Real-Time Classification of Distributed Fiber Optic Monitoring Signals Using a 1D-CNN-SVM Framework for Pipeline Safety

The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber op...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 13; no. 6; p. 1825
Main Authors Sima, Rui, Zhu, Baikang, Wang, Fubin, Wang, Yi, Zhang, Zhiyuan, Li, Cuicui, Wu, Ziwen, Hong, Bingyuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 09.06.2025
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr13061825

Cover

Abstract The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber optic monitoring signals, leveraging a hybrid framework that combines the feature learning capacity of a one-dimensional convolutional neural network (1D-CNN) with the classification robustness of a support vector machine (SVM). The proposed method effectively distinguishes various pipeline-related events—such as minor leakage, theft attempts, and human movement—by automatically extracting their vibration patterns. Notably, it addresses the common shortcomings of softmax-based classifiers in small-sample scenarios. When tested on a real-world dataset collected via the DAS3000 system from Hangzhou Optosensing Co., Ltd., the model achieved a high classification accuracy of 99.92% across six event types, with an average inference latency of just 0.819 milliseconds per signal. These results demonstrate its strong potential for rapid anomaly detection in pipeline systems. Beyond technical performance, the method offers three practical benefits: it integrates well with current monitoring infrastructures, significantly reduces manual inspection workloads, and provides early warnings for potential pipeline threats. Overall, this work lays the groundwork for a scalable, machine learning-enhanced solution aimed at ensuring the operational safety of critical energy assets.
AbstractList The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber optic monitoring signals, leveraging a hybrid framework that combines the feature learning capacity of a one-dimensional convolutional neural network (1D-CNN) with the classification robustness of a support vector machine (SVM). The proposed method effectively distinguishes various pipeline-related events—such as minor leakage, theft attempts, and human movement—by automatically extracting their vibration patterns. Notably, it addresses the common shortcomings of softmax-based classifiers in small-sample scenarios. When tested on a real-world dataset collected via the DAS3000 system from Hangzhou Optosensing Co., Ltd., the model achieved a high classification accuracy of 99.92% across six event types, with an average inference latency of just 0.819 milliseconds per signal. These results demonstrate its strong potential for rapid anomaly detection in pipeline systems. Beyond technical performance, the method offers three practical benefits: it integrates well with current monitoring infrastructures, significantly reduces manual inspection workloads, and provides early warnings for potential pipeline threats. Overall, this work lays the groundwork for a scalable, machine learning-enhanced solution aimed at ensuring the operational safety of critical energy assets.
Audience Academic
Author Wang, Yi
Li, Cuicui
Wu, Ziwen
Zhang, Zhiyuan
Hong, Bingyuan
Wang, Fubin
Sima, Rui
Zhu, Baikang
Author_xml – sequence: 1
  givenname: Rui
  surname: Sima
  fullname: Sima, Rui
– sequence: 2
  givenname: Baikang
  surname: Zhu
  fullname: Zhu, Baikang
– sequence: 3
  givenname: Fubin
  surname: Wang
  fullname: Wang, Fubin
– sequence: 4
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
– sequence: 5
  givenname: Zhiyuan
  surname: Zhang
  fullname: Zhang, Zhiyuan
– sequence: 6
  givenname: Cuicui
  surname: Li
  fullname: Li, Cuicui
– sequence: 7
  givenname: Ziwen
  surname: Wu
  fullname: Wu, Ziwen
– sequence: 8
  givenname: Bingyuan
  orcidid: 0000-0002-4281-3902
  surname: Hong
  fullname: Hong, Bingyuan
BookMark eNpNUdtKxDAQDaLg9cUvCPgmVHNp0uZRVlcFdcVVX0vaTpbRblOTLLJ_b5cVdOZhLpwzDOcckt3e90DIKWcXUhp2OQQumealUDvkQAhRZKbgxe6_fp-cxPjBxjBclkofkO8XsF32ikugk87GiA4bm9D31Dt6jTEFrFcJWjrFGgKdDQkb-uh7TD5gv6BzXPS2i_QtbiZL-XU2eXrK5u-PdBrsEr59-KTOB_qMA3TYA51bB2l9TPbcyIOT33pE3qY3r5O77GF2ez-5esgaYVTK2rxmSjtXq7K0RWkKDbmUWucKjGlVrWVpNKgc8jbXorCsULXR3BnNLAjJ5RE5294dgv9aQUzVh1-FzcuVFEKaUbdcjKiLLWphO6iwdz4F24zZwhKbUWWH4_6qzFWpCs70SDjfEprgYwzgqiHg0oZ1xVm1MaP6M0P-AOk9e9Q
Cites_doi 10.3390/e24060751
10.1088/1361-6501/aca219
10.1088/1361-665X/ad610c
10.1007/978-981-19-2689-1_77
10.1109/ACCESS.2020.3004207
10.3390/pr13041090
10.3390/pr12050860
10.3390/s24030780
10.3390/rs15030577
10.3390/s22166012
10.1007/s13320-017-0360-1
10.3390/s23063108
10.1109/JLT.2019.2923839
10.1109/JSEN.2021.3129473
10.3390/s19092018
10.3390/en15072326
10.1109/JSEN.2021.3136675
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr13061825
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A845857106
10_3390_pr13061825
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c295t-d4b056ffb588a78976e4336645e99d5b63896e54e4d4627a075b961f960ae2313
IEDL.DBID 8FG
ISSN 2227-9717
IngestDate Sat Aug 23 14:13:09 EDT 2025
Tue Jul 01 05:42:14 EDT 2025
Thu Jul 03 08:37:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d4b056ffb588a78976e4336645e99d5b63896e54e4d4627a075b961f960ae2313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4281-3902
OpenAccessLink https://www.proquest.com/docview/3223939042?pq-origsite=%requestingapplication%
PQID 3223939042
PQPubID 2032344
ParticipantIDs proquest_journals_3223939042
gale_infotracacademiconefile_A845857106
crossref_primary_10_3390_pr13061825
PublicationCentury 2000
PublicationDate 2025-06-09
PublicationDateYYYYMMDD 2025-06-09
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-09
  day: 09
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_16) 2021; 32
Sun (ref_20) 2021; 23
Yu (ref_4) 2022; 42
ref_10
Yan (ref_7) 2021; 22
Cao (ref_17) 2020; 20
Zheng (ref_5) 2021; 50
ref_19
ref_15
Wu (ref_23) 2020; 8
Jia (ref_21) 2022; 34
Yan (ref_3) 2022; 58
Singh (ref_24) 2024; 33
ref_25
Tang (ref_14) 2022; 48
Hinton (ref_28) 2008; 9
Wang (ref_18) 2020; 30
Houdan (ref_11) 2021; 50
ref_22
ref_2
Wu (ref_1) 2017; 7
Wu (ref_13) 2019; 37
ref_27
ref_26
ref_9
Li (ref_12) 2022; 37
ref_8
ref_6
References_xml – volume: 30
  start-page: 7
  year: 2020
  ident: ref_18
  article-title: Traffic sign recognition based on the fusion of CNN and SVM
  publication-title: Comput. Technol. Dev.
– ident: ref_25
  doi: 10.3390/e24060751
– volume: 34
  start-page: 025115
  year: 2022
  ident: ref_21
  article-title: A multi-channel data-based fault diagnosis method integrating deep learning strategy for aircraft sensor system
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aca219
– volume: 33
  start-page: 085045
  year: 2024
  ident: ref_24
  article-title: A comparative analysis between deep neural network-based 1D-CNN and LSTM models to harness the self-sensing property of the shape memory alloy wire actuator for position estimation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ad610c
– volume: 58
  start-page: 213
  year: 2022
  ident: ref_3
  article-title: High voltage circuit fault based on EEMD and Convolutional neural network
  publication-title: High Press. Electr. Appl.
– ident: ref_22
  doi: 10.1007/978-981-19-2689-1_77
– volume: 20
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: An antinoise fault diagnosis method based on multiscale 1D-CNN
  publication-title: Shock. Vib.
– volume: 8
  start-page: 119448
  year: 2020
  ident: ref_23
  article-title: A novel DAS signal recognition method based on spatiotemporal information extraction with 1D-CNNs-BiLSTM network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004207
– volume: 37
  start-page: 62
  year: 2022
  ident: ref_12
  article-title: Fault diagnosis of electromechanical actuator based on 1-dimensional convolutional neural network. Trans
  publication-title: China Electrotech. Soc.
– ident: ref_27
  doi: 10.3390/pr13041090
– volume: 50
  start-page: 95
  year: 2021
  ident: ref_11
  article-title: Fiber perimeter invasion pattern recognition based on a 1-dimensional convolutional neural network
  publication-title: Photonic J.
– ident: ref_8
  doi: 10.3390/pr12050860
– ident: ref_19
  doi: 10.3390/s24030780
– volume: 42
  start-page: 0706005
  year: 2022
  ident: ref_4
  article-title: Variational mode decomposition and permutation entropy method for denoising of distributed optical fiber vibration sensing system
  publication-title: Acta Opt. Sin.
– ident: ref_26
  doi: 10.3390/rs15030577
– ident: ref_10
  doi: 10.3390/s22166012
– volume: 48
  start-page: 53
  year: 2022
  ident: ref_14
  article-title: Methane sensor digital display recognition method based on improved CNN-SVM
  publication-title: J. Mine Autom.
– volume: 7
  start-page: 305
  year: 2017
  ident: ref_1
  article-title: Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring
  publication-title: Photon-Sensors
  doi: 10.1007/s13320-017-0360-1
– ident: ref_15
  doi: 10.3390/s23063108
– ident: ref_2
– volume: 32
  start-page: 2379
  year: 2021
  ident: ref_16
  article-title: Bearing health monitoring and fault diagnosis of SSS based on 1D-CNN combined feature extraction
  publication-title: J. Softw.
– volume: 50
  start-page: 114
  year: 2021
  ident: ref_5
  article-title: Based on LDA-CPSO-SVM optimization method
  publication-title: Photonic J.
– volume: 37
  start-page: 4359
  year: 2019
  ident: ref_13
  article-title: One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2019.2923839
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_28
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 678
  year: 2021
  ident: ref_7
  article-title: Mixed intrusion events recognition based on group convolutional neural networks in DAS system
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2021.3129473
– ident: ref_9
  doi: 10.3390/s19092018
– ident: ref_6
  doi: 10.3390/en15072326
– volume: 23
  start-page: 4638
  year: 2021
  ident: ref_20
  article-title: Significance support vector machine for high-speed train bearing fault diagnosis
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2021.3136675
SSID ssj0000913856
Score 2.2935514
Snippet The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 1825
SubjectTerms Anomalies
Artificial neural networks
Automation
Building
Classification
Fiber optics
Gas pipelines
Human motion
Latency
Machine learning
Monitoring
Natural gas
Neural networks
Pipe lines
Pipeline safety
Real time
Sensors
Signal processing
Support vector machines
Theft
Title Real-Time Classification of Distributed Fiber Optic Monitoring Signals Using a 1D-CNN-SVM Framework for Pipeline Safety
URI https://www.proquest.com/docview/3223939042
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuMChKi-x5aGRikR7sNhNbMc5IQqbokosiJe4RXZiIy67y24Q6qW_vTNZbwGp6jFK4kieh7-ZzHwDsC9tymW4uci06woZVFc4R1FKQtC6rtIqdXVbbTHQZ7fy5726jwm3aSyrnPvE1lHXo4pz5IekeGlOAbpMjsZPgqdG8d_VOEJjAZZ6dNKwnpvix98cC3NeGqVnrKQpvXw4npDP1oSp1btz6N_euD1iik_wMWJDPJ4JcxU--OEarLxhDFyD1WiLU_waCaO_rcPLFaE9wc0c2M645OqfdsNxFPCUmXF5qJWvseDyELwgL1HhzJh5Vbx-fGAWZWzLB9Bi71ScDMjT3p1jMa_dQgK3ePk45vZ1j9c2-ObXBtwW_ZuTMxEHKogqyVUjaukI74TglDE2M4REvExTraXyeV4rx-hFeyW9rKVOMktwwuW6FyjKsZ6AYLoJi8PR0G8B0pMuMYFWcV3ptTUZLUbqUGdZ14SQdeDLfHvL8Yw3o6R4g4VQvgqhAwe88yUbUzOxlY09AfQNpqUqj42kcIZAkO7Azlw4ZbSyafmqE5__f3sblhOe28vZk3wHFpvJs98lMNG4vVZj9mDpe39weUVX57_7fwANEMtp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOBQOVaFUpAU6UluVHlYJ9u7aPqAKCFEokCJe4mZ27d2KS5ImrhB_it_IjB-llareONuatXZmZ75Zz3wD8FGakMtwExFp2xXSq66wlrKUgKB1noVZaPOy2mKoB5fy27W6noOHpheGyyobn1g66nyc8R15hwwvTChBl8HXyU_BU6P472ozQqMyiyN3f0cp22znsEf6_RQE_YOL_YGopwqILEhUIXJpKeh7b1UcmyimcOxkGGotlUuSXFkO4dop6WQudRAZiqk20dueoL5xhIZCkjsPC5I7WluwsHcwPD37favDLJux0hUPakif25lMKUpoQvHqr8j3b_9fBrX-K3hZo1HcrcxnGebcaAWW_uAoXIHl-vTPcKumqP7yGu7OCF8Kbh_Bcqom1xuVKsaxxx5z8fIYLZdjnwtS8Dv5pQwr98FS8fz2B_M2Y1mwgAa3e2J_SL796gT7TbUYEpzG09sJN8w7PDfeFfercPksm_0GWqPxyK0B0ps2iD1JsV3ptIkjEkYGmEdRN_Y-asOHZnvTScXUkVKGw0pIn5TQhs-88ykf32JqMlN3IdAaTISV7saSEiiCXboN641y0vpcz9InK3z7_8fv4cXg4uQ4PT4cHr2DxYCnBvPdTbIOrWL6y20QlCnsZm0_CDfPbbKP1q4E6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9RADLVKkRAcUFtALLRgCRBwiHab-cyhQlWX0FJYKkpRb2EmmUG97C67QVX_Wn8ddj4oSIhbz4km0dixnyfPzwDPpRNMw80So_0okVGNEu-pSkkJWlelKIWvGrbFRO-fyPen6nQFLvteGKZV9jGxCdTVrOQz8iE5nsioQJfpMHa0iKNx_mb-I-EJUvyntR-n0brIYbg4p_JtuXMwJlu_SNP87Ze9_aSbMJCUaabqpJKeAECMXlnrjKXUHKQQWksVsqxSntO5DkoGWUmdGkf51Wd6OxLsd4GQkaB1b8BNI0zGhZ_N3_0-32G9Tat0q4gq6MWH8wXlC014Xv2VA_-dCZr0lq_B3Q6X4m7rSOuwEqYbcOcPtcINWO_iwBJfdWLVr-_B-WdCmgk3kmAzX5OZR42xcRZxzKq8PFArVJgzNQU_UYQqsQ0kvCoen31nBWdsqAvocHuc7E0oyn_9iHnPG0MC1nh0NufW-YDHLob64j6cXMtWP4DV6WwaHgLSnT61kVbxIxm0s4YWI1esjBnZGM0AnvXbW8xbzY6Cah02QnFlhAG85J0v-EOuF650XT8CPYMlsYpdK6mUIgCmB7DZG6fovvBlceWPj_5_-SncIkctPhxMDh_D7ZTHB_MhTrYJq_XiZ9giTFP7J43zIHy7bm_9BU2-B7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Classification+of+Distributed+Fiber+Optic+Monitoring+Signals+Using+a+1D-CNN-SVM+Framework+for+Pipeline+Safety&rft.jtitle=Processes&rft.au=Sima+Rui&rft.au=Zhu+Baikang&rft.au=Wang+Fubin&rft.au=Wang%2C+Yi&rft.date=2025-06-09&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=6&rft.spage=1825&rft_id=info:doi/10.3390%2Fpr13061825&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon