MSTA-Net: Forgery Detection by Generating Manipulation Trace Based on Multi-Scale Self-Texture Attention

Lots of Deepfake videos are circulating on the Internet, which not only damages the personal rights of the forged individual, but also pollutes the web environment. What's worse, it may trigger public opinion and endanger national security. Therefore, it is urgent to fight deep forgery. Most of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 7; pp. 4854 - 4866
Main Authors Yang, Jiachen, Xiao, Shuai, Li, Aiyun, Lu, Wen, Gao, Xinbo, Li, Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lots of Deepfake videos are circulating on the Internet, which not only damages the personal rights of the forged individual, but also pollutes the web environment. What's worse, it may trigger public opinion and endanger national security. Therefore, it is urgent to fight deep forgery. Most of the current forgery detection algorithms are based on convolutional neural networks to learn the feature differences between forged and real frames from big data. In this paper, from the perspective of image generation, we simulate the forgery process based on image generation and explore possible trace of forgery. We propose a multi-scale self-texture attention Generative Network(MSTA-Net) to track the potential texture trace in image generation process and eliminate the interference of deep forgery post-processing. Firstly, a generator with encoder-decoder is to disassemble images and performed trace generation, then we merge the generated trace image and the original map, which is input into the classifier with Resnet as the backbone. Secondly, the self-texture attention mechanism(STA) is proposed as the skip connection between the encoder and the decoder, which significantly enhances the texture characteristics in the image disassembly process and assists the generation of texture trace. Finally, we propose a loss function called Prob-tuple loss restricted by classification probability to amend the generation of forgery trace directly. To verify the performance of the MSTA-Net, we design different experiments to verify the feasibility and advancement of the method. Experimental results show that the proposed method performs well on deep forged databases represented by FaceForensics++, Celeb-DF, Deeperforensics and DFDC, and some results are reaching the state-of-the-art.
AbstractList Lots of Deepfake videos are circulating on the Internet, which not only damages the personal rights of the forged individual, but also pollutes the web environment. What's worse, it may trigger public opinion and endanger national security. Therefore, it is urgent to fight deep forgery. Most of the current forgery detection algorithms are based on convolutional neural networks to learn the feature differences between forged and real frames from big data. In this paper, from the perspective of image generation, we simulate the forgery process based on image generation and explore possible trace of forgery. We propose a multi-scale self-texture attention Generative Network(MSTA-Net) to track the potential texture trace in image generation process and eliminate the interference of deep forgery post-processing. Firstly, a generator with encoder-decoder is to disassemble images and performed trace generation, then we merge the generated trace image and the original map, which is input into the classifier with Resnet as the backbone. Secondly, the self-texture attention mechanism(STA) is proposed as the skip connection between the encoder and the decoder, which significantly enhances the texture characteristics in the image disassembly process and assists the generation of texture trace. Finally, we propose a loss function called Prob-tuple loss restricted by classification probability to amend the generation of forgery trace directly. To verify the performance of the MSTA-Net, we design different experiments to verify the feasibility and advancement of the method. Experimental results show that the proposed method performs well on deep forged databases represented by FaceForensics++, Celeb-DF, Deeperforensics and DFDC, and some results are reaching the state-of-the-art.
Author Xiao, Shuai
Li, Yang
Gao, Xinbo
Yang, Jiachen
Li, Aiyun
Lu, Wen
Author_xml – sequence: 1
  givenname: Jiachen
  orcidid: 0000-0003-2558-552X
  surname: Yang
  fullname: Yang, Jiachen
  email: yangjiachen@tju.edu.cn
  organization: School of Electronic Information Engineering and the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0003-4058-8120
  surname: Xiao
  fullname: Xiao, Shuai
  email: xs611@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Aiyun
  surname: Li
  fullname: Li, Aiyun
  email: liaiyun@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Wen
  surname: Lu
  fullname: Lu, Wen
  email: luwen@xidian.edu.cn
  organization: School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 5
  givenname: Xinbo
  orcidid: 0000-0002-7985-0037
  surname: Gao
  fullname: Gao, Xinbo
  email: gaoxb@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 6
  givenname: Yang
  orcidid: 0000-0002-4268-4004
  surname: Li
  fullname: Li, Yang
  email: liyang328@shzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang, China
BookMark eNp9kE1PwzAMhiMEEmzwB-ASiXNHnI825TYGG0gbHFa4VmnqjqLSjjSV2L-n-xAHDpxsy378Ss-AHNdNjYRcAhsBsPgmmSzfkhFnHEYChNAqPiJnoJQOOGfquO-ZgkBzUKdk0LYfjIHUMjoj74tlMg6e0d_SaeNW6Db0Hj1aXzY1zTZ0hjU648t6RRemLtddZXarxBmL9M60mNN-XHSVL4OlNRXSJVZFkOC37xzSsfdYb4lzclKYqsWLQx2S1-lDMnkM5i-zp8l4HlgeKx_kmTAq4hAyKyMUgmMoozy3RoMurJASpCoya1gIUADkBc8gyyKegxRZWGgxJNf7v2vXfHXY-vSj6VzdR6Y81DyGUDLeX_H9lXVN2zos0rUrP43bpMDSrdF0ZzTdGk0PRntI_4Fs6Xc6vDNl9T96tUdLRPzNikMpJAfxA9KVheU
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_comcom_2023_12_036
crossref_primary_10_1109_JSTARS_2022_3213749
crossref_primary_10_1109_TCSVT_2022_3220630
crossref_primary_10_1007_s10489_023_04616_2
crossref_primary_10_1109_TCSVT_2022_3189545
crossref_primary_10_1080_23742917_2023_2192888
crossref_primary_10_1109_TCSVT_2024_3349909
crossref_primary_10_1109_TIFS_2023_3324739
crossref_primary_10_1007_s10489_023_04684_4
crossref_primary_10_1109_ACCESS_2022_3230660
crossref_primary_10_1109_TCSVT_2024_3390945
crossref_primary_10_1109_TAI_2024_3455311
crossref_primary_10_1109_TCSVT_2023_3251444
crossref_primary_10_1109_TMC_2024_3367781
crossref_primary_10_1007_s10489_022_03766_z
crossref_primary_10_1109_TCSVT_2023_3269841
crossref_primary_10_1007_s11042_024_20223_w
crossref_primary_10_1016_j_ins_2023_03_006
crossref_primary_10_1109_TCSVT_2023_3289147
crossref_primary_10_1109_TIFS_2024_3451356
crossref_primary_10_1109_ACCESS_2022_3221123
crossref_primary_10_1016_j_cmpb_2023_107719
crossref_primary_10_1007_s11042_024_18706_x
crossref_primary_10_1007_s11063_023_11249_6
crossref_primary_10_1109_TMM_2023_3252267
crossref_primary_10_3390_math11173710
crossref_primary_10_1109_TMM_2024_3355651
crossref_primary_10_1109_TMM_2023_3313507
crossref_primary_10_1109_ACCESS_2023_3344653
crossref_primary_10_1145_3715138
crossref_primary_10_7717_peerj_cs_1101
crossref_primary_10_1109_TCSVT_2023_3238517
crossref_primary_10_1109_TCSVT_2023_3239607
crossref_primary_10_3390_math11183952
crossref_primary_10_1007_s00530_024_01357_1
crossref_primary_10_1016_j_neucom_2025_130009
crossref_primary_10_1109_TMM_2023_3237169
crossref_primary_10_1109_TCSVT_2023_3269948
crossref_primary_10_1186_s13007_022_00866_2
crossref_primary_10_3390_computers12100216
crossref_primary_10_3390_s22134697
crossref_primary_10_1109_TCSVT_2023_3299278
crossref_primary_10_1016_j_patcog_2025_111528
