Reflection Resource Management for Intelligent Reflecting Surface Aided Wireless Networks

In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 69; no. 10; pp. 6971 - 6986
Main Authors Gao, Yulan, Yong, Chao, Xiong, Zehui, Zhao, Jun, Xiao, Yue, Niyato, Dusit
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection resource management (RRM) through the identification of the best triggered module subset. More precisely, the implementation of true RRM builds on the premise of our proposed modular IRS structure consisting of multiple independent and controllable modules. In the context of modular IRS structure, we investigate the signal-to-interference-plus-noise ratio (SINR)-based max-min problem subject to per source terminals (STs) power budgets and module size constraint, via joint triggered module subset identification, transmit power allocation, and the corresponding passive beamforming. Whereas this problem is NP-hard due to the module size constraint, which can be addressed by the convex sparsity-inducing approximation to the hard module size constraint using mixed <inline-formula> <tex-math notation="LaTeX">\ell _{1,F}\text {-norm} </tex-math></inline-formula>, where it yields a suitable semidefinite relaxation. Using techniques from separable convex programming, we provide a two-block alternating direction method of multipliers (ADMM) algorithm for the approximated problem. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters. Further energy efficiency (EE) performance comparison demonstrates the necessity and meaningfulness of the introduced modular IRS structure. Specifically, for a given network setting, there is an optimal value of the number of triggered modules for system, when the EE is considered.
AbstractList In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection resource management (RRM) through the identification of the best triggered module subset. More precisely, the implementation of true RRM builds on the premise of our proposed modular IRS structure consisting of multiple independent and controllable modules. In the context of modular IRS structure, we investigate the signal-to-interference-plus-noise ratio (SINR)-based max-min problem subject to per source terminals (STs) power budgets and module size constraint, via joint triggered module subset identification, transmit power allocation, and the corresponding passive beamforming. Whereas this problem is NP-hard due to the module size constraint, which can be addressed by the convex sparsity-inducing approximation to the hard module size constraint using mixed <inline-formula> <tex-math notation="LaTeX">\ell _{1,F}\text {-norm} </tex-math></inline-formula>, where it yields a suitable semidefinite relaxation. Using techniques from separable convex programming, we provide a two-block alternating direction method of multipliers (ADMM) algorithm for the approximated problem. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters. Further energy efficiency (EE) performance comparison demonstrates the necessity and meaningfulness of the introduced modular IRS structure. Specifically, for a given network setting, there is an optimal value of the number of triggered modules for system, when the EE is considered.
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection resource management (RRM) through the identification of the best triggered module subset. More precisely, the implementation of true RRM builds on the premise of our proposed modular IRS structure consisting of multiple independent and controllable modules. In the context of modular IRS structure, we investigate the signal-to-interference-plus-noise ratio (SINR)-based max-min problem subject to per source terminals (STs) power budgets and module size constraint, via joint triggered module subset identification, transmit power allocation, and the corresponding passive beamforming. Whereas this problem is NP-hard due to the module size constraint, which can be addressed by the convex sparsity-inducing approximation to the hard module size constraint using mixed [Formula Omitted], where it yields a suitable semidefinite relaxation. Using techniques from separable convex programming, we provide a two-block alternating direction method of multipliers (ADMM) algorithm for the approximated problem. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters. Further energy efficiency (EE) performance comparison demonstrates the necessity and meaningfulness of the introduced modular IRS structure. Specifically, for a given network setting, there is an optimal value of the number of triggered modules for system, when the EE is considered.
Author Zhao, Jun
Xiong, Zehui
Yong, Chao
Xiao, Yue
Gao, Yulan
Niyato, Dusit
Author_xml – sequence: 1
  givenname: Yulan
  orcidid: 0000-0002-5893-7985
  surname: Gao
  fullname: Gao, Yulan
  email: yulangaomath@163.com
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Chao
  surname: Yong
  fullname: Yong, Chao
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 3
  givenname: Zehui
  orcidid: 0000-0002-4440-941X
  surname: Xiong
  fullname: Xiong, Zehui
  email: zxiong002@e.ntu.edu.sg
  organization: Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-3004-7091
  surname: Zhao
  fullname: Zhao, Jun
  email: junzhao@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore
– sequence: 5
  givenname: Yue
  orcidid: 0000-0002-2127-8947
  surname: Xiao
  fullname: Xiao, Yue
  email: xiaoyue@uestc.edu.cn
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 6
  givenname: Dusit
  orcidid: 0000-0002-7442-7416
  surname: Niyato
  fullname: Niyato, Dusit
  email: dniyatO@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore
BookMark eNp9kE1LAzEQhoNUsK3-Ab0seN46SXY3m2MpfhRaC7UinkK6O1tSt9mapIj_3q2tHjx4Gl54nxnm6ZGObSwScklhQCnIm8VoNp0OGDA64CA5p-yEdGma5jHkqeiQLoCEOBMiPyM979cAkADnXfI6x6rGIpjGRnP0zc4VGE211SvcoA1R1bhobAPWtVnt80_drqKnnat02x6aEsvoxTis0fvoEcNH4978OTmtdO3x4jj75PnudjF6iCez-_FoOIkLJtMQl0megZRUZwljS2wDVFUqMKdZiiATgYVkORdCLFPUWSlLzhliGzJYFrzkfXJ92Lt1zfsOfVDr9gvbnlQszRlLBHDatvJDq3CN9w4rVZig928Hp02tKKi9SPUtUu1FqqPIFmV_0K0zG-0-_4euDpBBxF9AJpnggvIvRcGBGg
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TWC_2022_3144403
crossref_primary_10_1049_cmu2_12420
crossref_primary_10_1049_cmu2_12375
crossref_primary_10_1049_cmu2_12432
crossref_primary_10_1109_MNET_108_2100638
crossref_primary_10_1109_COMST_2022_3191937
crossref_primary_10_1109_TWC_2024_3376976
crossref_primary_10_1109_TWC_2022_3154372
crossref_primary_10_1109_TVT_2023_3271631
crossref_primary_10_1109_COMST_2022_3202813
crossref_primary_10_1016_j_phycom_2022_101943
crossref_primary_10_1109_TVT_2022_3217263
crossref_primary_10_1109_TNET_2023_3309729
crossref_primary_10_1049_cmu2_12337
crossref_primary_10_1109_ACCESS_2023_3236909
Cites_doi 10.1109/MCOM.2014.6815891
10.1109/ACCESS.2019.2935192
10.1109/MWC.001.1900476
10.1007/BF00247655
10.1190/1.1440921
10.1109/GLOCOM.2018.8647620
10.1109/TWC.2019.2922609
10.1038/s41467-017-00164-9
10.1007/BF00927673
10.1109/TVT.2021.3055965
10.1111/j.1467-9868.2005.00532.x
10.1137/0907087
10.1109/ICASSP.2019.8683663
10.1109/TVT.2016.2627524
10.1109/LWC.2019.2950624
10.1109/TWC.2020.3028857
10.1007/BF00941314
10.1109/TCOMM.2020.3034357
10.1109/MCOM.001.1900107
10.1109/JSAC.2020.3000835
10.1109/JSAC.2020.3000813
10.1007/s00041-008-9045-x
10.1109/MCOM.2014.6736746
10.1109/TVT.2019.2923997
10.1109/TWC.2019.2901477
10.1109/OJCOMS.2020.3002955
10.1109/GLOBECOM38437.2019.9013288
10.1007/BF01258607
10.1109/TWC.2014.2367032
10.1109/ICC40277.2020.9148766
10.1109/LCOMM.2020.2969870
10.1109/TVT.2015.2462117
10.1109/MWC.001.1900534
10.1109/MNET.001.1900652
10.1109/TSP.2013.2252167
10.1109/INFOCOM.2018.8485924
10.1109/TWC.2019.2936025
10.1109/TCOMM.2013.071013.120787
10.1007/BF01919185
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2021.3093312
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 6986
ExternalDocumentID 10_1109_TCOMM_2021_3093312
9467371
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2020YFB1807203
– fundername: Singapore University of Technology and Design; SUTD
  grantid: SRG-ISTD-2021-165
  funderid: 10.13039/501100007040
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-d4860991a6422be8600ff57e8165e0947ec9283777b5ea6d9d332eeb5e60bc3d3
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jun 30 10:18:53 EDT 2025
Tue Jul 01 02:51:35 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Wed Aug 27 02:26:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d4860991a6422be8600ff57e8165e0947ec9283777b5ea6d9d332eeb5e60bc3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2127-8947
0000-0002-4440-941X
0000-0002-3004-7091
0000-0002-7442-7416
0000-0002-5893-7985
PQID 2582247031
PQPubID 85472
PageCount 16
ParticipantIDs proquest_journals_2582247031
crossref_primary_10_1109_TCOMM_2021_3093312
ieee_primary_9467371
crossref_citationtrail_10_1109_TCOMM_2021_3093312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
boyd (ref40) 2009
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref39
ref17
ref16
liu (ref10) 2019; 11
ref19
csiszár (ref43) 1984; 1
ref18
wang (ref25) 2020
(ref1) 2014
ref24
ref45
ref23
ref26
ref20
ref42
ref41
ref22
ref44
ref21
grant (ref38) 2014
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 11
  year: 2019
  ident: ref10
  article-title: Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions
  publication-title: Phys Rev A Gen Phys
– ident: ref3
  doi: 10.1109/MCOM.2014.6815891
– ident: ref6
  doi: 10.1109/ACCESS.2019.2935192
– start-page: 1
  year: 2020
  ident: ref25
  article-title: Robust beamforming and phase shift design for IRS-enhanced multi-user MISO downlink communication
  publication-title: Proc IEEE Int Conf Commun (ICC)
– ident: ref8
  doi: 10.1109/MWC.001.1900476
– ident: ref33
  doi: 10.1007/BF00247655
– ident: ref36
  doi: 10.1190/1.1440921
– ident: ref14
  doi: 10.1109/GLOCOM.2018.8647620
– ident: ref26
  doi: 10.1109/TWC.2019.2922609
– ident: ref11
  doi: 10.1038/s41467-017-00164-9
– ident: ref41
  doi: 10.1007/BF00927673
– ident: ref23
  doi: 10.1109/TVT.2021.3055965
– ident: ref39
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref37
  doi: 10.1137/0907087
– year: 2009
  ident: ref40
  publication-title: Convex optimization
– volume: 1
  start-page: 205
  year: 1984
  ident: ref43
  article-title: Information geometry and alternating minimization procedures
  publication-title: Statist Decisions
– ident: ref28
  doi: 10.1109/ICASSP.2019.8683663
– ident: ref2
  doi: 10.1109/TVT.2016.2627524
– ident: ref17
  doi: 10.1109/LWC.2019.2950624
– ident: ref24
  doi: 10.1109/TWC.2020.3028857
– ident: ref30
  doi: 10.1007/BF00941314
– ident: ref16
  doi: 10.1109/TCOMM.2020.3034357
– ident: ref7
  doi: 10.1109/MCOM.001.1900107
– ident: ref22
  doi: 10.1109/JSAC.2020.3000835
– ident: ref12
  doi: 10.1109/JSAC.2020.3000813
– ident: ref34
  doi: 10.1007/s00041-008-9045-x
– ident: ref4
  doi: 10.1109/MCOM.2014.6736746
– ident: ref18
  doi: 10.1109/TVT.2019.2923997
– ident: ref45
  doi: 10.1109/TWC.2019.2901477
– ident: ref20
  doi: 10.1109/OJCOMS.2020.3002955
– ident: ref15
  doi: 10.1109/GLOBECOM38437.2019.9013288
– year: 2014
  ident: ref1
  publication-title: Mobile-Edge Computing-Introductory Technical White Paper
– ident: ref31
  doi: 10.1007/BF01258607
– ident: ref42
  doi: 10.1109/TWC.2014.2367032
– year: 2014
  ident: ref38
  publication-title: CVX Users' Guide
– ident: ref13
  doi: 10.1109/ICC40277.2020.9148766
– ident: ref44
  doi: 10.1109/LCOMM.2020.2969870
– ident: ref35
  doi: 10.1109/TVT.2015.2462117
– ident: ref21
  doi: 10.1109/MWC.001.1900534
– ident: ref5
  doi: 10.1109/MNET.001.1900652
– ident: ref27
  doi: 10.1109/TSP.2013.2252167
– ident: ref9
  doi: 10.1109/INFOCOM.2018.8485924
– ident: ref19
  doi: 10.1109/TWC.2019.2936025
– ident: ref29
  doi: 10.1109/TCOMM.2013.071013.120787
– ident: ref32
  doi: 10.1007/BF01919185
SSID ssj0004033
Score 2.5040631
Snippet In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6971
SubjectTerms Algorithms
alternating direction and method of multipliers (ADMM)
Approximation
Approximation algorithms
Array signal processing
Beamforming
Computational geometry
Convexity
group sparsity
Intelligent reflecting surface (IRS)
Mathematical programming
Modular structures
Modules
passive beamforming
Phase shifters
Power demand
Quality of service
Reconfigurable intelligent surfaces
reflection resource management
Resource management
transmit power allocation
Wireless networks
Title Reflection Resource Management for Intelligent Reflecting Surface Aided Wireless Networks
URI https://ieeexplore.ieee.org/document/9467371
https://www.proquest.com/docview/2582247031
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTnDgNRCDgXLgBu3aZm3X4zQxDaQOCTZpnKq2cRBi6tDWXvj12H2NlxC3RnKqKE5iO_n8mbHLUKEfL1SkOQCh1kMbq0WuKTU0NuAptIhmTMnJ_sQZz3p3c3veYNd1LgwA5OAz0Okzf8uXyzijq7IulYMXlDC-hYFbkau1yYE0RMk4SXB2t18lyBhedzq8930MBS1Tp3c_YVpfjFBeVeXHUZzbl9Ee86uRFbCSVz1LIz1-_0ba-N-h77Pd0tHkg2JlHLAGJIds5xP9YIs9PYBa5FCshFfX-HyDh-Hoz_LbmrIz5ZV48swfs5UKUXrwIkFygtAu8MjkkwJUvj5is9HNdDjWylILWmx5dqpJqkWFigkxHLEiwIahlO1C33RswAjQhdgjnhzXjWwIHelJISwAbDhGFAspjlkzWSZwwrjnQWxDDx0ZJSn6ikIHzxF0I5WhXIxZ28ys5j6ISx5yKoexCPJ4xPCCXF8B6Sso9dVmV3Wft4KF40_pFimgliznvs06lYqDcqOuA8smGC2R-J_-3uuMbdO_C_xehzXTVQbn6Iek0UW-AD8ArJHYqQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYmOAAH3ojBgBy4QUcfa7sepwk0YB0SDAlOVds4CDF1aGsv_HrsvngKcWskR43iJLaTz58BjkNFfrylIs1BDLUO2Vgtcg2pkbFBT5FFNGJOTvZHzuC-c_VgPzTgtM6FQcQcfIZt_szf8uU0zviq7IzLwVucML5Idt82imytjyxI3So5JxnQ7narFBndOxv3b3yfgkHTaPPLn2WYX8xQXlflx2GcW5iLNfCrsRXAkpd2lkbt-O0bbeN_B78Oq6WrKXrF2tiABiabsPKJgHALHm9RTXIwViKqi3zxgYgR5NGKy5q0MxWVePIk7rKZCkm69yxRCgbRTujQFKMCVj7fhvuL83F_oJXFFrTY9OxUk1yNilQTUkBiRkgNXSnbxa7h2EgxoIuxx0w5rhvZGDrSk5ZlIlLD0aPYktYOLCTTBHdBeB7GNnbIlVGS468odOgkIUdS6cqlqLUJRjX3QVwykXNBjEmQRyS6F-T6ClhfQamvJpzUfV4LHo4_pbdYAbVkOfdNaFUqDsqtOg9Mm4G0TOO_93uvI1gajP1hMLwcXe_DMv-nQPO1YCGdZXhAXkkaHeaL8R0lMNvy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reflection+Resource+Management+for+Intelligent+Reflecting+Surface+Aided+Wireless+Networks&rft.jtitle=IEEE+transactions+on+communications&rft.au=Gao%2C+Yulan&rft.au=Yong%2C+Chao&rft.au=Xiong%2C+Zehui&rft.au=Zhao%2C+Jun&rft.date=2021-10-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=69&rft.issue=10&rft.spage=6971&rft.epage=6986&rft_id=info:doi/10.1109%2FTCOMM.2021.3093312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2021_3093312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon