Towards Robust Pattern Recognition: A Review
The accuracies for many pattern recognition tasks have increased rapidly year by year, achieving or even outperforming human performance. From the perspective of accuracy, pattern recognition seems to be a nearly solved problem. However, once launched in real applications, the high-accuracy pattern...
Saved in:
Published in | Proceedings of the IEEE Vol. 108; no. 6; pp. 894 - 922 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accuracies for many pattern recognition tasks have increased rapidly year by year, achieving or even outperforming human performance. From the perspective of accuracy, pattern recognition seems to be a nearly solved problem. However, once launched in real applications, the high-accuracy pattern recognition systems may become unstable and unreliable due to the lack of robustness in open and changing environments. In this article, we present a comprehensive review of research toward robust pattern recognition from the perspective of breaking three basic and implicit assumptions: closed-world assumption, independent and identically distributed assumption, and clean and big data assumption, which form the foundation of most pattern recognition models. Actually, our brain is robust at learning concepts continually and incrementally, in complex, open, and changing environments, with different contexts, modalities, and tasks, by showing only a few examples, under weak or noisy supervision. These are the major differences between human intelligence and machine intelligence, which are closely related to the above three assumptions. After witnessing the significant progress in accuracy improvement nowadays, this review paper will enable us to analyze the shortcomings and limitations of current methods and identify future research directions for robust pattern recognition. |
---|---|
AbstractList | The accuracies for many pattern recognition tasks have increased rapidly year by year, achieving or even outperforming human performance. From the perspective of accuracy, pattern recognition seems to be a nearly solved problem. However, once launched in real applications, the high-accuracy pattern recognition systems may become unstable and unreliable due to the lack of robustness in open and changing environments. In this article, we present a comprehensive review of research toward robust pattern recognition from the perspective of breaking three basic and implicit assumptions: closed-world assumption, independent and identically distributed assumption, and clean and big data assumption, which form the foundation of most pattern recognition models. Actually, our brain is robust at learning concepts continually and incrementally, in complex, open, and changing environments, with different contexts, modalities, and tasks, by showing only a few examples, under weak or noisy supervision. These are the major differences between human intelligence and machine intelligence, which are closely related to the above three assumptions. After witnessing the significant progress in accuracy improvement nowadays, this review paper will enable us to analyze the shortcomings and limitations of current methods and identify future research directions for robust pattern recognition. |
Author | Liu, Cheng-Lin Suen, Ching Y. Zhang, Xu-Yao |
Author_xml | – sequence: 1 givenname: Xu-Yao orcidid: 0000-0001-9260-188X surname: Zhang fullname: Zhang, Xu-Yao email: xyz@nlpr.ia.ac.cn organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Cheng-Lin orcidid: 0000-0002-6743-4175 surname: Liu fullname: Liu, Cheng-Lin email: liucl@nlpr.ia.ac.cn organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Ching Y. orcidid: 0000-0003-1209-7631 surname: Suen fullname: Suen, Ching Y. organization: Centre for Pattern Recognition and Machine Intelligence, Concordia University, Montreal, Canada |
BookMark | eNp9kE1LAzEQhoNUsK3-Ab0seHVrJtl8eSvFTwotpZ5DdjeRLXVTk9Tiv3driwcPnoYX5nlneAao1_rWInQJeASA1e3LfDGbjAgmeESUVEKSE9QHxmROCOM91McYZK4IqDM0iHGFMaaM0z66WfqdCXXMFr7cxpTNTUo2tNnCVv6tbVLj27ts3MXPxu7O0akz62gvjnOIXh_ul5OnfDp7fJ6Mp3lFFEt5XddCSmoEyLoEsLwojAOggljOKWeElZWRFYWycOAorsAKq6xzRNTUFZwO0fWhdxP8x9bGpFd-G9rupCYFlpwJ0dUNkTxsVcHHGKzTVZPM_uMUTLPWgPXejf5xo_du9NFNh5I_6CY07yZ8_Q9dHaDGWvsLKMCUFop-A5y_cGo |
CODEN | IEEPAD |
CitedBy_id | crossref_primary_10_1109_TPAMI_2022_3225117 crossref_primary_10_1016_j_visres_2021_09_004 crossref_primary_10_1109_JPROC_2023_3238024 crossref_primary_10_1016_j_cose_2023_103623 crossref_primary_10_1016_j_visres_2022_108058 crossref_primary_10_1109_ACCESS_2021_3070212 crossref_primary_10_3390_s23031520 crossref_primary_10_1109_TPAMI_2022_3204971 crossref_primary_10_1007_s11424_022_1326_y crossref_primary_10_1016_j_cortex_2020_12_026 crossref_primary_10_1016_j_jclepro_2023_138911 crossref_primary_10_1007_s11263_023_01972_x crossref_primary_10_1002_aisy_202200031 crossref_primary_10_1016_j_rineng_2023_101346 crossref_primary_10_1016_j_ijft_2023_100494 crossref_primary_10_1016_j_patcog_2023_109535 crossref_primary_10_1145_3479428 crossref_primary_10_1016_j_patcog_2022_108863 crossref_primary_10_1093_bib_bbad302 crossref_primary_10_1109_TMM_2023_3333659 crossref_primary_10_1109_TIM_2023_3325522 crossref_primary_10_1109_TNNLS_2021_3104392 crossref_primary_10_1016_j_neucom_2024_127666 crossref_primary_10_1007_s11432_021_3502_4 crossref_primary_10_1109_TASE_2022_3215258 crossref_primary_10_1109_TCSVT_2022_3200112 crossref_primary_10_1109_TII_2023_3330340 crossref_primary_10_3390_rs14184551 crossref_primary_10_1016_j_compeleceng_2024_109180 crossref_primary_10_2139_ssrn_5001785 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1016_j_patcog_2024_110430 crossref_primary_10_1007_s11042_023_17129_4 crossref_primary_10_1109_TII_2022_3179423 crossref_primary_10_3390_ph18010047 crossref_primary_10_1007_s11694_023_02092_3 crossref_primary_10_1016_j_cosrev_2024_100666 crossref_primary_10_1109_TGRS_2023_3293478 crossref_primary_10_1109_ACCESS_2022_3199443 crossref_primary_10_1038_s41598_022_08651_w crossref_primary_10_1155_2021_4472174 crossref_primary_10_1109_TGRS_2023_3236957 crossref_primary_10_1109_TASLPRO_2025_3543974 crossref_primary_10_11834_jig_230018 crossref_primary_10_1109_ACCESS_2024_3414374 crossref_primary_10_3390_ai5010003 crossref_primary_10_1109_TPAMI_2024_3386985 crossref_primary_10_1109_TGRS_2024_3379669 crossref_primary_10_1049_stg2_12051 crossref_primary_10_3390_rs13214194 crossref_primary_10_1016_j_patcog_2023_109598 crossref_primary_10_1080_00029157_2024_2370777 crossref_primary_10_1016_j_neucom_2022_05_023 crossref_primary_10_1142_S0218001424510212 crossref_primary_10_1016_j_neucom_2022_12_011 crossref_primary_10_1016_j_biosystems_2025_105410 crossref_primary_10_1109_TPAMI_2020_3045079 crossref_primary_10_3390_app13042293 crossref_primary_10_1109_ACCESS_2024_3494885 crossref_primary_10_1016_j_patcog_2022_108889 crossref_primary_10_1007_s13721_024_00450_9 crossref_primary_10_1016_j_engappai_2024_109290 crossref_primary_10_1016_j_patcog_2024_110283 crossref_primary_10_1016_j_ins_2025_121940 crossref_primary_10_1016_j_procs_2022_11_097 |
Cites_doi | 10.1016/j.sigpro.2013.12.026 10.1016/j.neuroimage.2011.09.069 10.24963/ijcai.2018/278 10.1109/ICCV.2017.328 10.1145/1553374.1553534 10.1109/TGRS.2013.2286827 10.1109/TPAMI.1979.4766902 10.1109/5.18626 10.1023/B:AIRE.0000045502.10941.a9 10.1109/SP.2017.49 10.1109/CVPR.2018.00750 10.1109/TPAMI.2018.2858759 10.1109/TPAMI.2014.2353635 10.1109/MSP.2017.2738401 10.1109/3477.809043 10.1109/TPAMI.2012.239 10.1109/TPAMI.2016.2646371 10.1109/TPAMI.2003.1251144 10.1109/TPAMI.2017.2762295 10.1109/TNN.2010.2091281 10.1109/72.914517 10.1109/TPAMI.2008.137 10.1109/TPAMI.2014.2321392 10.1006/csla.1995.0010 10.1007/978-3-319-46493-0_35 10.1109/CVPR.2011.5995664 10.1109/TPAMI.2007.250598 10.1016/S0031-3203(03)00085-2 10.1109/CVPR.2018.00391 10.1109/CVPR.2018.00362 10.1109/TPAMI.2016.2577031 10.1016/j.neucom.2018.05.083 10.1109/TPAMI.2007.1037 10.5244/C.31.42 10.1109/TPAMI.2017.2773081 10.1109/TPAMI.2012.274 10.1109/CVPR.2018.00456 10.1109/ICDM.2016.0121 10.1016/j.patcog.2004.05.013 10.1109/TPAMI.2016.2613924 10.18653/v1/D17-1314 10.1109/CVPR.2017.126 10.1109/CVPR.2018.00451 10.1007/3-540-47977-5_56 10.1109/CVPR.2018.00915 10.1016/j.neunet.2014.09.003 10.1109/CVPR.2018.00781 10.1162/089976600300015349 10.1109/CVPR.2017.76 10.1109/ICCV.2017.88 10.1109/PROC.1968.6414 10.1038/nature14539 10.1109/SP.2016.41 10.1109/CVPR.2017.74 10.1016/j.neuron.2016.10.050 10.1109/CVPR.2018.00575 10.1109/TKDE.2009.191 10.1109/CVPR.1991.139730 10.1109/CVPR.2016.278 10.1198/016214507000000617 10.1109/CVPR.2019.00202 10.1007/s11263-012-0594-8 10.1109/TPAMI.2015.2496141 10.1109/CVPR.2018.00450 10.1016/j.artint.2013.06.003 10.1109/CVPR.2018.00879 10.1109/ICCV.2015.320 10.1109/CVPR.2018.00131 10.1109/TPAMI.2013.83 10.1109/TPAMI.2017.2737007 10.1109/CVPR.2015.7298799 10.1109/TPAMI.2003.1240120 10.1162/neco.1995.7.1.108 10.1007/s10994-016-5610-8 10.1109/TKDE.2005.186 10.1162/089976601750264965 10.1109/TPAMI.2019.2899857 10.1109/TPAMI.2006.248 10.1109/ICCV.2015.134 10.1109/ICCV.2017.226 10.1109/TPAMI.2015.2500224 10.1109/TPAMI.2005.19 10.1016/j.neunet.2019.01.012 10.1016/j.patcog.2018.01.025 10.1007/978-3-319-46466-4_37 10.1126/science.1127647 10.1109/CVPR.2016.643 10.1201/9781315139470 10.1109/TPAMI.2015.2487986 10.1609/aimag.v38i3.2756 10.1109/CVPR.2018.00581 10.1142/0580 10.1109/TPAMI.2009.167 10.1109/TIP.2014.2329449 10.1287/opre.1100.0854 10.3115/v1/P15-2139 10.1109/ICCV.2017.73 10.7551/mitpress/9780262033589.001.0001 10.1109/TPAMI.2018.2798607 10.1109/TPAMI.2016.2615921 10.1016/j.patcog.2016.08.005 10.1145/3191513 10.1109/TPAMI.2016.2535231 10.1145/1390156.1390294 10.1109/34.142911 10.1109/TPAMI.2005.18 10.1023/B:MACH.0000008084.60811.49 10.1145/3052973.3053009 10.1109/CVPR.2015.7298965 10.1145/1541880.1541882 10.1109/CVPR.2018.00111 10.1109/CVPR.2018.00571 10.1162/NECO_a_00155 10.1109/ICCV.2015.430 10.1007/BF00994018 10.1017/S026988890999035X 10.1109/TPAMI.2013.140 10.1109/CVPR.2016.285 10.2307/2289860 10.1109/CVPR.2016.556 10.1109/TPAMI.2007.56 10.1016/j.patcog.2010.11.015 10.1109/CVPR.2013.431 10.1016/0031-3203(93)90097-G 10.1145/1015330.1015422 10.1109/79.536825 10.1109/TPAMI.2007.1030 10.1109/EuroSP.2016.36 10.1109/TPAMI.2014.2307881 10.1109/TPAMI.2016.2587647 10.1016/j.compmedimag.2014.11.010 10.1023/A:1022699900025 10.1016/S0004-3702(96)00034-3 10.1109/ICCV.2015.11 10.1613/jair.606 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.240 10.1613/jair.1872 10.1109/CVPR.2018.00582 10.1109/ICRA.2016.7487708 10.1016/j.patcog.2010.05.010 10.1109/CVPR.2017.17 10.1007/978-3-319-46487-9_40 10.1109/CVPR.2017.316 10.1145/279943.279962 10.1109/CVPR.2018.00429 10.1007/978-3-319-46466-4_5 10.1109/CVPR.2018.00610 10.1109/CVPR.2016.485 10.1109/TPAMI.2006.79 10.1016/j.patrec.2008.03.010 10.1109/CVPR.2017.587 10.1109/TPAMI.2011.52 10.1007/s11263-013-0693-1 10.1109/TPAMI.2018.2858821 10.1109/ICPR.2010.813 10.1109/TPAMI.2018.2849989 10.1109/TPAMI.2010.109 10.1561/0600000027 10.1109/CVPR.2016.247 10.1109/ICCV.2015.463 10.1109/TPAMI.2018.2814042 10.1109/TPAMI.2017.2739147 10.1109/TKDE.2010.61 10.1109/TITS.2016.2598356 10.1109/CVPR.2016.173 10.1109/TPAMI.2013.50 10.1109/CVPR.2016.90 10.1109/TIT.1970.1054406 10.1126/science.aab3050 10.1109/TPAMI.2015.2461544 10.1109/TPAMI.2008.240 10.1016/j.ins.2017.11.061 10.1109/CVPR.2016.282 10.1007/978-94-015-8630-6 10.1109/TPAMI.2018.2857768 10.1016/S0378-3758(00)00115-4 10.1007/s100320200076 10.1023/A:1007601015854 10.1109/TPAMI.1983.4767411 10.1002/0471660264 10.1109/MSP.2017.2740965 10.1109/CVPR.2015.7298640 10.1109/TPAMI.2015.2456899 10.1109/TNN.2008.2005605 10.1109/34.273716 10.1109/5.726791 10.1109/TMM.2015.2477044 10.1109/CVPR.2018.00363 10.1142/p191 10.1109/34.824819 10.1109/TPAMI.2017.2723882 10.1109/TPAMI.2012.256 10.1147/JRD.2017.2701178 10.1109/TPAMI.2011.283 10.1016/j.neucom.2014.09.081 10.1109/CVPR.2018.00760 10.1109/CVPR.2018.00417 10.1109/TASL.2011.2134090 10.1109/TPAMI.2011.264 10.1145/1390156.1390177 10.1109/CVPR.2018.00366 10.1145/3133944.3133949 10.1109/CVPR.2018.00950 10.1023/A:1007379606734 10.1109/TNNLS.2013.2292894 10.1016/j.patrec.2009.09.011 10.1109/CVPR.2018.00906 10.1109/CVPR.2014.220 10.1109/CVPR.2019.01158 10.1007/978-3-642-33709-3_50 10.1561/0600000033 10.1109/TPAMI.2015.2505293 10.1109/CVPR.2018.00393 10.1109/TNNLS.2016.2637351 10.1145/1143844.1143891 10.1109/ICCV.2015.167 10.1109/CVPR.2016.433 10.1109/CVPR.2005.283 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JPROC.2020.2989782 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2256 |
EndPage | 922 |
ExternalDocumentID | 10_1109_JPROC_2020_2989782 9103349 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS) grantid: ZDBS-LY-7004 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China (NSFC) grantid: 61633021; 61721004 funderid: 10.13039/501100001809 – fundername: Youth Innovation Promotion Association of CAS grantid: 2019141 funderid: 10.13039/501100002367 – fundername: Young Elite Scientists Sponsorship Program of the China Association for Science and Technology (CAST) grantid: 2018QNRC001 funderid: 10.13039/100010097 – fundername: Major Project for New Generation of AI grantid: 2018AAA0100400 |
GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-ddd7883a718db11e644af11372e6636525bca8c31b4f1f30c1e7e9eff27d3f463 |
IEDL.DBID | RIE |
ISSN | 0018-9219 |
IngestDate | Fri Jul 25 07:50:37 EDT 2025 Tue Jul 01 03:52:56 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Wed Aug 27 02:38:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-ddd7883a718db11e644af11372e6636525bca8c31b4f1f30c1e7e9eff27d3f463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1209-7631 0000-0001-9260-188X 0000-0002-6743-4175 |
PQID | 2408657711 |
PQPubID | 85453 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2408657711 crossref_primary_10_1109_JPROC_2020_2989782 crossref_citationtrail_10_1109_JPROC_2020_2989782 ieee_primary_9103349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Proceedings of the IEEE |
PublicationTitleAbbrev | JPROC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref207 ref56 ref329 ref208 ref205 ref58 ref327 ref206 ref325 ref204 ref55 ref322 ref201 ref323 ref202 ref209 ciliberto (ref45) 2017 han (ref101) 2016 ref210 ref332 ref211 ref50 ref330 vinyals (ref292) 2016 ref46 zhao (ref331) 2016 ref218 szegedy (ref269) 2014 ref219 ref48 ref337 ref216 ref47 ref217 ref42 ref214 ref41 ref336 ref333 ref212 ref43 grandvalet (ref90) 2009 ref213 zhou (ref335) 2018 ref49 kingma (ref139) 2014 ref8 ref7 masnadi-shirazi (ref183) 2009 ref9 smola (ref255) 2007 ref4 jiang (ref126) 2018 ref3 ref6 ref221 ref340 zhu (ref338) 2006 ref341 ref220 ref35 ref306 ref34 ref37 ref304 ref36 ref305 ref31 ref302 ref30 ref303 ref33 ref300 ref32 ref301 radford (ref222) 2018 li (ref162) 2019 ref39 ref38 kamnitsas (ref130) 2018 ref308 kingma (ref140) 2013 salimans (ref238) 2016 springenberg (ref257) 2016 huang (ref118) 2007 xu (ref310) 2006 rasmus (ref224) 2015 dai (ref51) 2015 liu (ref166) 2014 tarvainen (ref272) 2017 ref24 ref23 ref318 ref26 ref25 dai (ref52) 2017 ref316 sutskever (ref267) 2014 ref313 ref314 murugesan (ref196) 2016 ref311 ref21 ref312 goodfellow (ref86) 2016 zhang (ref328) 2016 ref28 ref27 ref29 reed (ref229) 2016 srivastava (ref258) 2014; 15 ref320 ref200 zhou (ref334) 2004 ravi (ref226) 2017 goodfellow (ref87) 2014 ref128 ref249 ref247 molnar (ref191) 2019 ref127 ref248 ref99 ref124 ref245 ref98 ref125 ref246 gu (ref95) 2014 maas (ref179) 2013 zhang (ref324) 2010; 11 finn (ref70) 2017 liu (ref171) 2018 ref133 ref254 ref92 ref134 ref131 ref252 ref94 ref132 ref253 ref251 ref91 ref137 ref135 ref136 (ref122) 0 triantafillou (ref279) 2017 ref82 ref144 ganin (ref79) 2015 ref145 ref266 ref142 ref264 ref261 ref80 ref108 ref227 hendrycks (ref109) 2017 ref107 vahdat (ref285) 2017 ref225 ref104 srivastava (ref259) 2012 ref74 ref77 ref223 ref102 ref103 huang (ref119) 2010 glorot (ref84) 2010 samangouei (ref239) 2018 ref71 ref232 ref111 ref112 ref72 ref231 gönen (ref85) 2011; 12 ref68 ref67 goodfellow (ref88) 2015 ref117 ref69 ref64 ref116 ref66 ref234 ref113 ref65 ref235 ref114 freund (ref73) 1996 shaham (ref250) 2015 grandvalet (ref89) 2005 chowdhuri (ref44) 2017 tax (ref273) 2001 kingma (ref138) 2015 santoro (ref241) 2017 ref60 ref243 ref244 thrun (ref277) 1996 ref62 ref120 ref61 ref242 ref121 bishop (ref20) 2006 ref240 han (ref100) 2018 bertinetto (ref16) 2016 bautista (ref10) 2016 ref168 sun (ref265) 2009; 31 ref169 krizhevsky (ref146) 2012 ref290 ref170 ref291 hinton (ref110) 2006; 313 gidaris (ref83) 2018 he (ref106) 2019 ref177 ref298 ref178 ref299 ref296 ref176 ref297 ref173 ref294 ref174 ref295 darrell (ref53) 2015; 5 ref172 ref293 yosinski (ref315) 2014 sajjadi (ref237) 2016 devlin (ref54) 2018 bengio (ref14) 2003; 3 sukhbaatar (ref263) 2015 kurakin (ref148) 2016 ref181 donahue (ref59) 2014 pentina (ref215) 2015 ref188 koller (ref143) 2009 ref189 ref187 ref184 ref185 zhang (ref326) 2011 frome (ref75) 2013 ref149 ref268 ref147 rifai (ref233) 2011 laskov (ref156) 2006; 7 motiian (ref194) 2017 ref276 ref155 ref274 ref153 fukunaga (ref78) 1990 ref275 ref154 ref152 ref270 ref271 ref150 laine (ref151) 2017 ref278 xu (ref309) 2015 ghosh (ref81) 2017 ref158 bengio (ref15) 2015 he (ref105) 2018 ioffe (ref123) 2015 lee (ref159) 2013 kipf (ref141) 2017 ref287 bilen (ref17) 2016 ref288 ref167 ref164 sugiyama (ref262) 2008 ref283 oliver (ref203) 2018 ref284 ref163 zhang (ref321) 2017 ref281 ref160 ref282 ref161 ref13 ref12 zhang (ref317) 2017 xiao (ref307) 2015 ref11 metzen (ref186) 2017 ref19 reed (ref230) 2015 ruder (ref236) 2017 guyon (ref97) 2003; 3 vapnik (ref286) 1998 long (ref175) 2015 chen (ref40) 2018 lecun (ref157) 2015; 521 ref2 ref1 snell (ref256) 2017 ref192 ref190 mansour (ref182) 2009 zhu (ref339) 2003 ref199 li (ref165) 2018 nagy (ref198) 1968; 56 bojanowski (ref22) 2017 andrew (ref5) 2013 ref197 fu (ref76) 1980; 29 ref195 ref193 velickovic (ref289) 2018 malmaud (ref180) 2015 su (ref260) 2017 guerriero (ref96) 2018 tsochantaridis (ref280) 2005; 6 kaiser (ref129) 2017 hoffman (ref115) 2013 duda (ref63) 2001 bishop (ref18) 1995 recht (ref228) 2018 zhang (ref319) 2018 gretton (ref93) 2007 |
References_xml | – ident: ref216 doi: 10.1016/j.sigpro.2013.12.026 – year: 2015 ident: ref15 article-title: Towards biologically plausible deep learning publication-title: arXiv 1502 04156 – start-page: 833 year: 2011 ident: ref233 article-title: Contractive auto-encoders: Explicit invariance during feature extraction publication-title: Proc Int Conf Mach Learn – volume: 3 start-page: 1157 year: 2003 ident: ref97 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref318 doi: 10.1016/j.neuroimage.2011.09.069 – start-page: 2234 year: 2016 ident: ref238 article-title: Improved techniques for training GANs publication-title: Proc Adv Neural Inf Process Syst – ident: ref37 doi: 10.24963/ijcai.2018/278 – ident: ref103 doi: 10.1109/ICCV.2017.328 – start-page: 1247 year: 2013 ident: ref5 article-title: Deep canonical correlation analysis publication-title: Proc Int Conf Mach Learn – ident: ref337 doi: 10.1145/1553374.1553534 – start-page: 3846 year: 2016 ident: ref10 article-title: CliqueCNN: Deep unsupervised exemplar learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref133 doi: 10.1109/TGRS.2013.2286827 – year: 2019 ident: ref191 publication-title: Interpretable Machine Learning A Guide for Making Black Box Models Explainable – year: 2017 ident: ref236 article-title: An overview of multi-task learning in deep neural networks publication-title: ArXiv 1706 05098 – year: 2015 ident: ref250 article-title: Understanding adversarial training: Increasing local stability of neural nets through robust optimization publication-title: arXiv 1511 05432 – start-page: 523 year: 2016 ident: ref16 article-title: Learning feed-forward one-shot learners publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2018 ident: ref130 article-title: Semi-supervised learning via compact latent space clustering publication-title: Proc Int Conf Mach Learn – ident: ref261 doi: 10.1109/TPAMI.1979.4766902 – ident: ref221 doi: 10.1109/5.18626 – ident: ref112 doi: 10.1023/B:AIRE.0000045502.10941.a9 – start-page: 1180 year: 2015 ident: ref79 article-title: Unsupervised domain adaptation by backpropagation publication-title: Proc Int Conf Mach Learn – start-page: 2222 year: 2012 ident: ref259 article-title: Multimodal learning with deep Boltzmann machines publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/SP.2017.49 – ident: ref94 doi: 10.1109/CVPR.2018.00750 – start-page: 321 year: 2004 ident: ref334 article-title: Learning with local and global consistency publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref106 article-title: Momentum contrast for unsupervised visual representation learning publication-title: arXiv 1911 05722 – ident: ref333 doi: 10.1109/TPAMI.2018.2858759 – ident: ref104 doi: 10.1109/TPAMI.2014.2353635 – start-page: 1195 year: 2017 ident: ref272 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Proc Adv Neural Inf Process Syst – ident: ref223 doi: 10.1109/MSP.2017.2738401 – year: 1990 ident: ref78 publication-title: Introduction to statistical pattern recognition – ident: ref41 doi: 10.1109/3477.809043 – ident: ref327 doi: 10.1109/TPAMI.2012.239 – ident: ref252 doi: 10.1109/TPAMI.2016.2646371 – volume: 12 start-page: 2211 year: 2011 ident: ref85 article-title: Multiple kernel learning algorithms publication-title: J Mach Learn Res – ident: ref296 doi: 10.1109/TPAMI.2003.1251144 – start-page: 1 year: 2015 ident: ref175 article-title: Learning transferable features with deep adaptation networks publication-title: Proc Int Conf Mach Learn – ident: ref176 doi: 10.1109/TPAMI.2017.2762295 – ident: ref205 doi: 10.1109/TNN.2010.2091281 – ident: ref195 doi: 10.1109/72.914517 – ident: ref92 doi: 10.1109/TPAMI.2008.137 – ident: ref245 doi: 10.1109/TPAMI.2014.2321392 – ident: ref161 doi: 10.1006/csla.1995.0010 – ident: ref155 doi: 10.1007/978-3-319-46493-0_35 – ident: ref65 doi: 10.1109/CVPR.2011.5995664 – start-page: 1 year: 2017 ident: ref141 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc Int Conf Learn Represent – ident: ref312 doi: 10.1109/TPAMI.2007.250598 – year: 2018 ident: ref335 article-title: Graph neural networks: A review of methods and applications publication-title: arXiv 1812 08434 – ident: ref169 doi: 10.1016/S0031-3203(03)00085-2 – ident: ref316 doi: 10.1109/CVPR.2018.00391 – start-page: 1 year: 2013 ident: ref159 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks publication-title: Proc Int Machine Learning Workshop – start-page: 2121 year: 2013 ident: ref75 article-title: DeViSE: A deep visual-semantic embedding model publication-title: Proc Adv Neural Inf Process Syst – start-page: 1041 year: 2009 ident: ref182 article-title: Domain adaptation with multiple sources publication-title: Proc Adv Neural Inf Process Syst – start-page: 1919 year: 2017 ident: ref81 article-title: Robust loss functions under label noise for deep neural networks publication-title: Proc AAAI Conf Artif Intell – ident: ref329 doi: 10.1109/CVPR.2018.00362 – ident: ref231 doi: 10.1109/TPAMI.2016.2577031 – volume: 11 start-page: 1081 year: 2010 ident: ref324 article-title: Analysis of multi-stage convex relaxation for sparse regularization publication-title: J Mach Learn Res – ident: ref297 doi: 10.1016/j.neucom.2018.05.083 – volume: 5 start-page: 18 year: 2015 ident: ref53 article-title: Machine learning with interdependent and non-identically distributed data publication-title: Dagstuhl report – ident: ref137 doi: 10.1109/TPAMI.2007.1037 – ident: ref80 doi: 10.5244/C.31.42 – ident: ref164 doi: 10.1109/TPAMI.2017.2773081 – year: 2017 ident: ref44 article-title: MultiNet: Multi-modal multi-task learning for autonomous driving publication-title: arXiv 1709 05581 – ident: ref330 doi: 10.1109/TPAMI.2012.274 – ident: ref234 doi: 10.1109/CVPR.2018.00456 – volume: 29 start-page: 845 year: 1980 ident: ref76 article-title: Recent developments in pattern recognition publication-title: IEEE Trans Comput – ident: ref127 doi: 10.1109/ICDM.2016.0121 – ident: ref167 doi: 10.1016/j.patcog.2004.05.013 – ident: ref320 doi: 10.1109/TPAMI.2016.2613924 – start-page: 529 year: 2005 ident: ref89 article-title: Semi-supervised learning by entropy minimization publication-title: Proc Adv Neural Inf Process Syst – start-page: 3235 year: 2018 ident: ref203 article-title: Realistic evaluation of deep semi-supervised learning algorithms publication-title: Proc Adv Neural Inf Process Syst – ident: ref254 doi: 10.18653/v1/D17-1314 – start-page: 6510 year: 2017 ident: ref52 article-title: Good semi-supervised learning that requires a bad GAN publication-title: Proc Adv Neural Inf Process Syst – ident: ref178 doi: 10.1109/CVPR.2017.126 – ident: ref30 doi: 10.1109/CVPR.2018.00451 – start-page: 5596 year: 2017 ident: ref285 article-title: Toward robustness against label noise in training deep discriminative neural networks publication-title: Proc Adv Neural Inf Process Syst – volume: 7 start-page: 1909 year: 2006 ident: ref156 article-title: Incremental support vector learning: Analysis, implementation and applications publication-title: J Mach Learn Res – ident: ref251 doi: 10.1007/3-540-47977-5_56 – ident: ref211 doi: 10.1109/CVPR.2018.00915 – ident: ref247 doi: 10.1016/j.neunet.2014.09.003 – ident: ref135 doi: 10.1109/CVPR.2018.00781 – ident: ref276 doi: 10.1162/089976600300015349 – ident: ref323 doi: 10.1109/CVPR.2017.76 – ident: ref28 doi: 10.1109/ICCV.2017.88 – volume: 6 start-page: 1453 year: 2005 ident: ref280 article-title: Large margin methods for structured and interdependent output variables publication-title: J Mach Learn Res – start-page: 920 year: 2003 ident: ref339 article-title: Eliminating class noise in large datasets publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2018 ident: ref289 article-title: Graph attention networks publication-title: Proc Int Conf Learn Represent – volume: 56 start-page: 836 year: 1968 ident: ref198 article-title: state of the art in pattern recognition publication-title: Proceedings of the IEEE doi: 10.1109/PROC.1968.6414 – start-page: 513 year: 2007 ident: ref93 article-title: A kernel method for the two-sample-problem publication-title: Proc Adv Neural Inf Process Syst – volume: 521 start-page: 436 year: 2015 ident: ref157 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref209 doi: 10.1109/SP.2016.41 – ident: ref98 doi: 10.1109/CVPR.2017.74 – start-page: 1 year: 2010 ident: ref119 article-title: Robust metric learning by smooth optimization publication-title: Proc Conf Uncertain Artif Intell – ident: ref217 doi: 10.1016/j.neuron.2016.10.050 – ident: ref278 doi: 10.1109/CVPR.2018.00575 – ident: ref206 doi: 10.1109/TKDE.2009.191 – start-page: 2672 year: 2014 ident: ref87 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1109/CVPR.1991.139730 – ident: ref212 doi: 10.1109/CVPR.2016.278 – ident: ref303 doi: 10.1198/016214507000000617 – start-page: 1 year: 2017 ident: ref186 article-title: On detecting adversarial perturbations publication-title: Proc Int Conf Learn Represent – ident: ref142 doi: 10.1109/CVPR.2019.00202 – ident: ref295 doi: 10.1007/s11263-012-0594-8 – ident: ref61 doi: 10.1109/TPAMI.2015.2496141 – start-page: 1 year: 2017 ident: ref151 article-title: Temporal ensembling for semi-supervised learning publication-title: Proc Int Conf Learn Represent – start-page: 2048 year: 2015 ident: ref309 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc Int Conf Mach Learn – ident: ref290 doi: 10.1109/CVPR.2018.00450 – ident: ref4 doi: 10.1016/j.artint.2013.06.003 – start-page: 249 year: 2010 ident: ref84 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc Int Conf Artif Intell Stat – start-page: 1433 year: 2008 ident: ref262 article-title: Direct importance estimation with model selection and its application to covariate shift adaptation publication-title: Proc Adv Neural Inf Process Syst – ident: ref197 doi: 10.1109/CVPR.2018.00879 – start-page: 1 year: 2014 ident: ref269 article-title: Intriguing properties of neural networks publication-title: Proc Int Conf Learn Represent – ident: ref299 doi: 10.1109/ICCV.2015.320 – ident: ref266 doi: 10.1109/CVPR.2018.00131 – start-page: 3 year: 2013 ident: ref179 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2016 ident: ref101 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: Proc Int Conf Learn Represent – ident: ref185 doi: 10.1109/TPAMI.2013.83 – ident: ref77 doi: 10.1109/TPAMI.2017.2737007 – ident: ref11 doi: 10.1109/CVPR.2015.7298799 – start-page: 1 year: 2016 ident: ref257 article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2015 ident: ref123 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref187 doi: 10.1109/TPAMI.2003.1240120 – year: 2006 ident: ref20 publication-title: Pattern Recognition and Machine Learning – year: 2017 ident: ref129 article-title: One model to learn them all publication-title: arXiv 1706 05137 – year: 2006 ident: ref338 article-title: Semi-supervised learning literature survey – ident: ref19 doi: 10.1162/neco.1995.7.1.108 – ident: ref128 doi: 10.1007/s10994-016-5610-8 – ident: ref336 doi: 10.1109/TKDE.2005.186 – year: 2018 ident: ref222 article-title: Improving language understanding by generative pre-training – ident: ref248 doi: 10.1162/089976601750264965 – ident: ref173 doi: 10.1109/TPAMI.2019.2899857 – ident: ref39 doi: 10.1109/TPAMI.2006.248 – ident: ref294 doi: 10.1109/ICCV.2015.134 – ident: ref58 doi: 10.1109/ICCV.2017.226 – ident: ref8 doi: 10.1109/TPAMI.2015.2500224 – year: 2014 ident: ref95 article-title: Towards deep neural network architectures robust to adversarial examples publication-title: arXiv 1412 5068 [cs] – start-page: 4080 year: 2017 ident: ref256 article-title: Prototypical networks for few-shot learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref287 doi: 10.1109/TPAMI.2005.19 – ident: ref210 doi: 10.1016/j.neunet.2019.01.012 – ident: ref116 doi: 10.1016/j.patcog.2018.01.025 – year: 2015 ident: ref180 article-title: What's Cookin'? Interpreting cooking videos using text, speech and vision publication-title: arXiv 1503 01558 – start-page: 148 year: 1996 ident: ref73 article-title: Experiments with a new boosting algorithm publication-title: Proc Int Conf Mach Learn – start-page: 3104 year: 2014 ident: ref267 article-title: Sequence to sequence learning with neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref302 doi: 10.1007/978-3-319-46466-4_37 – start-page: 3630 year: 2016 ident: ref292 article-title: Matching networks for one shot learning publication-title: Proc Adv Neural Inf Process Syst – volume: 313 start-page: 504 year: 2006 ident: ref110 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 1 year: 2015 ident: ref88 article-title: Explaining and harnessing adversarial examples publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2013 ident: ref115 article-title: Efficient learning of domain-invariant image representations publication-title: Proc Int Conf Learn Represent – ident: ref2 doi: 10.1109/CVPR.2016.643 – ident: ref23 doi: 10.1201/9781315139470 – start-page: 1 year: 2015 ident: ref263 article-title: Training convolutional networks with noisy labels publication-title: Proc Workshop Int Conf Learn Represent – ident: ref1 doi: 10.1109/TPAMI.2015.2487986 – ident: ref55 doi: 10.1609/aimag.v38i3.2756 – ident: ref306 doi: 10.1109/CVPR.2018.00581 – start-page: 2691 year: 2015 ident: ref307 article-title: Learning from massive noisy labeled data for image classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref27 doi: 10.1142/0580 – ident: ref69 doi: 10.1109/TPAMI.2009.167 – ident: ref60 doi: 10.1109/TIP.2014.2329449 – year: 1998 ident: ref286 publication-title: Statistical Learning Theory – ident: ref25 doi: 10.1287/opre.1100.0854 – year: 2018 ident: ref100 article-title: Masking: A new perspective of noisy supervision publication-title: arXiv 1805 08193 – ident: ref64 doi: 10.3115/v1/P15-2139 – ident: ref7 doi: 10.1109/ICCV.2017.73 – start-page: 2309 year: 2018 ident: ref126 article-title: MentorNet: Learning data-driven curriculum for very deep neural networks on corrupted labels publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2015 ident: ref138 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – ident: ref36 doi: 10.7551/mitpress/9780262033589.001.0001 – start-page: 1 year: 2018 ident: ref40 article-title: GradNorm: Gradient normalization for adaptive loss balancing in deep multitask networks publication-title: Proc Int Conf Mach Learn – ident: ref9 doi: 10.1109/TPAMI.2018.2798607 – start-page: 1 year: 2018 ident: ref319 article-title: Mixup: Beyond empirical risk minimization publication-title: Proc Int Conf Learn Represent – year: 2018 ident: ref171 article-title: Learn to combine modalities in multimodal deep learning publication-title: arXiv 1805 11730 – start-page: 3581 year: 2014 ident: ref139 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – ident: ref49 doi: 10.1109/TPAMI.2016.2615921 – ident: ref325 doi: 10.1016/j.patcog.2016.08.005 – ident: ref189 doi: 10.1145/3191513 – start-page: 1126 year: 2017 ident: ref70 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proc Int Conf Mach Learn – start-page: 1060 year: 2016 ident: ref229 article-title: Generative adversarial text to image synthesis publication-title: Proc Int Conf Mach Learn – ident: ref46 doi: 10.1109/TPAMI.2016.2535231 – ident: ref291 doi: 10.1145/1390156.1390294 – ident: ref99 doi: 10.1109/34.142911 – start-page: 3546 year: 2015 ident: ref224 article-title: Semi-supervised learning with ladder networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref243 doi: 10.1109/TPAMI.2005.18 – start-page: 601 year: 2007 ident: ref118 article-title: Correcting sample selection bias by unlabeled data publication-title: Proc Adv Neural Inf Process Syst – ident: ref274 doi: 10.1023/B:MACH.0000008084.60811.49 – ident: ref207 doi: 10.1145/3052973.3053009 – ident: ref174 doi: 10.1109/CVPR.2015.7298965 – ident: ref34 doi: 10.1145/1541880.1541882 – ident: ref340 doi: 10.1109/CVPR.2018.00111 – ident: ref160 doi: 10.1109/CVPR.2018.00571 – ident: ref108 doi: 10.1162/NECO_a_00155 – year: 2009 ident: ref143 publication-title: Probabilistic Graphical Models – ident: ref3 doi: 10.1109/ICCV.2015.430 – ident: ref48 doi: 10.1007/BF00994018 – ident: ref71 doi: 10.1017/S026988890999035X – ident: ref154 doi: 10.1109/TPAMI.2013.140 – ident: ref225 doi: 10.1109/CVPR.2016.285 – start-page: 1097 year: 2012 ident: ref146 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref74 doi: 10.2307/2289860 – ident: ref314 doi: 10.1109/CVPR.2016.556 – start-page: 537 year: 2009 ident: ref90 article-title: Support vector machines with a reject option publication-title: Proc Adv Neural Inf Process Syst – ident: ref249 doi: 10.1109/TPAMI.2007.56 – ident: ref26 doi: 10.1016/j.patcog.2010.11.015 – ident: ref149 doi: 10.1109/CVPR.2013.431 – year: 0 ident: ref122 publication-title: Imagenet Large Scale Visual Recognition Challenge – ident: ref62 doi: 10.1016/0031-3203(93)90097-G – start-page: 647 year: 2014 ident: ref59 article-title: DeCAF: A deep convolutional activation feature for generic visual recognition publication-title: Proc Int Conf Mach Learn – start-page: 1163 year: 2016 ident: ref237 article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref150 doi: 10.1145/1015330.1015422 – ident: ref181 doi: 10.1109/79.536825 – start-page: 13 year: 2007 ident: ref255 article-title: A Hilbert space embedding for distributions publication-title: Proc Int Conf Alg Learn Theory – ident: ref288 doi: 10.1109/TPAMI.2007.1030 – volume: 3 start-page: 1137 year: 2003 ident: ref14 article-title: A neural probabilistic language model publication-title: J Mach Learn Res – ident: ref208 doi: 10.1109/EuroSP.2016.36 – start-page: 1 year: 2017 ident: ref109 article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks publication-title: Proc Int Conf Learn Represent – ident: ref120 doi: 10.1109/TPAMI.2014.2307881 – ident: ref33 doi: 10.1109/TPAMI.2016.2587647 – ident: ref132 doi: 10.1016/j.compmedimag.2014.11.010 – ident: ref284 doi: 10.1023/A:1022699900025 – ident: ref56 doi: 10.1016/S0004-3702(96)00034-3 – year: 2016 ident: ref86 publication-title: Deep Learning – ident: ref341 doi: 10.1109/ICCV.2015.11 – ident: ref24 doi: 10.1613/jair.606 – ident: ref268 doi: 10.1109/CVPR.2015.7298594 – ident: ref213 doi: 10.1109/CVPR.2017.240 – ident: ref121 doi: 10.1613/jair.1872 – ident: ref271 doi: 10.1109/CVPR.2018.00582 – ident: ref113 doi: 10.1109/ICRA.2016.7487708 – start-page: 3079 year: 2015 ident: ref51 article-title: Semi-supervised sequence learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref240 doi: 10.1016/j.patcog.2010.05.010 – ident: ref192 doi: 10.1109/CVPR.2017.17 – ident: ref322 doi: 10.1007/978-3-319-46487-9_40 – ident: ref283 doi: 10.1109/CVPR.2017.316 – ident: ref21 doi: 10.1145/279943.279962 – start-page: 517 year: 2017 ident: ref22 article-title: Unsupervised learning by predicting noise publication-title: Proc Int Conf Mach Learn – ident: ref29 doi: 10.1109/CVPR.2018.00429 – ident: ref201 doi: 10.1007/978-3-319-46466-4_5 – ident: ref219 doi: 10.1109/CVPR.2018.00610 – year: 2018 ident: ref165 article-title: G-Distillation: Reducing overconfident errors on novel samples publication-title: arXiv 1804 03166v1 – year: 2018 ident: ref228 article-title: Do CIFAR-10 classifiers generalize to CIFAR-10? publication-title: arXiv 1806 00451 – start-page: 4967 year: 2017 ident: ref241 article-title: A simple neural network module for relational reasoning publication-title: Proc Adv Neural Inf Process Syst – year: 2016 ident: ref148 article-title: Adversarial examples in the physical world publication-title: arXiv 1607 02533 – ident: ref332 doi: 10.1109/CVPR.2016.485 – year: 1995 ident: ref18 publication-title: Neural Networks for Pattern Recognition – ident: ref68 doi: 10.1109/TPAMI.2006.79 – ident: ref275 doi: 10.1016/j.patrec.2008.03.010 – start-page: 1 year: 2019 ident: ref162 article-title: Learn to grow: A continual structure learning framework for overcoming catastrophic forgetting publication-title: Proc Int Conf Mach Learn – ident: ref227 doi: 10.1109/CVPR.2017.587 – ident: ref281 doi: 10.1109/TPAMI.2011.52 – ident: ref131 doi: 10.1007/s11263-013-0693-1 – ident: ref190 doi: 10.1109/TPAMI.2018.2858821 – ident: ref168 doi: 10.1109/ICPR.2010.813 – ident: ref232 doi: 10.1109/TPAMI.2018.2849989 – ident: ref66 doi: 10.1109/TPAMI.2010.109 – start-page: 1049 year: 2009 ident: ref183 article-title: On the design of loss functions for classification: Theory, robustness to outliers, and savageboost publication-title: Proc Adv Neural Inf Process Syst – year: 2013 ident: ref140 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – start-page: 2255 year: 2017 ident: ref279 article-title: Few-shot learning through an information retrieval lens publication-title: Proc Adv Neural Inf Process Syst – ident: ref153 doi: 10.1561/0600000027 – ident: ref220 doi: 10.1109/CVPR.2016.247 – volume: 15 start-page: 1929 year: 2014 ident: ref258 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref282 doi: 10.1109/ICCV.2015.463 – ident: ref235 doi: 10.1109/TPAMI.2018.2814042 – ident: ref163 doi: 10.1109/TPAMI.2017.2739147 – ident: ref184 doi: 10.1109/TKDE.2010.61 – ident: ref177 doi: 10.1109/TITS.2016.2598356 – ident: ref12 doi: 10.1109/CVPR.2016.173 – start-page: 98 year: 2018 ident: ref105 article-title: Exemplar-supported generative reproduction for class incremental learning publication-title: Proc Brit Mach Vis Conf – ident: ref13 doi: 10.1109/TPAMI.2013.50 – start-page: 235 year: 2016 ident: ref17 article-title: Integrated perception with recurrent multi-task neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref107 doi: 10.1109/CVPR.2016.90 – ident: ref43 doi: 10.1109/TIT.1970.1054406 – ident: ref152 doi: 10.1126/science.aab3050 – ident: ref199 doi: 10.1109/TPAMI.2015.2461544 – volume: 31 start-page: 2211 year: 2009 ident: ref265 article-title: Ordinal measures for iris recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.240 – start-page: 489 year: 1996 ident: ref277 article-title: Discovering structure in multiple learning tasks: The TC algorithm publication-title: Proc Int Conf Mach Learn – ident: ref134 doi: 10.1016/j.ins.2017.11.061 – ident: ref193 doi: 10.1109/CVPR.2016.282 – start-page: 1 year: 2018 ident: ref239 article-title: Defense-GAN: Protecting classifiers against adversarial attacks using generative models publication-title: Proc Int Conf Learn Represent – ident: ref136 doi: 10.1007/978-94-015-8630-6 – ident: ref305 doi: 10.1109/TPAMI.2018.2857768 – ident: ref253 doi: 10.1016/S0378-3758(00)00115-4 – ident: ref170 doi: 10.1007/s100320200076 – ident: ref218 doi: 10.1023/A:1007601015854 – start-page: 37 year: 2014 ident: ref166 article-title: Robust classification under sample selection bias publication-title: Proc Adv Neural Inf Process Syst – start-page: 1540 year: 2015 ident: ref215 article-title: Lifelong learning with non-iid tasks publication-title: Proc Adv Neural Inf Process Syst – ident: ref102 doi: 10.1109/TPAMI.1983.4767411 – ident: ref147 doi: 10.1002/0471660264 – year: 2018 ident: ref54 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv 1810 04805 – ident: ref67 doi: 10.1109/MSP.2017.2740965 – year: 2017 ident: ref321 article-title: Recent advances in transfer learning for cross-dataset visual recognition: A problem-oriented perspective publication-title: arXiv 1705 04396 – ident: ref200 doi: 10.1109/CVPR.2015.7298640 – ident: ref172 doi: 10.1109/TPAMI.2015.2456899 – start-page: 1621 year: 2011 ident: ref326 article-title: Pattern field classification with style normalized transformation publication-title: Proc Int Joint Conf Artif Intell – ident: ref244 doi: 10.1109/TNN.2008.2005605 – ident: ref111 doi: 10.1109/34.273716 – ident: ref158 doi: 10.1109/5.726791 – ident: ref42 doi: 10.1109/TMM.2015.2477044 – start-page: 1 year: 2016 ident: ref331 article-title: Stacked what-where auto-encoders publication-title: Proc Workshop Int Conf Learn Represent – start-page: 1986 year: 2017 ident: ref45 article-title: Consistent multitask learning with nonlinear output relations publication-title: Proc Adv Neural Inf Process Syst – ident: ref145 doi: 10.1109/CVPR.2018.00363 – ident: ref144 doi: 10.1142/p191 – ident: ref125 doi: 10.1109/34.824819 – ident: ref214 doi: 10.1109/TPAMI.2017.2723882 – ident: ref246 doi: 10.1109/TPAMI.2012.256 – start-page: 6670 year: 2017 ident: ref194 article-title: Few-shot adversarial domain adaptation publication-title: Proc Adv Neural Inf Process Syst – ident: ref242 doi: 10.1147/JRD.2017.2701178 – ident: ref117 doi: 10.1109/TPAMI.2011.283 – ident: ref82 doi: 10.1016/j.neucom.2014.09.081 – start-page: 1 year: 2015 ident: ref230 article-title: Training deep neural networks on noisy labels with bootstrapping publication-title: Proc Workshop Int Conf Learn Represent – ident: ref301 doi: 10.1109/CVPR.2018.00760 – start-page: 4296 year: 2016 ident: ref196 article-title: Adaptive smoothed online multi-task learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref311 doi: 10.1109/CVPR.2018.00417 – ident: ref50 doi: 10.1109/TASL.2011.2134090 – ident: ref298 doi: 10.1109/TPAMI.2011.264 – ident: ref47 doi: 10.1145/1390156.1390177 – year: 2001 ident: ref63 publication-title: Pattern Classification – ident: ref313 doi: 10.1109/CVPR.2018.00366 – ident: ref38 doi: 10.1145/3133944.3133949 – ident: ref293 doi: 10.1109/CVPR.2018.00950 – ident: ref32 doi: 10.1023/A:1007379606734 – ident: ref72 doi: 10.1109/TNNLS.2013.2292894 – start-page: 3320 year: 2014 ident: ref315 article-title: How transferable are features in deep neural networks? publication-title: Proc Adv Neural Inf Process Syst – ident: ref124 doi: 10.1016/j.patrec.2009.09.011 – start-page: 612 year: 2016 ident: ref328 article-title: Augmenting supervised neural networks with unsupervised objectives for large-scale image classification publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2017 ident: ref226 article-title: Optimization as a model for few-shot learning publication-title: Proc Int Conf Learn Represent – year: 2017 ident: ref260 article-title: One pixel attack for fooling deep neural networks publication-title: arXiv 1710 08864 – ident: ref300 doi: 10.1109/CVPR.2018.00906 – start-page: 1 year: 2018 ident: ref96 article-title: Deep nearest class mean classifiers publication-title: Proc Worskhop Int Conf Learn Represent – year: 2001 ident: ref273 article-title: One-class classification: Concept-learning in the absence of counter-examples – start-page: 1 year: 2017 ident: ref317 article-title: Understanding deep learning requires rethinking generalization publication-title: Proc Int Conf Learn Represent – ident: ref270 doi: 10.1109/CVPR.2014.220 – ident: ref204 doi: 10.1109/CVPR.2019.01158 – ident: ref114 doi: 10.1007/978-3-642-33709-3_50 – ident: ref202 doi: 10.1561/0600000033 – start-page: 536 year: 2006 ident: ref310 article-title: Robust support vector machine training via convex outlier ablation publication-title: Proc AAAI Conf Artif Intell – ident: ref264 doi: 10.1109/TPAMI.2015.2505293 – ident: ref304 doi: 10.1109/CVPR.2018.00393 – ident: ref308 doi: 10.1109/TNNLS.2016.2637351 – ident: ref91 doi: 10.1145/1143844.1143891 – ident: ref57 doi: 10.1109/ICCV.2015.167 – start-page: 1 year: 2018 ident: ref83 article-title: Unsupervised representation learning by predicting image rotations publication-title: Proc Int Conf Learn Represent – ident: ref188 doi: 10.1109/CVPR.2016.433 – ident: ref6 doi: 10.1109/CVPR.2005.283 |
SSID | ssj0003563 |
Score | 2.6369932 |
SecondaryResourceType | review_article |
Snippet | The accuracies for many pattern recognition tasks have increased rapidly year by year, achieving or even outperforming human performance. From the perspective... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 894 |
SubjectTerms | Accuracy Big Data Changing environments Clean and big data closed world Distributed control Human performance Identification methods independent and identically distributed Machine intelligence Machine learning Neural networks Pattern recognition Pattern recognition systems robust pattern recognition Robustness Task analysis Task complexity |
Title | Towards Robust Pattern Recognition: A Review |
URI | https://ieeexplore.ieee.org/document/9103349 https://www.proquest.com/docview/2408657711 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XAjXVrmqZpuE2IaZo0mKZN2q1K0uQC6hDrLvx6krSdeAlxyyGJIjuO7dj-DHAjYxEliFOfcW4dlIT7QsTEx0ToiCWJiFy4YPoYj5fRZEVWDejtamGUUi75TPXt0MXys7Xc2q-ygVFtGEesCU3juJW1WrtXF5OqaxoyAmzEsC6QCdhgMps_3RtXMAz6Fm-cJuEXJeS6qvx4ip1-GR3CtD5ZmVby3N8Woi_fv4E2_vfoR3BQGZresLwZx9BQ-Qnsf4IfbENv4XJmN958Lbabwps5rM3cm9dJRev8zht6ZfjgFJajh8X92K-6J_gyZKTwsywzVMLcKJ9MIKSM4cM1QpiGylgZMQmJkDyRGIlII40DiRRVTGkd0gzrKMZn0MrXuToHL0EBl1RpzJCKMhIIpJjOuCYhpzjhsgOoJmcqK2hx2-HiJXUuRsBSx4LUsiCtWNCB292a1xJY48_ZbUvT3cyKnB3o1lxLK9nbpBa0LSaUInTx-6pL2LN7lwlfXWgVb1t1ZUyLQly7O_UBMfjIkA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgB64QUfTNE3DDSGmMdiYpiFxq5I0uYA6xLoLv54kbSdeQtxySJTIjmM7tj8DnMpYRAni1GecWwcl4b4QMfExETpiSSIiFy4YDOPeY9R_Ik8NOF_UwiilXPKZ6tihi-VnUzm3X2UXRrVhHLElWDZ6n6CyWmvx7mJS9U1DRoSNINYlMgG76I_GD9fGGQyDjkUcp0n4RQ25vio_HmOnYbobMKjPViaWPHfmhejI92-wjf89_CasV6amd1XejS1oqHwb1j4BEO7A-cRlzc688VTMZ4U3cmibuTeu04qm-aV35ZUBhF147N5Mrnt-1T_BlyEjhZ9lmXFwMTfqJxMIKWP6cI0QpqEydkZMQiIkTyRGItJI40AiRRVTWoc0wzqK8R4082mu9sFLUMAlVRozpKKMBAIppjOuScgpTrhsAarJmcoKXNz2uHhJnZMRsNSxILUsSCsWtOBssea1hNb4c_aOpeliZkXOFrRrrqWV9M1SC9sWE0oROvh91Qms9CaD-_T-dnh3CKt2nzL9qw3N4m2ujoyhUYhjd78-ANeiy9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Robust+Pattern+Recognition%3A+A+Review&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Zhang%2C+Xu-Yao&rft.au=Liu%2C+Cheng-Lin&rft.au=Suen%2C+Ching+Y.&rft.date=2020-06-01&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=108&rft.issue=6&rft.spage=894&rft.epage=922&rft_id=info:doi/10.1109%2FJPROC.2020.2989782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPROC_2020_2989782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |