Dual-Level Representation Enhancement on Characteristic and Context for Image-Text Retrieval

Image-text retrieval is a fundamental and vital task in multi-media retrieval and has received growing attention since it connects heterogeneous data. Previous methods that perform well on image-text retrieval mainly focus on the interaction between image regions and text words. But these approaches...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 8037 - 8050
Main Authors Yang, Song, Li, Qiang, Li, Wenhui, Li, Xuanya, Liu, An-An
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image-text retrieval is a fundamental and vital task in multi-media retrieval and has received growing attention since it connects heterogeneous data. Previous methods that perform well on image-text retrieval mainly focus on the interaction between image regions and text words. But these approaches lack joint exploration of characteristics and contexts of regions and words, which will cause semantic confusion of similar objects and loss of contextual understanding. To address these issues, a dual-level representation enhancement network (DREN) is proposed to strength the characteristic and contextual representations by innovative block-level and instance-level representation enhancement modules, respectively. The block-level module focuses on mining the potential relations between multiple blocks within each instance representation, while the instance-level module concentrates on learning the contextual relations between different instances. To facilitate the accurate matching of image-text pairs, we propose the graph correlation inference and weighted adaptive filtering to conduct the local and global matching between image-text pairs. Extensive experiments on two challenging datasets (i.e., Flickr30K and MSCOCO) verify the superiority of our method for image-text retrieval.
AbstractList Image-text retrieval is a fundamental and vital task in multi-media retrieval and has received growing attention since it connects heterogeneous data. Previous methods that perform well on image-text retrieval mainly focus on the interaction between image regions and text words. But these approaches lack joint exploration of characteristics and contexts of regions and words, which will cause semantic confusion of similar objects and loss of contextual understanding. To address these issues, a dual-level representation enhancement network (DREN) is proposed to strength the characteristic and contextual representations by innovative block-level and instance-level representation enhancement modules, respectively. The block-level module focuses on mining the potential relations between multiple blocks within each instance representation, while the instance-level module concentrates on learning the contextual relations between different instances. To facilitate the accurate matching of image-text pairs, we propose the graph correlation inference and weighted adaptive filtering to conduct the local and global matching between image-text pairs. Extensive experiments on two challenging datasets (i.e., Flickr30K and MSCOCO) verify the superiority of our method for image-text retrieval.
Author Li, Xuanya
Li, Qiang
Yang, Song
Liu, An-An
Li, Wenhui
Author_xml – sequence: 1
  givenname: Song
  orcidid: 0000-0002-8238-8226
  surname: Yang
  fullname: Yang, Song
  organization: School of Microelectronics, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  organization: School of Microelectronics, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Wenhui
  orcidid: 0000-0001-9609-6120
  surname: Li
  fullname: Li, Wenhui
  email: liwenhui@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Xuanya
  orcidid: 0000-0002-2227-207X
  surname: Li
  fullname: Li, Xuanya
  organization: Baidu Inc., Beijing, China
– sequence: 5
  givenname: An-An
  orcidid: 0000-0001-5755-9145
  surname: Liu
  fullname: Liu, An-An
  email: anan0422@gmail.com
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
BookMark eNp9kMFOwzAMhiM0JLbBC8ClEueOxGna5IjKgEmTkMbghFRlqcM6delIswneno5NHDhwsf1b_mz5H5CeaxwScsnoiDGqbub58-t8BBRgxJmEBNIT0mdCyBiAil5XU8FiCUyckUHbrihliUyyPnm72-o6nuIO62iGG48tuqBD1bho7JbaGVx3jaiT-VJ7bQL6qg2VibQro7xxAT9DZBsfTdb6HeP5Xs4w-Ap3uj4np1bXLV4c85C83I_n-WM8fXqY5LfT2IASIS6FZTrjVoJAmxqthE3RljwzZaLAIGcoRVqCXaQ8ydRiAYoJRMnKBLgqEz4k14e9G998bLENxarZetedLCADlXJJuzAk8jBlfNO2Hm1hqsOrweuqLhgt9l4WP14Wey-Lo5cdCn_Qja_W2n_9D10doAoRfwGVqSRNFf8GqA-DDA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1038_s41598_023_50739_4
crossref_primary_10_1016_j_knosys_2024_111503
crossref_primary_10_1109_TCSVT_2024_3394551
crossref_primary_10_1155_2023_9604454
crossref_primary_10_32604_cmes_2023_028018
crossref_primary_10_61186_ijbc_15_3_13
crossref_primary_10_1007_s00500_023_09223_4
crossref_primary_10_1007_s10723_023_09717_3
crossref_primary_10_1007_s11356_023_29118_z
crossref_primary_10_3389_fpubh_2023_1273253
crossref_primary_10_1155_2023_2768126
crossref_primary_10_1109_JPROC_2024_3525147
crossref_primary_10_1109_TCSVT_2024_3358411
crossref_primary_10_1007_s00500_023_09587_7
crossref_primary_10_1016_j_suscom_2023_100921
crossref_primary_10_1155_2024_8014111
crossref_primary_10_3390_math11204322
crossref_primary_10_1109_ACCESS_2023_3319452
crossref_primary_10_1109_TCSVT_2024_3480949
crossref_primary_10_1007_s10257_023_00665_9
crossref_primary_10_1109_ACCESS_2023_3318120
crossref_primary_10_1007_s00500_023_09313_3
crossref_primary_10_1109_TCSVT_2023_3253548
crossref_primary_10_3390_app13158838
crossref_primary_10_1016_j_engappai_2024_108150
crossref_primary_10_1109_TCSVT_2024_3497997
crossref_primary_10_1109_TMM_2023_3289753
crossref_primary_10_1109_TMM_2023_3261443
crossref_primary_10_2147_JMDH_S410301
crossref_primary_10_1049_cit2_12319
crossref_primary_10_1007_s00500_023_09210_9
crossref_primary_10_1007_s00500_023_09423_y
crossref_primary_10_1109_TCSVT_2022_3233042
crossref_primary_10_1016_j_ipm_2023_103280
crossref_primary_10_1111_exsy_13468
crossref_primary_10_1007_s10723_023_09708_4
crossref_primary_10_1007_s11042_023_17704_9
crossref_primary_10_1109_ACCESS_2023_3339553
crossref_primary_10_1007_s11042_023_17956_5
crossref_primary_10_7717_peerj_cs_1666
crossref_primary_10_1109_TCSVT_2024_3392619
crossref_primary_10_1007_s00500_023_09264_9
crossref_primary_10_1109_TCSVT_2022_3224068
crossref_primary_10_1007_s00521_023_09366_3
crossref_primary_10_1109_LSP_2023_3310870
crossref_primary_10_3390_bioengineering10080979
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1016_j_patcog_2024_111247
crossref_primary_10_3389_fnins_2023_1256351
crossref_primary_10_1016_j_engappai_2023_106787
crossref_primary_10_3390_app13169346
crossref_primary_10_1016_j_engappai_2023_107037
crossref_primary_10_1016_j_ipm_2024_103990
crossref_primary_10_1007_s00500_023_09222_5
crossref_primary_10_1007_s00500_023_09224_3
crossref_primary_10_1016_j_heliyon_2023_e22156
crossref_primary_10_1007_s11760_023_02761_2
crossref_primary_10_1109_TMM_2024_3521736
crossref_primary_10_1007_s10723_024_09755_5
crossref_primary_10_1016_j_knosys_2025_113355
crossref_primary_10_3390_math11194132
crossref_primary_10_1109_TCSVT_2023_3254530
crossref_primary_10_1109_ACCESS_2023_3317893
crossref_primary_10_1016_j_asoc_2023_110655
crossref_primary_10_1109_TCSVT_2024_3384297
crossref_primary_10_1080_15397734_2023_2229913
crossref_primary_10_1109_ACCESS_2024_3358422
crossref_primary_10_1186_s13677_023_00554_z
crossref_primary_10_1016_j_inffus_2023_102006
crossref_primary_10_3390_rs15225342
crossref_primary_10_1007_s12559_023_10179_8
crossref_primary_10_1109_TCSVT_2024_3369656
crossref_primary_10_1007_s00500_023_09162_0
crossref_primary_10_1080_15376494_2023_2227413
crossref_primary_10_1016_j_patcog_2025_111556
crossref_primary_10_1109_ACCESS_2023_3311027
crossref_primary_10_1007_s00500_023_09115_7
crossref_primary_10_1007_s00500_023_09319_x
crossref_primary_10_1007_s10723_023_09705_7
crossref_primary_10_1007_s10723_023_09709_3
crossref_primary_10_1145_3623396
crossref_primary_10_1007_s00500_023_09032_9
crossref_primary_10_3390_cancers15174412
crossref_primary_10_1007_s00500_023_09031_w
crossref_primary_10_1007_s11042_023_16517_0
crossref_primary_10_1007_s40747_023_01183_4
crossref_primary_10_1007_s11276_023_03546_8
crossref_primary_10_3233_JIFS_237410
crossref_primary_10_1109_TCSVT_2023_3307554
crossref_primary_10_7717_peerj_cs_1681
crossref_primary_10_1007_s11071_023_09170_7
crossref_primary_10_1038_s41598_023_47089_6
Cites_doi 10.1109/ICCV.2019.00591
10.1109/TIP.2018.2882225
10.1109/CVPR.2018.00750
10.1109/TCSVT.2021.3067449
10.1109/TCSVT.2021.3060713
10.1007/978-3-319-10602-1_48
10.1111/j.1551-6709.2009.01023.x
10.1109/CVPR.2018.00645
10.1109/CBMS.1992.245041
10.1109/TCSVT.2021.3127562
10.1109/CVPR42600.2020.00359
10.1109/TMM.2022.3151145
10.1007/s11280-018-0541-x
10.24963/ijcai.2019/720
10.1109/TPAMI.2021.3053577
10.1145/3343031.3350869
10.1109/TPAMI.2016.2598339
10.1109/CVPR.2016.541
10.1109/cvpr.2016.90
10.1109/CVPR42600.2020.01280
10.1109/TPAMI.2018.2797921
10.1109/ICCV.2019.00586
10.1007/978-3-030-01225-0_13
10.1109/ICCV.2019.00475
10.24963/ijcai.2019/526
10.1109/TCSVT.2020.3030656
10.1109/cvpr42600.2020.01267
10.1162/neco.1997.9.8.1735
10.1109/TNNLS.2020.2978386
10.1109/ICCV.2015.301
10.1007/s11263-016-0965-7
10.1097/MD.0000000000024427
10.1145/3394171.3413961
10.1109/tpami.2016.2577031
10.1109/WACV45572.2020.9093614
10.1109/TIP.2021.3106805
10.24963/ijcai.2019/111
10.1109/TCSVT.2021.3061153
10.1109/TMM.2021.3128744
10.1109/TNNLS.2022.3152990
10.1109/CVPR42600.2020.01093
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3182426
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 8050
ExternalDocumentID 10_1109_TCSVT_2022_3182426
9794669
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFF0704003
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: U21B2024
  funderid: 10.13039/501100001809
– fundername: Baidu Program
  funderid: 10.13039/100018903
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-d5f1a73f825ef6ca95f6efd37cd492ce31e856d2fb63479bb2915ee81d4239d43
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:11:05 EDT 2025
Tue Jul 01 00:41:18 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Wed Aug 27 02:14:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d5f1a73f825ef6ca95f6efd37cd492ce31e856d2fb63479bb2915ee81d4239d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5755-9145
0000-0002-8238-8226
0000-0002-2227-207X
0000-0001-9609-6120
PQID 2729638096
PQPubID 85433
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3182426
proquest_journals_2729638096
crossref_primary_10_1109_TCSVT_2022_3182426
ieee_primary_9794669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref17
ref16
ref18
Vaswani (ref20)
ref46
ref45
ref48
ref47
ref42
ref44
ref43
Guyon (ref19) 2003; 3
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
Ma (ref49) 2019; 1
ref30
ref33
ref32
ref2
ref1
Karpathy (ref22)
ref39
ref24
ref23
ref26
ref25
Kiros (ref41) 2014; abs/1411.2539
ref28
ref27
ref29
Faghri (ref14)
Frome (ref21)
Chung (ref38) 2014; abs/1412.3555
References_xml – ident: ref44
  doi: 10.1109/ICCV.2019.00591
– start-page: 5998
  volume-title: Proc. NIPS
  ident: ref20
  article-title: Attention is all you need
– ident: ref29
  doi: 10.1109/TIP.2018.2882225
– ident: ref24
  doi: 10.1109/CVPR.2018.00750
– ident: ref3
  doi: 10.1109/TCSVT.2021.3067449
– volume: abs/1412.3555
  start-page: 1
  year: 2014
  ident: ref38
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: CoRR
– ident: ref1
  doi: 10.1109/TCSVT.2021.3060713
– ident: ref40
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref11
  doi: 10.1111/j.1551-6709.2009.01023.x
– ident: ref23
  doi: 10.1109/CVPR.2018.00645
– volume: 1
  start-page: 105
  issue: 1
  year: 2019
  ident: ref49
  article-title: PaddlePaddle: An open-source deep learning platform from industrial practice
  publication-title: Frontiers Data Domputing
– ident: ref12
  doi: 10.1109/CBMS.1992.245041
– ident: ref7
  doi: 10.1109/TCSVT.2021.3127562
– ident: ref16
  doi: 10.1109/CVPR42600.2020.00359
– ident: ref27
  doi: 10.1109/TMM.2022.3151145
– start-page: 1889
  volume-title: Proc. NeurIPS
  ident: ref22
  article-title: Deep fragment embeddings for bidirectional image sentence mapping
– ident: ref25
  doi: 10.1007/s11280-018-0541-x
– start-page: 12
  volume-title: Proc. BMVC
  ident: ref14
  article-title: VSE++: Improving visual-semantic embeddings with hard negatives
– ident: ref33
  doi: 10.24963/ijcai.2019/720
– ident: ref5
  doi: 10.1109/TPAMI.2021.3053577
– ident: ref30
  doi: 10.1145/3343031.3350869
– ident: ref28
  doi: 10.1109/TPAMI.2016.2598339
– ident: ref13
  doi: 10.1109/CVPR.2016.541
– ident: ref39
  doi: 10.1109/cvpr.2016.90
– ident: ref17
  doi: 10.1109/CVPR42600.2020.01280
– volume: abs/1411.2539
  start-page: 1
  year: 2014
  ident: ref41
  article-title: Unifying visual-semantic embeddings with multimodal neural language models
  publication-title: CoRR
– ident: ref43
  doi: 10.1109/TPAMI.2018.2797921
– ident: ref45
  doi: 10.1109/ICCV.2019.00586
– ident: ref46
  doi: 10.1007/978-3-030-01225-0_13
– ident: ref34
  doi: 10.1109/ICCV.2019.00475
– ident: ref47
  doi: 10.24963/ijcai.2019/526
– ident: ref2
  doi: 10.1109/TCSVT.2020.3030656
– ident: ref9
  doi: 10.1109/cvpr42600.2020.01267
– ident: ref10
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref36
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref42
  doi: 10.1109/ICCV.2015.301
– ident: ref48
  doi: 10.1007/s11263-016-0965-7
– ident: ref15
  doi: 10.1097/MD.0000000000024427
– ident: ref32
  doi: 10.1145/3394171.3413961
– ident: ref37
  doi: 10.1109/tpami.2016.2577031
– ident: ref35
  doi: 10.1109/WACV45572.2020.9093614
– ident: ref8
  doi: 10.1109/TIP.2021.3106805
– start-page: 2121
  volume-title: Proc. NIPS
  ident: ref21
  article-title: DeViSE: A deep visual-semantic embedding model
– ident: ref31
  doi: 10.24963/ijcai.2019/111
– ident: ref6
  doi: 10.1109/TCSVT.2021.3061153
– ident: ref26
  doi: 10.1109/TMM.2021.3128744
– ident: ref4
  doi: 10.1109/TNNLS.2022.3152990
– ident: ref18
  doi: 10.1109/CVPR42600.2020.01093
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref19
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
SSID ssj0014847
Score 2.6366272
Snippet Image-text retrieval is a fundamental and vital task in multi-media retrieval and has received growing attention since it connects heterogeneous data. Previous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8037
SubjectTerms Adaptive filters
Correlation
Data mining
Dual-level feature enhancement
Feature extraction
Filtration
Image enhancement
image-text retrieval
Learning systems
Matching
Modules
multi-block matching
Multimedia
Representations
Retrieval
Semantics
Task analysis
Visualization
Title Dual-Level Representation Enhancement on Characteristic and Context for Image-Text Retrieval
URI https://ieeexplore.ieee.org/document/9794669
https://www.proquest.com/docview/2729638096
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT3rwVcVqlRy8adpu9tHNUWqLivVQq3gQlt3sBEFdRbcg_non2Qe-EG8bSELIzE7mS2a-AdiPReIK6Ss-iFXCPUcoHio34C5qP0aBjqvNhf7kIji58s5u_JsGHNa5MIhog8-waz7tW376pObmqqwnLRu6XIAFAm5Frlb9YuCFtpgYuQsOD-kcqxJk-rI3G15ezwgKCkEINTRn0pdDyFZV-WGK7fkyXoFJtbIirOS-O8-Trnr_Rtr436WvwnLpaLKjQjPWoIHZOix9oh9swe3xPH7g5yZsiE1tRGyZiJSxUXZn1MFMyqg5_ELrzOIsZZbW6i1n5PSy00eySnxmmlNboYvUdwOuxqPZ8ISX1Ra4ImHlPPW1Ew9cTZARdaBi6esAdeoOVOpJodB1MPSDVOgkMNmnSSKk4yOSv2s4BFPP3YRm9pThFjASf0xulVKhkJ4pKUNGlEC4QtIMgoe6DU61_ZEqqchNRYyHyEKSvoysyCIjsqgUWRsO6jHPBRHHn71bRgZ1z3L729CppByV_-prJAhfkBUiLLf9-6gdWDRzFxmIHWjmL3PcJVckT_asDn4Abb3bZQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADb8R45sANMtb0seaIxqYBGwcoiANS1aaOkBgdgk5C_HqctJt4CXFrpKSNYjf2l9ifAQ4SkbpC-oo3E5VyzxGKh8oNuIvaT1Cg42pzoN-_DLo33vmdfzcFR5NcGES0wWdYN4_2Lj8bqpE5KjuWlg1dTsMs2X3fKbO1JncGXmjLiZHD4PCQLNk4RaYhj6PW9W1EYFAIwqihsUpfzJCtq_JjM7YWprME_fHcysCSx_qoSOvq_Rtt438nvwyLlavJTkrdWIEpzFdh4RMB4Rrcn46SAe-ZwCF2ZWNiq1SknLXzB6MQ5qWMmq0vxM4syTNmia3eCkZuLzt7on2JR6Z5ZWt0kQKvw02nHbW6vKq3wBWJq-CZr52k6WoCjagDlUhfB6gzt6kyTwqFroOhH2RCp4HJP01TIR0fkTxewyKYee4GzOTDHDeBkQIk5FgpFQrpmaIytI0SDFdIukEAUdfAGS9_rCoyclMTYxBbUNKQsRVZbEQWVyKrweFkzHNJxfFn7zUjg0nPavlrsDOWclz9ra-xIIRB-xChua3fR-3DXDfq9-Le2eXFNsyb75T5iDswU7yMcJcckyLds_r4AQiF3q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Level+Representation+Enhancement+on+Characteristic+and+Context+for+Image-Text+Retrieval&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Yang%2C+Song&rft.au=Li%2C+Qiang&rft.au=Li%2C+Wenhui&rft.au=Li%2C+Xuanya&rft.date=2022-11-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=11&rft.spage=8037&rft.epage=8050&rft_id=info:doi/10.1109%2FTCSVT.2022.3182426&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3182426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon