Edge-Guided Non-Local Fully Convolutional Network for Salient Object Detection

Fully Convolutional Neural Network (FCN) has been widely applied to salient object detection recently by virtue of high-level semantic feature extraction, but existing FCN-based methods still suffer from continuous striding and pooling operations leading to loss of spatial structure and blurred edge...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 2; pp. 582 - 593
Main Authors Tu, Zhengzheng, Ma, Yan, Li, Chenglong, Tang, Jin, Luo, Bin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fully Convolutional Neural Network (FCN) has been widely applied to salient object detection recently by virtue of high-level semantic feature extraction, but existing FCN-based methods still suffer from continuous striding and pooling operations leading to loss of spatial structure and blurred edges. To maintain the clear edge structure of salient objects, we propose a novel Edge-guided Non-local FCN (ENFNet) to perform edge-guided feature learning for accurate salient object detection. In a specific, we extract hierarchical global and local information in FCN to incorporate non-local features for effective feature representations. To preserve good boundaries of salient objects, we propose a guidance block to embed edge prior knowledge into hierarchical feature maps. The guidance block not only performs feature-wise manipulation but also spatial-wise transformation for effective edge embeddings. Our model is trained on the MSRA-B dataset and tested on five popular benchmark datasets. Comparing with the state-of-the-art methods, the proposed method performance well on five datasets.
AbstractList Fully Convolutional Neural Network (FCN) has been widely applied to salient object detection recently by virtue of high-level semantic feature extraction, but existing FCN-based methods still suffer from continuous striding and pooling operations leading to loss of spatial structure and blurred edges. To maintain the clear edge structure of salient objects, we propose a novel Edge-guided Non-local FCN (ENFNet) to perform edge-guided feature learning for accurate salient object detection. In a specific, we extract hierarchical global and local information in FCN to incorporate non-local features for effective feature representations. To preserve good boundaries of salient objects, we propose a guidance block to embed edge prior knowledge into hierarchical feature maps. The guidance block not only performs feature-wise manipulation but also spatial-wise transformation for effective edge embeddings. Our model is trained on the MSRA-B dataset and tested on five popular benchmark datasets. Comparing with the state-of-the-art methods, the proposed method performance well on five datasets.
Author Tu, Zhengzheng
Luo, Bin
Tang, Jin
Ma, Yan
Li, Chenglong
Author_xml – sequence: 1
  givenname: Zhengzheng
  surname: Tu
  fullname: Tu, Zhengzheng
  email: zhengzhengahu@163.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 2
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  email: m17856174397@163.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 3
  givenname: Chenglong
  orcidid: 0000-0002-7233-2739
  surname: Li
  fullname: Li, Chenglong
  email: lcl1314@foxmail.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 4
  givenname: Jin
  orcidid: 0000-0001-8375-3590
  surname: Tang
  fullname: Tang, Jin
  email: tangjin@ahu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 5
  givenname: Bin
  orcidid: 0000-0001-5948-5055
  surname: Luo
  fullname: Luo, Bin
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4nlx2t2W9mgQ0ITAAfTadPthFtctdrsa_r2LEA8ePL2TyftMJs8A9WpfW4SuMYwwBnG3maxfNiMCBEZEcOA0O0N9TClPCQHa62agOOUE0ws0aJotAM55Pu6j5dS82nTelsaaZOnrdOG1qpJZW1X7ZOLrT1-1sfR1t1va-OXDW-J8SNaqKm0dk1WxtTomDzZ20dUu0blTVWOvTjlEz7PpZvKYLlbzp8n9ItVE0JhaVlBjmCiUYxqIcsYVxOFcaI6xMBwKI7IxFUBzzAB0rgxzDgzhBQfCdDZEt8e7u-A_WttEufVt6L5sJMk5oyLjDHctfmzp4JsmWCd1GdXhzxhUWUkM8mBP_tiTB3vyZK9DyR90F8p3Ffb_QzdHqLTW_gICMiZAZN-bnX09
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106291
crossref_primary_10_1109_TCSVT_2021_3099120
crossref_primary_10_1109_ACCESS_2022_3225918
crossref_primary_10_1016_j_neucom_2023_126916
crossref_primary_10_1016_j_cviu_2024_104063
crossref_primary_10_1109_TCSVT_2023_3275252
crossref_primary_10_1016_j_isprsjprs_2023_03_013
crossref_primary_10_3390_jimaging10080186
crossref_primary_10_3934_era_2023066
crossref_primary_10_1109_TCSVT_2022_3204740
crossref_primary_10_1016_j_neucom_2025_129558
crossref_primary_10_1109_TCSVT_2022_3150923
crossref_primary_10_1016_j_neucom_2021_04_078
crossref_primary_10_1109_TPAMI_2022_3166451
crossref_primary_10_1088_1402_4896_ad76e8
crossref_primary_10_3390_coatings12111730
crossref_primary_10_1109_TCSVT_2023_3241196
crossref_primary_10_3390_rs14030533
crossref_primary_10_1007_s00371_022_02499_x
crossref_primary_10_1016_j_neucom_2024_129153
crossref_primary_10_1007_s10489_023_04648_8
crossref_primary_10_1007_s10489_023_04645_x
crossref_primary_10_1007_s10489_023_04587_4
crossref_primary_10_1088_1361_6501_ad9856
crossref_primary_10_1007_s10489_021_02713_8
crossref_primary_10_1016_j_engappai_2023_106530
crossref_primary_10_1007_s00521_023_08502_3
crossref_primary_10_1016_j_compbiomed_2021_104625
crossref_primary_10_1016_j_patcog_2024_110903
crossref_primary_10_1109_TCSVT_2022_3199780
crossref_primary_10_1109_TGRS_2021_3101359
crossref_primary_10_1007_s00034_024_02983_w
crossref_primary_10_1109_TCSVT_2022_3212088
crossref_primary_10_1016_j_aej_2022_07_006
crossref_primary_10_1109_TCSVT_2021_3127149
crossref_primary_10_1109_TCSVT_2022_3197643
crossref_primary_10_1016_j_imavis_2025_105487
crossref_primary_10_1007_s11042_023_15794_z
crossref_primary_10_1109_TCSVT_2022_3157828
crossref_primary_10_1016_j_eswa_2023_121649
crossref_primary_10_1016_j_imavis_2024_105302
crossref_primary_10_1109_TIP_2023_3314285
crossref_primary_10_1007_s11760_022_02253_9
crossref_primary_10_1109_TIP_2022_3176540
crossref_primary_10_1007_s00371_023_03076_6
crossref_primary_10_1109_TCSVT_2023_3307693
crossref_primary_10_1109_TCSVT_2023_3331780
crossref_primary_10_1016_j_jksuci_2023_101838
crossref_primary_10_1109_TCSVT_2021_3069848
crossref_primary_10_1007_s10489_022_04062_6
crossref_primary_10_1186_s12880_024_01277_6
crossref_primary_10_1109_TIV_2023_3314527
crossref_primary_10_1109_TCSVT_2023_3287167
crossref_primary_10_1109_TCSVT_2023_3268217
crossref_primary_10_1007_s11517_024_03050_x
crossref_primary_10_1109_TCSVT_2023_3312859
crossref_primary_10_1109_TNNLS_2021_3113657
crossref_primary_10_1109_TIP_2022_3214092
crossref_primary_10_3390_rs17040707
crossref_primary_10_1109_ACCESS_2021_3138782
crossref_primary_10_1109_TCSVT_2022_3144852
crossref_primary_10_1109_TCSVT_2021_3104932
crossref_primary_10_1109_TIP_2021_3106798
crossref_primary_10_1007_s11760_024_03489_3
crossref_primary_10_3390_rs17020342
crossref_primary_10_1109_TCSVT_2021_3049408
crossref_primary_10_1109_TCSVT_2023_3253685
crossref_primary_10_1109_TCSVT_2022_3203595
crossref_primary_10_3389_fnbot_2023_1234129
crossref_primary_10_1109_ACCESS_2022_3148201
crossref_primary_10_1109_TIM_2024_3507047
crossref_primary_10_1016_j_neucom_2023_126742
crossref_primary_10_1109_TCSVT_2021_3082939
crossref_primary_10_1016_j_compeleceng_2024_109296
crossref_primary_10_1016_j_dsp_2023_104155
crossref_primary_10_1016_j_jvcir_2024_104186
crossref_primary_10_1109_TCSVT_2024_3403264
crossref_primary_10_1109_TIM_2022_3200114
crossref_primary_10_1016_j_knosys_2022_108901
crossref_primary_10_1109_TCSVT_2022_3233060
crossref_primary_10_1109_TCSVT_2023_3318672
crossref_primary_10_1117_1_JEI_34_1_013005
crossref_primary_10_3389_fnins_2023_1194713
crossref_primary_10_1016_j_eswa_2022_118833
crossref_primary_10_1109_TCSVT_2022_3164093
crossref_primary_10_1016_j_jii_2022_100403
crossref_primary_10_1109_TCSVT_2023_3283705
crossref_primary_10_3390_e22101174
crossref_primary_10_3390_rs16162978
crossref_primary_10_1109_ACCESS_2024_3525303
crossref_primary_10_1109_TCSVT_2021_3098763
crossref_primary_10_1109_TCSVT_2021_3126591
crossref_primary_10_1109_TCSVT_2023_3284076
crossref_primary_10_1016_j_knosys_2023_111243
crossref_primary_10_1016_j_eswa_2024_125562
Cites_doi 10.1109/CVPR.2018.00070
10.1007/11758501_76
10.1109/CVPR.2019.00244
10.1109/TIP.2016.2537211
10.1109/CVPR.2009.5206596
10.1109/CVPR.2014.43
10.1109/ICCV.2017.119
10.1109/CVPR.2017.698
10.1109/CVPR.2013.271
10.1109/TPAMI.2018.2864965
10.1109/CVPR.2016.58
10.1109/ICCV.2017.31
10.1109/APSIPA.2017.8282222
10.1109/CVPR.2014.360
10.1109/ICIP.2016.7532516
10.1109/ICCV.2009.5459296
10.1109/CVPR.2019.00404
10.1109/CVPR.2017.404
10.1109/ICCV.2019.00389
10.1109/TCSVT.2013.2280096
10.1109/TPAMI.2010.70
10.1109/TIP.2016.2579306
10.1109/CVPR.2016.80
10.1109/ICCV.2017.32
10.1109/ICIP.2017.8296717
10.1109/TIP.2016.2614135
10.1109/ICCV.2015.164
10.1109/CVPR.2015.7298731
10.1109/CVPR.2013.460
10.1109/CVPR.2017.25
10.1109/3DV.2016.79
10.1016/j.patcog.2019.106977
10.1109/CVPRW.2012.6239191
10.1109/CVPR.2013.153
10.1109/LSP.2018.2881835
10.1109/CVPR.2018.00330
10.1109/CVPR.2017.563
10.1109/CVPR.2016.78
10.1109/ICCV.2017.433
10.1109/CVPR.2013.407
10.1109/ICCV.2001.937655
10.1109/CVPR.2015.7298938
10.1002/cpa.3160420503
10.1109/TIP.2017.2756825
10.1007/s11263-014-0733-5
10.1109/CVPR.2012.6247743
10.1109/CVPR.2016.399
10.1186/s12880-015-0068-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.2980853
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 593
ExternalDocumentID 10_1109_TCSVT_2020_2980853
9036909
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Anhui Province
  grantid: 1808085QF187; 1908085QF264
  funderid: 10.13039/501100003995
– fundername: National Natural Science Foundation of China
  grantid: 61602006; 61702002; 61976003; 61976002
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Anhui Higher Education Institution of China
  grantid: KJ2019A0026
– fundername: NSFC Key Projects in International (Regional) Cooperation and Exchanges
  grantid: 61860206004
  funderid: 10.13039/501100001809
– fundername: Open fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-e6b5dd69baf6c02afdfb2f149c8119d80bd937590541600c4ad6ff0d28b8026c3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:22:43 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Wed Aug 27 02:30:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e6b5dd69baf6c02afdfb2f149c8119d80bd937590541600c4ad6ff0d28b8026c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8375-3590
0000-0002-7233-2739
0000-0001-5948-5055
PQID 2486593861
PQPubID 85433
PageCount 12
ParticipantIDs ieee_primary_9036909
crossref_citationtrail_10_1109_TCSVT_2020_2980853
proquest_journals_2486593861
crossref_primary_10_1109_TCSVT_2020_2980853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
li (ref61) 2019
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
shen (ref15) 2012
ref46
ref45
ref48
ref47
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref37
li (ref23) 2015
ref36
ref31
ref30
ref33
liu (ref58) 2011; 33
ref2
ref1
ref38
borji (ref59) 2012
pinheiro (ref43) 2016
kingma (ref57) 2015
abadi (ref56) 2016
ref24
chen (ref34) 2018
ref25
deng (ref42) 2018
ref20
ref22
zitnick (ref21) 2014
simonyan (ref32) 2015
ref28
ref27
ref29
wang (ref26) 2016
li (ref3) 2017; 27
ref60
zhang (ref39) 2017
ref62
References_xml – ident: ref22
  doi: 10.1109/CVPR.2018.00070
– ident: ref38
  doi: 10.1007/11758501_76
– ident: ref54
  doi: 10.1109/CVPR.2019.00244
– ident: ref2
  doi: 10.1109/TIP.2016.2537211
– ident: ref60
  doi: 10.1109/CVPR.2009.5206596
– year: 2019
  ident: ref61
  article-title: Segmenting objects in day and night: Edge-conditioned CNN for thermal image semantic segmentation
  publication-title: arXiv 1907 10303
– start-page: 1
  year: 2015
  ident: ref32
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref24
  doi: 10.1109/CVPR.2014.43
– ident: ref18
  doi: 10.1109/ICCV.2017.119
– start-page: 234
  year: 2018
  ident: ref34
  article-title: Reverse attention for salient object detection
  publication-title: Proc IEEE Eur Conf Comput Vis
– ident: ref19
  doi: 10.1109/CVPR.2017.698
– ident: ref53
  doi: 10.1109/CVPR.2013.271
– ident: ref7
  doi: 10.1109/TPAMI.2018.2864965
– ident: ref14
  doi: 10.1109/CVPR.2016.58
– ident: ref17
  doi: 10.1109/ICCV.2017.31
– ident: ref29
  doi: 10.1109/APSIPA.2017.8282222
– ident: ref52
  doi: 10.1109/CVPR.2014.360
– start-page: 75
  year: 2016
  ident: ref43
  article-title: Learning to refine object segments
  publication-title: Proc IEEE Conf Eur Conf Comput Vis
– ident: ref36
  doi: 10.1109/ICIP.2016.7532516
– ident: ref1
  doi: 10.1109/ICCV.2009.5459296
– start-page: 391
  year: 2014
  ident: ref21
  article-title: Edge boxes: Locating object proposals from edges
  publication-title: Proc IEEE Eur Conf Comput Vis
– start-page: 825
  year: 2016
  ident: ref26
  article-title: Saliency detection with recurrent fully convolutional networks
  publication-title: Proc IEEE Eur Conf Comput Vis
– ident: ref40
  doi: 10.1109/CVPR.2019.00404
– ident: ref50
  doi: 10.1109/CVPR.2017.404
– ident: ref47
  doi: 10.1109/ICCV.2019.00389
– ident: ref4
  doi: 10.1109/TCSVT.2013.2280096
– start-page: 5455
  year: 2015
  ident: ref23
  article-title: Visual saliency based on multiscale deep features
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– volume: 33
  start-page: 353
  year: 2011
  ident: ref58
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.70
– ident: ref49
  doi: 10.1109/TIP.2016.2579306
– ident: ref48
  doi: 10.1109/CVPR.2016.80
– ident: ref51
  doi: 10.1109/ICCV.2017.32
– ident: ref20
  doi: 10.1109/ICIP.2017.8296717
– ident: ref6
  doi: 10.1109/TIP.2016.2614135
– year: 2016
  ident: ref56
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv 1603 04467
– start-page: 853
  year: 2012
  ident: ref15
  article-title: A unified approach to salient object detection via low rank matrix recovery
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref33
  doi: 10.1109/ICCV.2015.164
– ident: ref30
  doi: 10.1109/CVPR.2015.7298731
– ident: ref8
  doi: 10.1109/CVPR.2013.460
– ident: ref28
  doi: 10.1109/CVPR.2017.25
– ident: ref45
  doi: 10.1109/3DV.2016.79
– ident: ref62
  doi: 10.1016/j.patcog.2019.106977
– ident: ref5
  doi: 10.1109/CVPRW.2012.6239191
– ident: ref11
  doi: 10.1109/CVPR.2013.153
– ident: ref41
  doi: 10.1109/LSP.2018.2881835
– volume: 27
  start-page: 725
  year: 2017
  ident: ref3
  article-title: Weighted low-rank decomposition for robust grayscale-thermal foreground detection
  publication-title: IEEE Trans Circuits Syst Video Technol
– year: 2017
  ident: ref39
  article-title: Deep edge-aware saliency detection
  publication-title: arXiv 1708 04366
– ident: ref31
  doi: 10.1109/CVPR.2018.00330
– ident: ref16
  doi: 10.1109/CVPR.2017.563
– start-page: 414
  year: 2012
  ident: ref59
  article-title: Salient object detection: A benchmark
  publication-title: Proc IEEE Conf Eur Conf Comput Vis
– ident: ref12
  doi: 10.1109/CVPR.2016.78
– start-page: 684
  year: 2018
  ident: ref42
  article-title: R3net: Recurrent residual refinement network for saliency detection
  publication-title: Proc Int Joint Artif Intell Conf
– ident: ref35
  doi: 10.1109/ICCV.2017.433
– start-page: 1
  year: 2015
  ident: ref57
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref10
  doi: 10.1109/CVPR.2013.407
– ident: ref25
  doi: 10.1109/ICCV.2001.937655
– ident: ref13
  doi: 10.1109/CVPR.2015.7298938
– ident: ref44
  doi: 10.1002/cpa.3160420503
– ident: ref37
  doi: 10.1109/TIP.2017.2756825
– ident: ref55
  doi: 10.1007/s11263-014-0733-5
– ident: ref9
  doi: 10.1109/CVPR.2012.6247743
– ident: ref27
  doi: 10.1109/CVPR.2016.399
– ident: ref46
  doi: 10.1186/s12880-015-0068-x
SSID ssj0014847
Score 2.624388
Snippet Fully Convolutional Neural Network (FCN) has been widely applied to salient object detection recently by virtue of high-level semantic feature extraction, but...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 582
SubjectTerms Artificial neural networks
Context modeling
Convolution
Datasets
Deep learning
edge guidance
Feature extraction
Feature maps
fully convolutional neural network
Image edge detection
Machine learning
non-local features
Object detection
Object recognition
Salience
Saliency detection
Salient object detection
Title Edge-Guided Non-Local Fully Convolutional Network for Salient Object Detection
URI https://ieeexplore.ieee.org/document/9036909
https://www.proquest.com/docview/2486593861
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8CqJQkAc2SInd2NgjKhSEoAwUxBb5iRAoRZAiwa_n7KQVLyE2K7EV687xfZ99D4R2mDhQYApMwsF8JZmHlmLBwQbMFet6Q50LgcIXA356nZ3dstsZtDeNhYF30fnMdUIz3uXbkRmHo7J9CdutDNF6s0Dcqlit6Y1BJmIxMYALJBFgxyYBMqncH_auboZABWnaoVIAxuh-MUKxqsqPrTjal_4iupjMrHIreeiMS90x79-SNv536ktooQaa-LBaGctoxhUraP5T-sEmGhzbO5ecjO-ts3gwKpLzYNhwYKVvuDcqXutlCc8Glbc4BoiLrwC6w8fwpQ5nOPjIldGdq1hF1_3jYe80qesrJIZKViaOa2Ytl1p5blKqvPWaeqBMRhAirUi1BfDCJKA6ArjIZMpy71NLhRZA3Ux3DTWKUeHWEQb5O0a9YBYYIxdcKUU8YUIRq623pIXIROC5qZOPhxoYj3kkIanMo5LyoKS8VlIL7U7HPFWpN_7s3QxSn_asBd5C7Yle8_rvfMlpJjiTXcHJxu-jNtEcDb4r0Tu7jRrl89htAfgo9XZcdR_URdTU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxQxFH8hcEAPIqBxAaEHbzjLtDst7ZGs4IK7w4HFcJv0kxjNrNFZE_nree3MbgSN4dbMtJnmvU5_v9e-D4B3XB5rhAKbCYSvrAjY0jw62CBc8UGwzPsYKDwpxei6uLjhNyvwfhkLg--S85nvx2a6y3czO49HZUcKt1sVo_XWEPc5a6O1lncGhUzlxJAw0Ewiki1CZHJ1NB1efZ6iMcjyPlMSWcbgAQyluip_bcYJYc42YLKYW-tY8rU_b0zf3j1K2_jUyb-EFx3VJCft2tiEFV9vwfM_EhBuQ3nqbn32cf7FeUfKWZ2NI7SRaJf-JsNZ_atbmPisbP3FCZJccoXkHT9GLk08xSEffJMcuupXcH12Oh2Osq7CQmaZ4k3mheHOCWV0EDZnOrhgWECjyUpKlZO5cUhfuEJeR5EZ2UI7EULumDQSjTc7eA2r9az2b4Cg_D1nQXKHNqOQQmtNA-VSU2dccLQHdCHwynbpx2MVjG9VMkNyVSUlVVFJVaekHhwux3xvk2_8t_d2lPqyZyfwHuwt9Fp1_-fPihVScDWQgu78e9QBrI-mk3E1Pi8_7cIzFj1Zkq_2Hqw2P-b-LVKRxuynFXgPHBTYHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-Guided+Non-Local+Fully+Convolutional+Network+for+Salient+Object+Detection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Tu%2C+Zhengzheng&rft.au=Ma%2C+Yan&rft.au=Li%2C+Chenglong&rft.au=Tang%2C+Jin&rft.date=2021-02-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=2&rft.spage=582&rft.epage=593&rft_id=info:doi/10.1109%2FTCSVT.2020.2980853&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2020_2980853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon