Reflection Resource Management for Intelligent Reflecting Surface Aided Wireless Networks
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection...
Saved in:
Published in | IEEE transactions on communications Vol. 69; no. 10; pp. 6971 - 6986 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection resource management (RRM) through the identification of the best triggered module subset. More precisely, the implementation of true RRM builds on the premise of our proposed modular IRS structure consisting of multiple independent and controllable modules. In the context of modular IRS structure, we investigate the signal-to-interference-plus-noise ratio (SINR)-based max-min problem subject to per source terminals (STs) power budgets and module size constraint, via joint triggered module subset identification, transmit power allocation, and the corresponding passive beamforming. Whereas this problem is NP-hard due to the module size constraint, which can be addressed by the convex sparsity-inducing approximation to the hard module size constraint using mixed <inline-formula> <tex-math notation="LaTeX">\ell _{1,F}\text {-norm} </tex-math></inline-formula>, where it yields a suitable semidefinite relaxation. Using techniques from separable convex programming, we provide a two-block alternating direction method of multipliers (ADMM) algorithm for the approximated problem. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters. Further energy efficiency (EE) performance comparison demonstrates the necessity and meaningfulness of the introduced modular IRS structure. Specifically, for a given network setting, there is an optimal value of the number of triggered modules for system, when the EE is considered. |
---|---|
AbstractList | In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection resource management (RRM) through the identification of the best triggered module subset. More precisely, the implementation of true RRM builds on the premise of our proposed modular IRS structure consisting of multiple independent and controllable modules. In the context of modular IRS structure, we investigate the signal-to-interference-plus-noise ratio (SINR)-based max-min problem subject to per source terminals (STs) power budgets and module size constraint, via joint triggered module subset identification, transmit power allocation, and the corresponding passive beamforming. Whereas this problem is NP-hard due to the module size constraint, which can be addressed by the convex sparsity-inducing approximation to the hard module size constraint using mixed <inline-formula> <tex-math notation="LaTeX">\ell _{1,F}\text {-norm} </tex-math></inline-formula>, where it yields a suitable semidefinite relaxation. Using techniques from separable convex programming, we provide a two-block alternating direction method of multipliers (ADMM) algorithm for the approximated problem. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters. Further energy efficiency (EE) performance comparison demonstrates the necessity and meaningfulness of the introduced modular IRS structure. Specifically, for a given network setting, there is an optimal value of the number of triggered modules for system, when the EE is considered. In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing studies on IRS that mainly focused on tuning the reflection coefficients of all elements, we consider the implementation of true reflection resource management (RRM) through the identification of the best triggered module subset. More precisely, the implementation of true RRM builds on the premise of our proposed modular IRS structure consisting of multiple independent and controllable modules. In the context of modular IRS structure, we investigate the signal-to-interference-plus-noise ratio (SINR)-based max-min problem subject to per source terminals (STs) power budgets and module size constraint, via joint triggered module subset identification, transmit power allocation, and the corresponding passive beamforming. Whereas this problem is NP-hard due to the module size constraint, which can be addressed by the convex sparsity-inducing approximation to the hard module size constraint using mixed [Formula Omitted], where it yields a suitable semidefinite relaxation. Using techniques from separable convex programming, we provide a two-block alternating direction method of multipliers (ADMM) algorithm for the approximated problem. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters. Further energy efficiency (EE) performance comparison demonstrates the necessity and meaningfulness of the introduced modular IRS structure. Specifically, for a given network setting, there is an optimal value of the number of triggered modules for system, when the EE is considered. |
Author | Zhao, Jun Xiong, Zehui Yong, Chao Xiao, Yue Gao, Yulan Niyato, Dusit |
Author_xml | – sequence: 1 givenname: Yulan orcidid: 0000-0002-5893-7985 surname: Gao fullname: Gao, Yulan email: yulangaomath@163.com organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Chao surname: Yong fullname: Yong, Chao organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 3 givenname: Zehui orcidid: 0000-0002-4440-941X surname: Xiong fullname: Xiong, Zehui email: zxiong002@e.ntu.edu.sg organization: Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore – sequence: 4 givenname: Jun orcidid: 0000-0002-3004-7091 surname: Zhao fullname: Zhao, Jun email: junzhao@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore – sequence: 5 givenname: Yue orcidid: 0000-0002-2127-8947 surname: Xiao fullname: Xiao, Yue email: xiaoyue@uestc.edu.cn organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 6 givenname: Dusit orcidid: 0000-0002-7442-7416 surname: Niyato fullname: Niyato, Dusit email: dniyatO@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore |
BookMark | eNp9kE1LAzEQhoNUsK3-Ab0seN46SXY3m2MpfhRaC7UinkK6O1tSt9mapIj_3q2tHjx4Gl54nxnm6ZGObSwScklhQCnIm8VoNp0OGDA64CA5p-yEdGma5jHkqeiQLoCEOBMiPyM979cAkADnXfI6x6rGIpjGRnP0zc4VGE211SvcoA1R1bhobAPWtVnt80_drqKnnat02x6aEsvoxTis0fvoEcNH4978OTmtdO3x4jj75PnudjF6iCez-_FoOIkLJtMQl0megZRUZwljS2wDVFUqMKdZiiATgYVkORdCLFPUWSlLzhliGzJYFrzkfXJ92Lt1zfsOfVDr9gvbnlQszRlLBHDatvJDq3CN9w4rVZig928Hp02tKKi9SPUtUu1FqqPIFmV_0K0zG-0-_4euDpBBxF9AJpnggvIvRcGBGg |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_TWC_2022_3144403 crossref_primary_10_1049_cmu2_12420 crossref_primary_10_1049_cmu2_12375 crossref_primary_10_1049_cmu2_12432 crossref_primary_10_1109_MNET_108_2100638 crossref_primary_10_1109_COMST_2022_3191937 crossref_primary_10_1109_TWC_2024_3376976 crossref_primary_10_1109_TWC_2022_3154372 crossref_primary_10_1109_TVT_2023_3271631 crossref_primary_10_1109_COMST_2022_3202813 crossref_primary_10_1016_j_phycom_2022_101943 crossref_primary_10_1109_TVT_2022_3217263 crossref_primary_10_1109_TNET_2023_3309729 crossref_primary_10_1049_cmu2_12337 crossref_primary_10_1109_ACCESS_2023_3236909 |
Cites_doi | 10.1109/MCOM.2014.6815891 10.1109/ACCESS.2019.2935192 10.1109/MWC.001.1900476 10.1007/BF00247655 10.1190/1.1440921 10.1109/GLOCOM.2018.8647620 10.1109/TWC.2019.2922609 10.1038/s41467-017-00164-9 10.1007/BF00927673 10.1109/TVT.2021.3055965 10.1111/j.1467-9868.2005.00532.x 10.1137/0907087 10.1109/ICASSP.2019.8683663 10.1109/TVT.2016.2627524 10.1109/LWC.2019.2950624 10.1109/TWC.2020.3028857 10.1007/BF00941314 10.1109/TCOMM.2020.3034357 10.1109/MCOM.001.1900107 10.1109/JSAC.2020.3000835 10.1109/JSAC.2020.3000813 10.1007/s00041-008-9045-x 10.1109/MCOM.2014.6736746 10.1109/TVT.2019.2923997 10.1109/TWC.2019.2901477 10.1109/OJCOMS.2020.3002955 10.1109/GLOBECOM38437.2019.9013288 10.1007/BF01258607 10.1109/TWC.2014.2367032 10.1109/ICC40277.2020.9148766 10.1109/LCOMM.2020.2969870 10.1109/TVT.2015.2462117 10.1109/MWC.001.1900534 10.1109/MNET.001.1900652 10.1109/TSP.2013.2252167 10.1109/INFOCOM.2018.8485924 10.1109/TWC.2019.2936025 10.1109/TCOMM.2013.071013.120787 10.1007/BF01919185 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2021.3093312 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 6986 |
ExternalDocumentID | 10_1109_TCOMM_2021_3093312 9467371 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2020YFB1807203 – fundername: Singapore University of Technology and Design; SUTD grantid: SRG-ISTD-2021-165 funderid: 10.13039/501100007040 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-d4860991a6422be8600ff57e8165e0947ec9283777b5ea6d9d332eeb5e60bc3d3 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Mon Jun 30 10:18:53 EDT 2025 Tue Jul 01 02:51:35 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Wed Aug 27 02:26:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-d4860991a6422be8600ff57e8165e0947ec9283777b5ea6d9d332eeb5e60bc3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2127-8947 0000-0002-4440-941X 0000-0002-3004-7091 0000-0002-7442-7416 0000-0002-5893-7985 |
PQID | 2582247031 |
PQPubID | 85472 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2582247031 crossref_primary_10_1109_TCOMM_2021_3093312 ieee_primary_9467371 crossref_citationtrail_10_1109_TCOMM_2021_3093312 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 boyd (ref40) 2009 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref39 ref17 ref16 liu (ref10) 2019; 11 ref19 csiszár (ref43) 1984; 1 ref18 wang (ref25) 2020 (ref1) 2014 ref24 ref45 ref23 ref26 ref20 ref42 ref41 ref22 ref44 ref21 grant (ref38) 2014 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 11 year: 2019 ident: ref10 article-title: Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions publication-title: Phys Rev A Gen Phys – ident: ref3 doi: 10.1109/MCOM.2014.6815891 – ident: ref6 doi: 10.1109/ACCESS.2019.2935192 – start-page: 1 year: 2020 ident: ref25 article-title: Robust beamforming and phase shift design for IRS-enhanced multi-user MISO downlink communication publication-title: Proc IEEE Int Conf Commun (ICC) – ident: ref8 doi: 10.1109/MWC.001.1900476 – ident: ref33 doi: 10.1007/BF00247655 – ident: ref36 doi: 10.1190/1.1440921 – ident: ref14 doi: 10.1109/GLOCOM.2018.8647620 – ident: ref26 doi: 10.1109/TWC.2019.2922609 – ident: ref11 doi: 10.1038/s41467-017-00164-9 – ident: ref41 doi: 10.1007/BF00927673 – ident: ref23 doi: 10.1109/TVT.2021.3055965 – ident: ref39 doi: 10.1111/j.1467-9868.2005.00532.x – ident: ref37 doi: 10.1137/0907087 – year: 2009 ident: ref40 publication-title: Convex optimization – volume: 1 start-page: 205 year: 1984 ident: ref43 article-title: Information geometry and alternating minimization procedures publication-title: Statist Decisions – ident: ref28 doi: 10.1109/ICASSP.2019.8683663 – ident: ref2 doi: 10.1109/TVT.2016.2627524 – ident: ref17 doi: 10.1109/LWC.2019.2950624 – ident: ref24 doi: 10.1109/TWC.2020.3028857 – ident: ref30 doi: 10.1007/BF00941314 – ident: ref16 doi: 10.1109/TCOMM.2020.3034357 – ident: ref7 doi: 10.1109/MCOM.001.1900107 – ident: ref22 doi: 10.1109/JSAC.2020.3000835 – ident: ref12 doi: 10.1109/JSAC.2020.3000813 – ident: ref34 doi: 10.1007/s00041-008-9045-x – ident: ref4 doi: 10.1109/MCOM.2014.6736746 – ident: ref18 doi: 10.1109/TVT.2019.2923997 – ident: ref45 doi: 10.1109/TWC.2019.2901477 – ident: ref20 doi: 10.1109/OJCOMS.2020.3002955 – ident: ref15 doi: 10.1109/GLOBECOM38437.2019.9013288 – year: 2014 ident: ref1 publication-title: Mobile-Edge Computing-Introductory Technical White Paper – ident: ref31 doi: 10.1007/BF01258607 – ident: ref42 doi: 10.1109/TWC.2014.2367032 – year: 2014 ident: ref38 publication-title: CVX Users' Guide – ident: ref13 doi: 10.1109/ICC40277.2020.9148766 – ident: ref44 doi: 10.1109/LCOMM.2020.2969870 – ident: ref35 doi: 10.1109/TVT.2015.2462117 – ident: ref21 doi: 10.1109/MWC.001.1900534 – ident: ref5 doi: 10.1109/MNET.001.1900652 – ident: ref27 doi: 10.1109/TSP.2013.2252167 – ident: ref9 doi: 10.1109/INFOCOM.2018.8485924 – ident: ref19 doi: 10.1109/TWC.2019.2936025 – ident: ref29 doi: 10.1109/TCOMM.2013.071013.120787 – ident: ref32 doi: 10.1007/BF01919185 |
SSID | ssj0004033 |
Score | 2.5040631 |
Snippet | In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple user pairs in two-hop networks is investigated. Different from the existing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6971 |
SubjectTerms | Algorithms alternating direction and method of multipliers (ADMM) Approximation Approximation algorithms Array signal processing Beamforming Computational geometry Convexity group sparsity Intelligent reflecting surface (IRS) Mathematical programming Modular structures Modules passive beamforming Phase shifters Power demand Quality of service Reconfigurable intelligent surfaces reflection resource management Resource management transmit power allocation Wireless networks |
Title | Reflection Resource Management for Intelligent Reflecting Surface Aided Wireless Networks |
URI | https://ieeexplore.ieee.org/document/9467371 https://www.proquest.com/docview/2582247031 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTnDgNRCDgXLgBu3aZm3X4zQxDaQOCTZpnKq2cRBi6tDWXvj12H2NlxC3RnKqKE5iO_n8mbHLUKEfL1SkOQCh1kMbq0WuKTU0NuAptIhmTMnJ_sQZz3p3c3veYNd1LgwA5OAz0Okzf8uXyzijq7IulYMXlDC-hYFbkau1yYE0RMk4SXB2t18lyBhedzq8930MBS1Tp3c_YVpfjFBeVeXHUZzbl9Ee86uRFbCSVz1LIz1-_0ba-N-h77Pd0tHkg2JlHLAGJIds5xP9YIs9PYBa5FCshFfX-HyDh-Hoz_LbmrIz5ZV48swfs5UKUXrwIkFygtAu8MjkkwJUvj5is9HNdDjWylILWmx5dqpJqkWFigkxHLEiwIahlO1C33RswAjQhdgjnhzXjWwIHelJISwAbDhGFAspjlkzWSZwwrjnQWxDDx0ZJSn6ikIHzxF0I5WhXIxZ28ys5j6ISx5yKoexCPJ4xPCCXF8B6Sso9dVmV3Wft4KF40_pFimgliznvs06lYqDcqOuA8smGC2R-J_-3uuMbdO_C_xehzXTVQbn6Iek0UW-AD8ArJHYqQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYmOAAH3ojBgBy4QUcfa7sepwk0YB0SDAlOVds4CDF1aGsv_HrsvngKcWskR43iJLaTz58BjkNFfrylIs1BDLUO2Vgtcg2pkbFBT5FFNGJOTvZHzuC-c_VgPzTgtM6FQcQcfIZt_szf8uU0zviq7IzLwVucML5Idt82imytjyxI3So5JxnQ7narFBndOxv3b3yfgkHTaPPLn2WYX8xQXlflx2GcW5iLNfCrsRXAkpd2lkbt-O0bbeN_B78Oq6WrKXrF2tiABiabsPKJgHALHm9RTXIwViKqi3zxgYgR5NGKy5q0MxWVePIk7rKZCkm69yxRCgbRTujQFKMCVj7fhvuL83F_oJXFFrTY9OxUk1yNilQTUkBiRkgNXSnbxa7h2EgxoIuxx0w5rhvZGDrSk5ZlIlLD0aPYktYOLCTTBHdBeB7GNnbIlVGS468odOgkIUdS6cqlqLUJRjX3QVwykXNBjEmQRyS6F-T6ClhfQamvJpzUfV4LHo4_pbdYAbVkOfdNaFUqDsqtOg9Mm4G0TOO_93uvI1gajP1hMLwcXe_DMv-nQPO1YCGdZXhAXkkaHeaL8R0lMNvy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reflection+Resource+Management+for+Intelligent+Reflecting+Surface+Aided+Wireless+Networks&rft.jtitle=IEEE+transactions+on+communications&rft.au=Gao%2C+Yulan&rft.au=Yong%2C+Chao&rft.au=Xiong%2C+Zehui&rft.au=Zhao%2C+Jun&rft.date=2021-10-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=69&rft.issue=10&rft.spage=6971&rft.epage=6986&rft_id=info:doi/10.1109%2FTCOMM.2021.3093312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2021_3093312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |