title: The Present and Future Roles of Banks in Small Business Finance publication-title: J. Bank. Financ. doi: 10.1016/S0378-4266(98)00019-3 contributor: fullname: Meyer – volume: 37 start-page: 543 year: 2004 ident: ref_15 article-title: Credit rating analysis with support vector machines and neural networks: a market comparative study publication-title: Decis. Suppot. Syst. doi: 10.1016/S0167-9236(03)00086-1 contributor: fullname: Huang – volume: 5 start-page: 28 year: 2010 ident: ref_31 article-title: A parsimonious default prediction model for Italian SMEs publication-title: Banks Bank Syst. contributor: fullname: Pederzoli – volume: 11 start-page: 155 year: 2008 ident: ref_39 article-title: Modelling Portfolio Defaults Using Hidden Markov Models with Covariates publication-title: Economet. J. doi: 10.1111/j.1368-423X.2008.00232.x contributor: fullname: Banachewicz – volume: 48 start-page: 378 year: 2010 ident: ref_17 article-title: Competing Risk Model for Technology Credit Fund for Small and Medium-Sized Enterprises publication-title: J. Small. Bus. Manag. doi: 10.1111/j.1540-627X.2010.00299.x contributor: fullname: Sohn – volume: 7 start-page: 1477 year: 1972 ident: ref_4 article-title: An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction publication-title: J. Financ. Quant. Anal. doi: 10.2307/2329929 contributor: fullname: Edmister – volume: 37 start-page: 6233 year: 2010 ident: ref_35 article-title: Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2010.02.101 contributor: fullname: Khashman – ident: ref_10 – volume: 4 start-page: 44 year: 1966 ident: ref_2 article-title: The Determination of Long-Term Credit Standing with Financial Ratios publication-title: J. Account. Res. doi: 10.2307/2490168 contributor: fullname: Horrigan – volume: 58 start-page: 415 year: 1963 ident: ref_41 article-title: Problems in the analysis of survey data, and a proposal publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1963.10500855 contributor: fullname: Morgan – volume: 44 start-page: 111 year: 2013 ident: ref_32 article-title: Modelling credit risk for innovative firms: The role of innovation measures publication-title: J. Financ. Serv. Res. doi: 10.1007/s10693-012-0152-0 contributor: fullname: Pederzoli – volume: 275 start-page: 2525 year: 2018 ident: ref_38 article-title: An artificial neural network and Bayesian network model for liquidity risk assessment in banking publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.034 contributor: fullname: Madjia – volume: 12 start-page: 55 year: 2017 ident: ref_25 article-title: Construction of Seller Credit Evaluation Model of E-commerce Platform from the Perspective of Dynamic Transaction Events publication-title: J. E. Bus. contributor: fullname: Yan – volume: 49 start-page: 312 year: 2003 ident: ref_19 article-title: Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation publication-title: Manag. Sci. contributor: fullname: Bart – ident: ref_13 – volume: 15 start-page: 757 year: 1980 ident: ref_28 article-title: A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior publication-title: J. Financ. Quant. Anal. doi: 10.2307/2330408 contributor: fullname: Wiginton – volume: 9 start-page: 1062 year: 2014 ident: ref_24 article-title: Trust Management in peer-to-peer Networks publication-title: J. Softw. doi: 10.4304/jsw.9.5.1062-1070 contributor: fullname: Yu – volume: 52 start-page: 317 year: 2018 ident: ref_36 article-title: Enterprise credit risk evaluation based on neural network algorithm publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.023 – volume: 95 start-page: 24 year: 1996 ident: ref_14 article-title: A comparison of neural networks and linear scoring models in the credit union environment publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(95)00246-4 contributor: fullname: Desai – ident: ref_43 – volume: 4 start-page: 71 year: 1966 ident: ref_1 article-title: Financial Ratios as Predictors of Failure publication-title: J. Account. Res. doi: 10.2307/2490171 contributor: fullname: Beaver – ident: ref_22 – volume: 49 start-page: 3 year: 1994 ident: ref_7 article-title: The benefits of lending relationships: Evidence from small business data publication-title: J. Financ. doi: 10.1111/j.1540-6261.1994.tb04418.x contributor: fullname: Mitchell – volume: 32 start-page: 427 year: 2007 ident: ref_26 article-title: Cluster-based dynamic scoring model publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2005.12.006 contributor: fullname: Lim – volume: 59 start-page: 433 year: 2019 ident: ref_37 article-title: Evaluating hedge fund downside risk using a multi-objective neural network publication-title: J. Vis. Commun. Image. R. doi: 10.1016/j.jvcir.2018.11.002 contributor: fullname: Xu – volume: 31 start-page: 494 year: 2013 ident: ref_23 article-title: Dynamic limit growth indices in discrete time publication-title: Stoch. Models doi: 10.1080/15326349.2015.1053616 contributor: fullname: Bielecki – volume: 122 start-page: 775 year: 2017 ident: ref_45 article-title: Evaluating the well-qualified borrowers from PaiPaiDai publication-title: Inform. Technol. Quant. Manag. contributor: fullname: Ning |
SSID | ssj0000331916 |
Score | 2.344496 |
Snippet | Credit risk evaluation is important for e-commerce platforms, due to the uncertainty and transaction risk associated with buyers and sellers. Moreover, it is... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 5521 |
SubjectTerms | Artificial intelligence Bankruptcy Bayesian analysis Big Data Consumers Credibility Decision making Default Electronic commerce Evaluation Learning theory Literature reviews Mathematical models Neural networks Product quality Risk assessment Securities markets Small & medium sized enterprises-SME Small business Sustainability Sustainable development |
Title | Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model |
URI | https://www.proquest.com/docview/2398143740 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4IHPRiFCWiSJrotXEf3dfJCC6iCcSgJNw23babGAkgux789053C8jF885hM9POfDOd-QbglqUOV1aku8RDTplkGQ39TFDFWMYCnuIx0NPIo7E_nLKXmTczBbfctFVufGLpqOVS6Br5neapw9geMOt-9UX11ij9umpWaNSg4WCmYNWh0YvHr5NtlcVy8YjZfsVL6mJ-j_a1NcuZ59j7kWjfEZfRZXACxwYWkofKjqdwoBZNONxMDedNaMW7iTQUNFcyP4P5Y7VTnvTXGIcKMvnIP0m85fAmo3JFNEFsSmKqx0F0Jwt50_X6dU56GMQkQTFOhj96eKv8hYpVgjz_oeskemna_Bymg_i9P6RmhQIVTuQVVGE-FHC3rDZ5HG-cSDFjUdLj0nFdKRCdsNBKFQ8zNwyVLTLh-xxRoxM5KOq5Lagvlgt1ASTgYZBKP4ykJZmfyijjmAplKmPCixBktOFmo85kVTFlJJhhaKUnO6W3obPRdGJuS57sbHv5_-crOELAElXNdB2oF-tvdY2goEi7xvJdqD3N7F-Spbl4 |
link.rule.ids | 315,783,787,21400,27936,27937,33756,43817,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHPBiFCWiqJvotbGP7etkBEuKAjEICbdmu4_ESABpPfjvnW23IBfPnUMzszvzzezMNwjdk9SmwgxVl3hADcKJNAJPMkMQIolPUzgGahp5NPbiGXmZu3NdcMt0W2XlEwtHzVdM1cgfFE8dxHafmI_rL0NtjVKvq3qFxiGqK6oqSL7q3Wj8NtlWWUwHjpjllbykDuT3YF9LsZy5trUfifYdcRFd-ifoWMNC_FTa8RQdiGUTNaqp4ayJWtFuIg0E9ZXMztDiudwpj3sbiEM5nnxknzjacnjjUbEiGgM2xZGhxkFUJwt-V_X6TYa7EMQ4BjGK4x81vFX8QskqgQd_6DqxWpq2OEezfjTtxYZeoWAwO3RzQ0A-5FOnqDa5FG4cSyFjEdyl3HYczgCdkMBMBQ2kEwTCYpJ5HgXUaIc2iLpOC9WWq6W4QNingZ9yLwi5yYmX8lBSSIWkkIS5IYCMNrqr1JmsS6aMBDIMpfRkp_Q26lSaTvRtyZKdbS___3yLGvF0NEyGg_HrFToC8BKWjXUdVMs33-IaAEKe3uhT8AskDbuB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oJOrFKGpEUTfRa0Npt18nI1ACKoSgJNyabXc3MRJAWg_-e2fbLcjFc-fQzM7svJmdeQPwQGOLCTNQXeI-Myin0vBdmRiCUkk9FqMZqGnk4cjtT-nzzJnp_qdUt1WWd2J-UfNlomrkTcVTh7Hdo2ZT6raIcbf3uPoy1AYp9dKq12nsQ9VTLFgVqLbD0XiyqbiYNppbyy04Sm3M9fGsW4rxzLFau1Fp91LOI03vBI41RCRPxZmewp5Y1OCwnCBOa3ARbqfTUFC7Z3oG826xX5501hiTMjL5SD9JuOHzJsN8XTRBnEpCQ42GqK4W8qZq9-uUtDGgcYJijPR_1CBX_gsFwwQZ_KHuJGqB2vwcpr3wvdM39DoFI7ECJzME5kYes_PKk8PQ-5IYsxfBHcYt2-YJIhXqm7FgvrR9X7QSmbguQwRpBRaKOvYFVBbLhbgE4jHfi7nrB9zk1I15IBmmRVJImjgBAo463JfqjFYFa0aE2YZSerRVeh0apaYj7TlptD3nq_8_38EBGkD0Ohi9XMMR4pig6LFrQCVbf4sbxApZfKuN4Bekgb-1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Credit+Risk+Evaluation+Method+for+E-Commerce+Sellers+Based+on+a+Hybrid+Artificial+Intelligence+Model&rft.jtitle=Sustainability&rft.au=Xu%2C+Yao-Zhi&rft.au=Zhang%2C+Jian-Lin&rft.au=Hua%2C+Ying&rft.au=Wang%2C+Lin-Yue&rft.date=2019-10-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=11&rft.issue=19&rft.spage=5521&rft_id=info:doi/10.3390%2Fsu11195521&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su11195521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |