Jointly Learning Visual Poses and Pose Lexicon for Semantic Action Recognition
A novel method for semantic action recognition through learning a pose lexicon is presented in this paper. A pose lexicon comprises a set of semantic poses, a set of visual poses, and a probabilistic mapping between the visual and semantic poses. This paper assumes that both the visual poses and map...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 30; no. 2; pp. 457 - 467 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel method for semantic action recognition through learning a pose lexicon is presented in this paper. A pose lexicon comprises a set of semantic poses, a set of visual poses, and a probabilistic mapping between the visual and semantic poses. This paper assumes that both the visual poses and mapping are hidden and proposes a method to simultaneously learn a visual pose model that estimates the likelihood of an observed video frame being generated from hidden visual poses, and a pose lexicon model establishes the probabilistic mapping between the hidden visual poses and the semantic poses parsed from textual instructions. Specifically, the proposed method consists of two-level hidden Markov models. One level represents the alignment between the visual poses and semantic poses. The other level represents a visual pose sequence, and each visual pose is modeled as a Gaussian mixture. An expectation-maximization algorithm is developed to train a pose lexicon. With the learned lexicon, action classification is formulated as a problem of finding the maximum posterior probability of a given sequence of video frames that follows a given sequence of semantic poses, constrained by the most likely visual pose and the alignment sequences. The proposed method was evaluated on MSRC-12, WorkoutSU-10, WorkoutUOW-18, Combined-15, Combined-17, and Combined-50 action datasets using cross-subject, cross-dataset, zero-shot, and seen/unseen protocols. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2019.2890829 |