crossref_primary_10_1007_s10489_022_03910_9
crossref_primary_10_1007_s11042_023_17840_2
crossref_primary_10_1007_s12652_022_04393_9
crossref_primary_10_1109_TCSVT_2022_3209336
crossref_primary_10_1007_s11042_024_19584_z
crossref_primary_10_1007_s11760_023_02644_6
crossref_primary_10_1109_TCSVT_2023_3281475
crossref_primary_10_1016_j_imavis_2022_104566
crossref_primary_10_1109_TCSVT_2023_3269742
crossref_primary_10_1109_TCSVT_2022_3207310
crossref_primary_10_1109_JAS_2023_123117
crossref_primary_10_1145_3605893
crossref_primary_10_3390_computers13010031
crossref_primary_10_1016_j_jvcir_2024_104263
crossref_primary_10_1109_TCSS_2022_3213832
crossref_primary_10_1145_3623639
crossref_primary_10_1049_2024_2280143
crossref_primary_10_1109_TCSVT_2023_3278310
crossref_primary_10_1007_s00530_024_01424_7
crossref_primary_10_1016_j_eswa_2023_120898
crossref_primary_10_3390_info15090525
crossref_primary_10_1007_s11042_023_17475_3
crossref_primary_10_1049_ipr2_12638
crossref_primary_10_1109_ACCESS_2024_3523288
crossref_primary_10_1016_j_comcom_2022_04_020
crossref_primary_10_1109_TCSVT_2023_3309899
Cites_doi 10.1109/CVPR.2016.262
10.1109/WACV.2016.7477553
10.1109/TPAMI.2021.3050918
10.1109/TCSVT.2021.3089724
10.1109/ICCV.2019.00765
10.1109/TCSVT.2018.2884203
10.1109/TPAMI.2019.2928540
10.1109/CVPR.2015.7298682
10.1007/978-3-030-58610-2_6
10.1007/s10479-011-0841-3
10.1109/ICASSP.2019.8683164
10.1109/CVPR.2018.00813
10.1109/TCSVT.2021.3074259
10.1145/3306346.3323035
10.1007/s11263-019-01228-7
10.1016/j.future.2021.06.043
10.1109/TCSVT.2019.2892608
10.1109/WIFS49906.2020.9360901
10.1109/ICCV.2019.00728
10.1109/TCSVT.2019.2918852
10.1109/CVPR42600.2020.00813
10.1109/CVPR42600.2020.00808
10.1145/3297280.3297410
10.1109/CVPR46437.2021.00991
10.1109/WACVW.2019.00020
10.1109/TCSVT.2019.2945057
10.1007/s10489-022-03766-z
10.1109/TCSVT.2021.3068294
10.1109/TCSVT.2020.3014889
10.1109/CVPR42600.2020.00296
10.1109/CVPR.2018.00116
10.1007/978-3-319-24574-4_28
10.1109/ICCV48922.2021.00209
10.1109/CVPR.2016.90
10.1109/TCSVT.2021.3116679
10.1109/WIFS.2018.8630761
10.1109/ICCV.2019.00009
10.1109/TCSVT.2021.3061153
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3133859
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 4866
ExternalDocumentID 10_1109_TCSVT_2021_3133859
9643421
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871283
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-db3a572160c47e332e647ddca818fc344145fbca0611f11df2b1bb72d143b6f83
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:32:40 EDT 2025
Tue Jul 01 00:41:16 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Wed Aug 27 02:23:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-db3a572160c47e332e647ddca818fc344145fbca0611f11df2b1bb72d143b6f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4058-8120
0000-0002-7985-0037
0000-0002-4268-4004
0000-0003-2558-552X
PQID 2682916402
PQPubID 85433
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCSVT_2021_3133859
proquest_journals_2682916402
ieee_primary_9643421
crossref_citationtrail_10_1109_TCSVT_2021_3133859
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref53
ref52
ref18
Zhao (ref8) 2021
Vaswani (ref44) 2017; abs/1706.03762
ref50
(ref16) 2018
Li (ref7) 2019
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
Li (ref19) 2019
ref9
ref4
ref3
(ref17) 2018
ref6
ref5
ref40
ref34
ref37
ref36
Korshunov (ref28) 2018
ref30
ref33
Güera (ref31)
ref32
Karras (ref23) 2021
ref2
ref1
ref39
ref38
Feng (ref11) 2020
Bonettini (ref51) 2020
Goodfellow (ref10)
ref24
ref26
ref25
ref20
ref22
ref21
ref27
Dolhansky (ref15) 2020; abs/2006.07397
Agarwal (ref29)
Sabir (ref35) 2019
References_xml – ident: ref21
  doi: 10.1109/CVPR.2016.262
– ident: ref30
  doi: 10.1109/WACV.2016.7477553
– ident: ref39
  doi: 10.1109/TPAMI.2021.3050918
– year: 2020
  ident: ref11
  article-title: Learning generalized spoof cues for face anti-spoofing
  publication-title: arXiv:2005.03922
– ident: ref1
  doi: 10.1109/TCSVT.2021.3089724
– volume: abs/1706.03762
  year: 2017
  ident: ref44
  article-title: Attention is all you need
  publication-title: CoRR
– ident: ref36
  doi: 10.1109/ICCV.2019.00765
– ident: ref46
  doi: 10.1109/TCSVT.2018.2884203
– ident: ref40
  doi: 10.1109/TPAMI.2019.2928540
– ident: ref42
  doi: 10.1109/CVPR.2015.7298682
– ident: ref49
  doi: 10.1007/978-3-030-58610-2_6
– ident: ref53
  doi: 10.1007/s10479-011-0841-3
– volume: abs/2006.07397
  year: 2020
  ident: ref15
  article-title: The DeepFake detection challenge dataset
  publication-title: CoRR
– ident: ref27
  doi: 10.1109/ICASSP.2019.8683164
– ident: ref45
  doi: 10.1109/CVPR.2018.00813
– start-page: 1
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
  ident: ref29
  article-title: Protecting world leaders against deep fakes
– ident: ref38
  doi: 10.1109/TCSVT.2021.3074259
– ident: ref22
  doi: 10.1145/3306346.3323035
– ident: ref52
  doi: 10.1007/s11263-019-01228-7
– year: 2019
  ident: ref35
  article-title: Recurrent convolutional strategies for face manipulation detection in videos
  publication-title: arXiv:1905.00582
– ident: ref47
  doi: 10.1016/j.future.2021.06.043
– year: 2020
  ident: ref51
  article-title: Video face manipulation detection through ensemble of CNNs
  publication-title: arXiv:2004.07676
– year: 2021
  ident: ref8
  article-title: A transferable anti-forensic attack on forensic CNNs using a generative adversarial network
  publication-title: arXiv:2101.09568
– year: 2021
  ident: ref23
  article-title: Alias-free generative adversarial networks
  publication-title: arXiv:2106.12423
– ident: ref9
  doi: 10.1109/TCSVT.2019.2892608
– ident: ref50
  doi: 10.1109/WIFS49906.2020.9360901
– ident: ref18
  doi: 10.1109/ICCV.2019.00728
– ident: ref6
  doi: 10.1109/TCSVT.2019.2918852
– ident: ref25
  doi: 10.1109/CVPR42600.2020.00813
– volume-title: Faceswap: Deepfakes Software for All
  year: 2018
  ident: ref17
– ident: ref48
  doi: 10.1109/CVPR42600.2020.00808
– ident: ref33
  doi: 10.1145/3297280.3297410
– year: 2019
  ident: ref7
  article-title: Celeb-DF: A large-scale challenging dataset for DeepFake forensics
  publication-title: arXiv:1909.12962
– year: 2018
  ident: ref28
  article-title: DeepFakes: A new threat to face recognition? Assessment and detection
  publication-title: arXiv:1812.08685
– ident: ref24
  doi: 10.1109/CVPR46437.2021.00991
– ident: ref32
  doi: 10.1109/WACVW.2019.00020
– ident: ref5
  doi: 10.1109/TCSVT.2019.2945057
– ident: ref2
  doi: 10.1007/s10489-022-03766-z
– ident: ref20
  doi: 10.1109/TCSVT.2021.3068294
– volume-title: Faceswap-GAN
  year: 2018
  ident: ref16
– start-page: 2672
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref10
  article-title: Generative adversarial nets
– ident: ref13
  doi: 10.1109/TCSVT.2020.3014889
– ident: ref14
  doi: 10.1109/CVPR42600.2020.00296
– ident: ref34
  doi: 10.1109/CVPR.2018.00116
– ident: ref41
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref26
  doi: 10.1109/ICCV48922.2021.00209
– ident: ref43
  doi: 10.1109/CVPR.2016.90
– year: 2019
  ident: ref19
  article-title: FaceShifter: Towards high fidelity and occlusion aware face swapping
  publication-title: arXiv:1912.13457
– ident: ref37
  doi: 10.1109/TCSVT.2021.3116679
– ident: ref3
  doi: 10.1109/WIFS.2018.8630761
– ident: ref4
  doi: 10.1109/ICCV.2019.00009
– start-page: 1
  volume-title: Proc. ICML Worksop Synth. Realities, Deep Learn. Detecting AudioVisual Fakes
  ident: ref31
  article-title: We need no pixels: Video manipulation detection using stream descriptors
– ident: ref12
  doi: 10.1109/TCSVT.2021.3061153
SSID ssj0014847
Score 2.6142802
Snippet Lots of Deepfake videos are circulating on the Internet, which not only damages the personal rights of the forged individual, but also pollutes the web...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4854
SubjectTerms Algorithms
Artificial neural networks
Coders
Dismantling
Encoders-Decoders
Faces
faceswap detection
Feature extraction
Forgery
Generators
Image processing
Information integrity
prob-tuple loss
self-texture attention
Texture
Trace generation
Videos
Title MSTA-Net: Forgery Detection by Generating Manipulation Trace Based on Multi-Scale Self-Texture Attention
URI https://ieeexplore.ieee.org/document/9643421
https://www.proquest.com/docview/2682916402
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl408ylTX95m9MxhO2yTnYrzS8URyezPehf70vajqEi3lpIIPCled9r3vc9hC4jj8lUMpeE1E8J0wEjkR9SorXw_Yi6aSiNUHg88Ucz9jj35g10vdbCKKVs8Znqmkd7ly-XojC_ym6MdxQzqvEtSNxKrdb6xoCFtpkY0AVKQohjtUCmF93Eg-lTDKmgQyFDhZTM-JJuBCHbVeXHUWzjy3APjeuVlWUlr90i513x-c208b9L30e7FdHE_XJnHKCGyg7Rzob9YAs9j6dxn0xUfouHS6uOxvcqt7VZGeYfuLSkNnXReJxmL3WnLwzxTSh8B_FPYni1Gl4yBbAVnqqFJjEc-MVK4X6el8WUR2g2fIgHI1J1XiDCibycSO6mnrH16QkWKNd1lM8CKUUK4V0LFygU8zQXKZABqimV2uGU88CRwL64r0P3GDWzZaZOEPbgBOFhTxonPiYDngbmMk64mpmGo17URrSGIhGVLbnpjrFIbHrSixILX2LgSyr42uhqPeetNOX4c3TL4LEeWUHRRp0a8aT6bt8Txw8dIMyQVJ_-PusMbTtGAGELdjuoma8KdQ60JOcXdj9-AXp33Ks
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB1F5VA4AKWgBtJ2D9xgk6y9_uKWpo3SD-cSF_Vmeb_UisipUvsAv57ZtR1FgFBvtrQrrfTWO2-8894AfE4CrgrFfRqzsKDcRJwmYcyoMTIME-YXsbJC4XQRzm_51V1w14OvWy2M1toVn-mhfXR3-Wota_urbGS9o7hVjb_AuB-wRq21vTPgsWsnhoSB0RgjWSeRGSejbLr8nmEy6DHMUTEps86kO2HI9VX56zB2EWb2BtJubU1hyY9hXYmh_PWHbeNzF_8WXrdUk0yavXEAPV2-g1c7BoSHcJ8uswld6Oobma2dPpqc68pVZ5VE_CSNKbWtjCZpUT50vb4IRjipyRlGQEXw1al46RLh1mSpV4ZmeOTXG00mVdWUU76H29lFNp3TtvcClV4SVFQJvwissc9Y8kj7vqdDHiklCwzwRvpIonhghCyQDjDDmDKeYEJEnkL-JUIT-x9gr1yX-ghIgGeIiMfKevFxFYkistdx0jfcthwNkj6wDopctsbktj_GKncJyjjJHXy5hS9v4evDl-2cx8aW47-jDy0e25EtFH0YdIjn7Zf7lHth7CFlxrT6479nncL-PEtv8pvLxfUneOlZOYQr3x3AXrWp9TGSlEqcuL35GyfD3_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSTA-Net%3A+Forgery+Detection+by+Generating+Manipulation+Trace+Based+on+Multi-Scale+Self-Texture+Attention&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Yang%2C+Jiachen&rft.au=Xiao%2C+Shuai&rft.au=Li%2C+Aiyun&rft.au=Lu%2C+Wen&rft.date=2022-07-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=7&rft.spage=4854&rft.epage=4866&rft_id=info:doi/10.1109%2FTCSVT.2021.3133859&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3133859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon