Real-Time Classification of Distributed Fiber Optic Monitoring Signals Using a 1D-CNN-SVM Framework for Pipeline Safety
The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber op...
Saved in:
Published in | Processes Vol. 13; no. 6; p. 1825 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-9717 2227-9717 |
DOI | 10.3390/pr13061825 |
Cover
Abstract | The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber optic monitoring signals, leveraging a hybrid framework that combines the feature learning capacity of a one-dimensional convolutional neural network (1D-CNN) with the classification robustness of a support vector machine (SVM). The proposed method effectively distinguishes various pipeline-related events—such as minor leakage, theft attempts, and human movement—by automatically extracting their vibration patterns. Notably, it addresses the common shortcomings of softmax-based classifiers in small-sample scenarios. When tested on a real-world dataset collected via the DAS3000 system from Hangzhou Optosensing Co., Ltd., the model achieved a high classification accuracy of 99.92% across six event types, with an average inference latency of just 0.819 milliseconds per signal. These results demonstrate its strong potential for rapid anomaly detection in pipeline systems. Beyond technical performance, the method offers three practical benefits: it integrates well with current monitoring infrastructures, significantly reduces manual inspection workloads, and provides early warnings for potential pipeline threats. Overall, this work lays the groundwork for a scalable, machine learning-enhanced solution aimed at ensuring the operational safety of critical energy assets. |
---|---|
AbstractList | The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber optic monitoring signals, leveraging a hybrid framework that combines the feature learning capacity of a one-dimensional convolutional neural network (1D-CNN) with the classification robustness of a support vector machine (SVM). The proposed method effectively distinguishes various pipeline-related events—such as minor leakage, theft attempts, and human movement—by automatically extracting their vibration patterns. Notably, it addresses the common shortcomings of softmax-based classifiers in small-sample scenarios. When tested on a real-world dataset collected via the DAS3000 system from Hangzhou Optosensing Co., Ltd., the model achieved a high classification accuracy of 99.92% across six event types, with an average inference latency of just 0.819 milliseconds per signal. These results demonstrate its strong potential for rapid anomaly detection in pipeline systems. Beyond technical performance, the method offers three practical benefits: it integrates well with current monitoring infrastructures, significantly reduces manual inspection workloads, and provides early warnings for potential pipeline threats. Overall, this work lays the groundwork for a scalable, machine learning-enhanced solution aimed at ensuring the operational safety of critical energy assets. |
Audience | Academic |
Author | Wang, Yi Li, Cuicui Wu, Ziwen Zhang, Zhiyuan Hong, Bingyuan Wang, Fubin Sima, Rui Zhu, Baikang |
Author_xml | – sequence: 1 givenname: Rui surname: Sima fullname: Sima, Rui – sequence: 2 givenname: Baikang surname: Zhu fullname: Zhu, Baikang – sequence: 3 givenname: Fubin surname: Wang fullname: Wang, Fubin – sequence: 4 givenname: Yi surname: Wang fullname: Wang, Yi – sequence: 5 givenname: Zhiyuan surname: Zhang fullname: Zhang, Zhiyuan – sequence: 6 givenname: Cuicui surname: Li fullname: Li, Cuicui – sequence: 7 givenname: Ziwen surname: Wu fullname: Wu, Ziwen – sequence: 8 givenname: Bingyuan orcidid: 0000-0002-4281-3902 surname: Hong fullname: Hong, Bingyuan |
BookMark | eNpNUdtKxDAQDaLg9cUvCPgmVHNp0uZRVlcFdcVVX0vaTpbRblOTLLJ_b5cVdOZhLpwzDOcckt3e90DIKWcXUhp2OQQumealUDvkQAhRZKbgxe6_fp-cxPjBxjBclkofkO8XsF32ikugk87GiA4bm9D31Dt6jTEFrFcJWjrFGgKdDQkb-uh7TD5gv6BzXPS2i_QtbiZL-XU2eXrK5u-PdBrsEr59-KTOB_qMA3TYA51bB2l9TPbcyIOT33pE3qY3r5O77GF2ez-5esgaYVTK2rxmSjtXq7K0RWkKDbmUWucKjGlVrWVpNKgc8jbXorCsULXR3BnNLAjJ5RE5294dgv9aQUzVh1-FzcuVFEKaUbdcjKiLLWphO6iwdz4F24zZwhKbUWWH4_6qzFWpCs70SDjfEprgYwzgqiHg0oZ1xVm1MaP6M0P-AOk9e9Q |
Cites_doi | 10.3390/e24060751 10.1088/1361-6501/aca219 10.1088/1361-665X/ad610c 10.1007/978-981-19-2689-1_77 10.1109/ACCESS.2020.3004207 10.3390/pr13041090 10.3390/pr12050860 10.3390/s24030780 10.3390/rs15030577 10.3390/s22166012 10.1007/s13320-017-0360-1 10.3390/s23063108 10.1109/JLT.2019.2923839 10.1109/JSEN.2021.3129473 10.3390/s19092018 10.3390/en15072326 10.1109/JSEN.2021.3136675 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/pr13061825 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | A845857106 10_3390_pr13061825 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c295t-d4b056ffb588a78976e4336645e99d5b63896e54e4d4627a075b961f960ae2313 |
IEDL.DBID | 8FG |
ISSN | 2227-9717 |
IngestDate | Sat Aug 23 14:13:09 EDT 2025 Tue Jul 01 05:42:14 EDT 2025 Thu Jul 03 08:37:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-d4b056ffb588a78976e4336645e99d5b63896e54e4d4627a075b961f960ae2313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4281-3902 |
OpenAccessLink | https://www.proquest.com/docview/3223939042?pq-origsite=%requestingapplication% |
PQID | 3223939042 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_3223939042 gale_infotracacademiconefile_A845857106 crossref_primary_10_3390_pr13061825 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-09 |
PublicationDateYYYYMMDD | 2025-06-09 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_16) 2021; 32 Sun (ref_20) 2021; 23 Yu (ref_4) 2022; 42 ref_10 Yan (ref_7) 2021; 22 Cao (ref_17) 2020; 20 Zheng (ref_5) 2021; 50 ref_19 ref_15 Wu (ref_23) 2020; 8 Jia (ref_21) 2022; 34 Yan (ref_3) 2022; 58 Singh (ref_24) 2024; 33 ref_25 Tang (ref_14) 2022; 48 Hinton (ref_28) 2008; 9 Wang (ref_18) 2020; 30 Houdan (ref_11) 2021; 50 ref_22 ref_2 Wu (ref_1) 2017; 7 Wu (ref_13) 2019; 37 ref_27 ref_26 ref_9 Li (ref_12) 2022; 37 ref_8 ref_6 |
References_xml | – volume: 30 start-page: 7 year: 2020 ident: ref_18 article-title: Traffic sign recognition based on the fusion of CNN and SVM publication-title: Comput. Technol. Dev. – ident: ref_25 doi: 10.3390/e24060751 – volume: 34 start-page: 025115 year: 2022 ident: ref_21 article-title: A multi-channel data-based fault diagnosis method integrating deep learning strategy for aircraft sensor system publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aca219 – volume: 33 start-page: 085045 year: 2024 ident: ref_24 article-title: A comparative analysis between deep neural network-based 1D-CNN and LSTM models to harness the self-sensing property of the shape memory alloy wire actuator for position estimation publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ad610c – volume: 58 start-page: 213 year: 2022 ident: ref_3 article-title: High voltage circuit fault based on EEMD and Convolutional neural network publication-title: High Press. Electr. Appl. – ident: ref_22 doi: 10.1007/978-981-19-2689-1_77 – volume: 20 start-page: 1 year: 2020 ident: ref_17 article-title: An antinoise fault diagnosis method based on multiscale 1D-CNN publication-title: Shock. Vib. – volume: 8 start-page: 119448 year: 2020 ident: ref_23 article-title: A novel DAS signal recognition method based on spatiotemporal information extraction with 1D-CNNs-BiLSTM network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004207 – volume: 37 start-page: 62 year: 2022 ident: ref_12 article-title: Fault diagnosis of electromechanical actuator based on 1-dimensional convolutional neural network. Trans publication-title: China Electrotech. Soc. – ident: ref_27 doi: 10.3390/pr13041090 – volume: 50 start-page: 95 year: 2021 ident: ref_11 article-title: Fiber perimeter invasion pattern recognition based on a 1-dimensional convolutional neural network publication-title: Photonic J. – ident: ref_8 doi: 10.3390/pr12050860 – ident: ref_19 doi: 10.3390/s24030780 – volume: 42 start-page: 0706005 year: 2022 ident: ref_4 article-title: Variational mode decomposition and permutation entropy method for denoising of distributed optical fiber vibration sensing system publication-title: Acta Opt. Sin. – ident: ref_26 doi: 10.3390/rs15030577 – ident: ref_10 doi: 10.3390/s22166012 – volume: 48 start-page: 53 year: 2022 ident: ref_14 article-title: Methane sensor digital display recognition method based on improved CNN-SVM publication-title: J. Mine Autom. – volume: 7 start-page: 305 year: 2017 ident: ref_1 article-title: Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring publication-title: Photon-Sensors doi: 10.1007/s13320-017-0360-1 – ident: ref_15 doi: 10.3390/s23063108 – ident: ref_2 – volume: 32 start-page: 2379 year: 2021 ident: ref_16 article-title: Bearing health monitoring and fault diagnosis of SSS based on 1D-CNN combined feature extraction publication-title: J. Softw. – volume: 50 start-page: 114 year: 2021 ident: ref_5 article-title: Based on LDA-CPSO-SVM optimization method publication-title: Photonic J. – volume: 37 start-page: 4359 year: 2019 ident: ref_13 article-title: One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS publication-title: J. Light. Technol. doi: 10.1109/JLT.2019.2923839 – volume: 9 start-page: 2579 year: 2008 ident: ref_28 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 678 year: 2021 ident: ref_7 article-title: Mixed intrusion events recognition based on group convolutional neural networks in DAS system publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2021.3129473 – ident: ref_9 doi: 10.3390/s19092018 – ident: ref_6 doi: 10.3390/en15072326 – volume: 23 start-page: 4638 year: 2021 ident: ref_20 article-title: Significance support vector machine for high-speed train bearing fault diagnosis publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2021.3136675 |
SSID | ssj0000913856 |
Score | 2.2935514 |
Snippet | The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1825 |
SubjectTerms | Anomalies Artificial neural networks Automation Building Classification Fiber optics Gas pipelines Human motion Latency Machine learning Monitoring Natural gas Neural networks Pipe lines Pipeline safety Real time Sensors Signal processing Support vector machines Theft |
Title | Real-Time Classification of Distributed Fiber Optic Monitoring Signals Using a 1D-CNN-SVM Framework for Pipeline Safety |
URI | https://www.proquest.com/docview/3223939042 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuMChKi-x5aGRikR7sNhNbMc5IQqbokosiJe4RXZiIy67y24Q6qW_vTNZbwGp6jFK4kieh7-ZzHwDsC9tymW4uci06woZVFc4R1FKQtC6rtIqdXVbbTHQZ7fy5726jwm3aSyrnPvE1lHXo4pz5IekeGlOAbpMjsZPgqdG8d_VOEJjAZZ6dNKwnpvix98cC3NeGqVnrKQpvXw4npDP1oSp1btz6N_euD1iik_wMWJDPJ4JcxU--OEarLxhDFyD1WiLU_waCaO_rcPLFaE9wc0c2M645OqfdsNxFPCUmXF5qJWvseDyELwgL1HhzJh5Vbx-fGAWZWzLB9Bi71ScDMjT3p1jMa_dQgK3ePk45vZ1j9c2-ObXBtwW_ZuTMxEHKogqyVUjaukI74TglDE2M4REvExTraXyeV4rx-hFeyW9rKVOMktwwuW6FyjKsZ6AYLoJi8PR0G8B0pMuMYFWcV3ptTUZLUbqUGdZ14SQdeDLfHvL8Yw3o6R4g4VQvgqhAwe88yUbUzOxlY09AfQNpqUqj42kcIZAkO7Azlw4ZbSyafmqE5__f3sblhOe28vZk3wHFpvJs98lMNG4vVZj9mDpe39weUVX57_7fwANEMtp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOBQOVaFUpAU6UluVHlYJ9u7aPqAKCFEokCJe4mZ27d2KS5ImrhB_it_IjB-llareONuatXZmZ75Zz3wD8FGakMtwExFp2xXSq66wlrKUgKB1noVZaPOy2mKoB5fy27W6noOHpheGyyobn1g66nyc8R15hwwvTChBl8HXyU_BU6P472ozQqMyiyN3f0cp22znsEf6_RQE_YOL_YGopwqILEhUIXJpKeh7b1UcmyimcOxkGGotlUuSXFkO4dop6WQudRAZiqk20dueoL5xhIZCkjsPC5I7WluwsHcwPD37favDLJux0hUPakif25lMKUpoQvHqr8j3b_9fBrX-K3hZo1HcrcxnGebcaAWW_uAoXIHl-vTPcKumqP7yGu7OCF8Kbh_Bcqom1xuVKsaxxx5z8fIYLZdjnwtS8Dv5pQwr98FS8fz2B_M2Y1mwgAa3e2J_SL796gT7TbUYEpzG09sJN8w7PDfeFfercPksm_0GWqPxyK0B0ps2iD1JsV3ptIkjEkYGmEdRN_Y-asOHZnvTScXUkVKGw0pIn5TQhs-88ykf32JqMlN3IdAaTISV7saSEiiCXboN641y0vpcz9InK3z7_8fv4cXg4uQ4PT4cHr2DxYCnBvPdTbIOrWL6y20QlCnsZm0_CDfPbbKP1q4E6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9RADLVKkRAcUFtALLRgCRBwiHab-cyhQlWX0FJYKkpRb2EmmUG97C67QVX_Wn8ddj4oSIhbz4km0dixnyfPzwDPpRNMw80So_0okVGNEu-pSkkJWlelKIWvGrbFRO-fyPen6nQFLvteGKZV9jGxCdTVrOQz8iE5nsioQJfpMHa0iKNx_mb-I-EJUvyntR-n0brIYbg4p_JtuXMwJlu_SNP87Ze9_aSbMJCUaabqpJKeAECMXlnrjKXUHKQQWksVsqxSntO5DkoGWUmdGkf51Wd6OxLsd4GQkaB1b8BNI0zGhZ_N3_0-32G9Tat0q4gq6MWH8wXlC014Xv2VA_-dCZr0lq_B3Q6X4m7rSOuwEqYbcOcPtcINWO_iwBJfdWLVr-_B-WdCmgk3kmAzX5OZR42xcRZxzKq8PFArVJgzNQU_UYQqsQ0kvCoen31nBWdsqAvocHuc7E0oyn_9iHnPG0MC1nh0NufW-YDHLob64j6cXMtWP4DV6WwaHgLSnT61kVbxIxm0s4YWI1esjBnZGM0AnvXbW8xbzY6Cah02QnFlhAG85J0v-EOuF650XT8CPYMlsYpdK6mUIgCmB7DZG6fovvBlceWPj_5_-SncIkctPhxMDh_D7ZTHB_MhTrYJq_XiZ9giTFP7J43zIHy7bm_9BU2-B7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Classification+of+Distributed+Fiber+Optic+Monitoring+Signals+Using+a+1D-CNN-SVM+Framework+for+Pipeline+Safety&rft.jtitle=Processes&rft.au=Sima+Rui&rft.au=Zhu+Baikang&rft.au=Wang+Fubin&rft.au=Wang%2C+Yi&rft.date=2025-06-09&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=6&rft.spage=1825&rft_id=info:doi/10.3390%2Fpr13061825&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |